ANATOMICAL CONNECTION

Inventors: Dennis Dam Soerensen, Smyrna, GA (US); Lakshmi Prasad Dasi, Atlanta, GA (US); Keren Pekkan, Athens, GA (US); Diane De Julian de Zeilcourt, Atlanta, GA (US); Ajit P. Yoganathan, Tucker, GA (US)

Assignee: Georgia Tech Research Corp., Atlanta, GA (US)

Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 717 days.

Appl. No.: 10/593,855
PCT Filed: Mar. 23, 2005
PCT No.: PCT/US2005/009835
§ 371(c)(1), (2), (4) Date: Sep. 22, 2006
PCT Pub. No.: WO2005/094521
PCT Pub. Date: Oct. 13, 2005
Prior Publication Data

Related U.S. Application Data
Provisional application No. 60/555,515, filed on Mar. 23, 2004.

Int. Cl.
A61M 1/36 (2006.01)
F16K