Report of a Recent CCS Cost Workshop: Part I

Audiences, Measures and Methods for CCS Costs

Edward S. Rubin
Department of Engineering and Public Policy
Department of Mechanical Engineering
Carnegie Mellon University
Pittsburgh, Pennsylvania

Presentation to the
10th Annual Conference on Carbon Capture and Storage
Pittsburgh, Pennsylvania
May 4, 2011

Background

• In recent years, reported costs of CCS have increased. There’s been growing interest—and growing confusion—over the cost of CCS in different applications.

• This led to an ad hoc meeting of ~20 people last fall during GHGT-10 (organized by J. Davison and H. Herzog) to discuss interest in a network or workshop focused on CCS cost issues.

• The response was extremely positive. Seven people agreed to form a steering committee to plan a workshop in the March 2011 time frame, focused on CCS at power plants.

• The workshop was held on March 22-23 at the IEA offices in Paris. 40 invited participants attended.
Steering Committee

- John Davison, IEA GHG
- Clas Ekström, Vattenfall
- Matthias Finkenrath, IEA
- Howard Herzog, MIT
- Richard Rhudy, EPRI
- Ed Rubin, Carnegie Mellon
- Chris Short, GCCSI
Workshop Participants

- Experts from industry, government, academia, NGOs
 - Alstom Power, Amec, BG Group, Carnegie Mellon University, Clean Air Task Force, CSIRO, DOE/NETL, E.On gas storage, ENEL, EPRI, ExxonMobil, Foster Wheeler, gasNatural fenosa, GCCSI, IEA, IEAGHG, MIT, Panaware ab, RWE Power, Schlumberger, SFA Pacific, Shell, Southern Company, Statoil, Suncor, Teekay Shipping, Tel-Tek, Tsinghua University, University of Ulster, Vattenfall
- Experts from Europe, the Pacific, and North America
 - Australia, Canada, China, France, Germany, Italy, Netherlands, Norway, Spain, Sweden, UK, USA

Workshop Agenda – Day 1

Keynote 1: Audiences and Uses for CCS Cost Estimates (Herzog)
- Government, Industry, NGO respondents
- Open discussion

Keynote 2: CCS Costing Methods and Measures (Rubin)
- Vendor, Utility, R&D organization respondents
- Open discussion

Keynote 3: Status of CO₂ Capture Costs (Finkenrath)
- Europe, North America, Asia/Pacific respondents
- Open discussion

Keynote 4: Status of CO₂ Transport Costs (Nilsson)
Keynote 5: Status of Geologic Storage Costs (Tombari)
- Transport, Storage, Policy Expert respondents
- Open discussion
Workshop Agenda – Day 2

Breakout Session 1a: Capture Costs
Breakout Session 1b: Capture Costs
Breakout Session 2: Transport Costs
Breakout Session 3: Storage Costs
 - Further discussion of topics presented on Day 1
 - Need, role and agenda for a CCS cost network

Reports from Breakout Sessions

General Discussion:
 - Major conclusions/insights from the workshop
 - Recommendations/plans for follow-up action

Today’s Agenda

• I will summarize the keynote sessions on audiences, measures, and methods of CCS costing
• Howard Herzog will summarize sessions on the status of CCS costs, and the outcomes of the workshop
• Barry Jones and Stu Dalton will offer brief comments, followed by audience Q&A
• This afternoon in session 3-G we (plus John Tombari) will continue the discussion of CCS cost issues
Audiences for CCS Costs

Users (and Generators) of CCS Cost Estimates

Many people use cost estimates in many ways

Government
- Policymakers
- Analysts
- Regulators
- R&D Agencies

Industry
- Operators
- Vendors
- A&E Firms
- Venture Cap.
- Tech Developers
- R&D Orgs

NGOs
- Environmental
- Media
- Academia
- Foundations

Source: Howard Herzog / MIT Energy Initiative
Simplified View of the Uses of CCS Cost Estimates

Cost Estimates for CCS (and other technologies)

Technology Assessments
- R&D Priorities
- Capital Investments
- Marketing

Policy Assessments
- Legislation
- Regulation
- Advocacy

CCS in a Mitigation Portfolio

- Many users of CCS costs are also interested in how CCS compares to the cost of other CO₂ mitigation technologies or options
 - A desire for consistency across cost estimates for different technologies, but very difficult to achieve

- Different audiences also typically require (or get) different types and quality of cost information
 - Limited number of comprehensive independent studies vs. “derivative” studies
 - “Top down” vs. “bottom up” estimates
Measures of CCS cost

Common Measures of CCS Cost

- Cost of CO₂ avoided
- Cost of CO₂ captured
- Added cost of electricity
- Capital cost
Dollars per Ton

- This is the metric most commonly used in technical and policy forums to quantify the cost of CCS (as well as other methods of reducing carbon emissions)
- Also the measure that is most easily misunderstood and misapplied

Same Units, Different Meanings

- **Cost of CO\(_2\) Avoided (\$/t CO\(_2\))**
 \[\frac{($/MWh)_{ccs} - ($/MWh)_{reference}}{(t\ CO_2/MWh)_{ref} - (t\ CO_2/MWh)_{ccs}} \]

- **Cost of CO\(_2\) Captured (\$/t CO\(_2\))**
 \[\frac{($/MWh)_{ccs} - ($/MWh)_{reference}}{(t\ CO_2/MWh)_{ccs, produced} - (t\ CO_2/MWh)_{ccs}} \]

- **Cost of CO\(_2\) Abated (Reduced) (\$/t CO\(_2\))**
 \[\frac{($ NPV)_{ccs} - ($ NPV)_{reference}}{(t\ CO_2)_{ref} - (t\ CO_2)_{ccs}} \]

Use with caution!
Methods for CCS

cost estimates

E. S. Rubin, Carnegie Mellon

A Hierarchy of Methods

• Ask an expert
• Use published values
• Modify published values
 • Derive new results from a model
 • Commission a detailed engineering study

E. S. Rubin, Carnegie Mellon
Current Status

- Individual organizations have developed detailed procedures and guidelines for calculating power plant costs (capital, O&M, COE) in a consistent fashion.

- However, there are significant differences in the costing methods used by different organizations concerned with CO₂ capture and storage.

Capital Cost Elements in Recent Studies

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Process facilities capital</td>
<td>Bare erected cost (BEC)</td>
<td>Bare erected cost (BEC)</td>
<td>Civil Structural Material & Installation</td>
</tr>
<tr>
<td>Eng'g, home office, overhead & fees</td>
<td>Project Contingency Cost</td>
<td>Project Contingency Cost</td>
<td>Electrical & I&C Supply & Installation</td>
</tr>
<tr>
<td>Contingencies – project and process</td>
<td>Process Contingency Cost</td>
<td>Process Contingency Cost</td>
<td>Project Indirects</td>
</tr>
<tr>
<td>Total plant cost (TPC)</td>
<td>Total plant cost (TPC)</td>
<td>Total plant cost (TPC)</td>
<td>EPC Cost before Contingency and Fee</td>
</tr>
<tr>
<td>APU/DC (interest & escalation)</td>
<td>Pre-Production Costs</td>
<td>Fee and Contingency</td>
<td></td>
</tr>
<tr>
<td>Total plant investment (TPI)</td>
<td>Inventory Capital</td>
<td>Total Project EPC</td>
<td></td>
</tr>
<tr>
<td>Owner's costs: operation, preproduction costs, inventory capital, initial catalyst and chemicals, Land</td>
<td>Financing costs</td>
<td>Owner's Costs (excl. project finance)</td>
<td></td>
</tr>
<tr>
<td>Other owner's costs</td>
<td>Total Project Cost (excl. finance)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Capital Requirement (TCR)</td>
<td>Total overnight cost (TOC)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

No consistent set of cost categories or nomenclature across studies.

- E.S. Rubin, Carnegie Mellon

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct materials</td>
<td>EPC costs</td>
<td>Pre-licensing costs, Technical and design</td>
<td></td>
</tr>
<tr>
<td>Labour and other site costs</td>
<td>Owner's costs</td>
<td>Regulatory + licensing + public enquiry</td>
<td></td>
</tr>
<tr>
<td>Engineering fees</td>
<td>Total Investment</td>
<td>Eng'g, procurement & construction (EPC)</td>
<td></td>
</tr>
<tr>
<td>Contingencies</td>
<td>Infrastructure / connection costs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total plant cost (TPC)</td>
<td>Total Capital Cost (excluded IDC)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Construction interest</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Owner's costs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Working capital</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Start-up costs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Capital Requirement (TCR)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
O&M Cost Elements in Recent Studies

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixed O&M</td>
<td>Operating labor</td>
<td>Operating labor</td>
<td>Operating labor</td>
</tr>
<tr>
<td></td>
<td>Maintenance labor</td>
<td>Maintenance labor</td>
<td>Maintenance costs</td>
</tr>
<tr>
<td>Admin. & support labor</td>
<td>Admin. & support labor</td>
<td>Property taxes and insurance</td>
<td>Overhead charges (admin & support labor)</td>
</tr>
<tr>
<td>Variable O&M (excl. fuel)</td>
<td>Maintenance - material</td>
<td>Maintenance - material</td>
<td>Maintenance costs</td>
</tr>
<tr>
<td></td>
<td>Consumables (water, chemicals, etc.)</td>
<td>Consumables (water, chemicals, etc.)</td>
<td>Consumables (water, chemicals, etc.)</td>
</tr>
<tr>
<td></td>
<td>Waste disposal</td>
<td>Waste disposal</td>
<td>Waste disposal</td>
</tr>
<tr>
<td></td>
<td>Co- or by-product credit</td>
<td>Co- or by-product credit</td>
<td>Co- or by-product credit</td>
</tr>
<tr>
<td></td>
<td>CO2 transport and storage</td>
<td>CO2 transport and storage</td>
<td>CO2 transport and storage</td>
</tr>
</tbody>
</table>

No consistent set of cost categories or nomenclature across studies

Many Factors Affect CCS Costs

- Choice of Power Plant and CCS Technology
- Process Design and Operating Variables
- Economic and Financial Parameters
- Choice of System Boundaries; *e.g.*,
 - One facility vs. multi-plant system (regional, national, global)
 - GHG gases considered (CO₂ only vs. all GHGs)
 - Power plant only vs. partial or complete fuel cycle
- Time Frame of Interest
 - First-of-a-kind plant vs. *n*⁻th plant
 - Current technology vs. future systems
 - Consideration of technological “learning”
Uncertainty, Variability and Bias

- Cost methods can (in principle) account for variability and uncertainty, e.g., via parametric (sensitivity) analysis and/or probabilistic analysis

- Bias can arise in project design specifications and choice of parameters and values for cost estimates
 - Can be difficult to detect or prove
 - Independent (3rd party) evaluations can be helpful

The Devil is in the Details

- Need to improve the reporting and transparency of costing methods and assumptions to improve the understanding of CCS costs
Howard Herzog now will present Part II:

Workshop reports on status of cost estimates for capture, transport and storage, with plans for follow-on activities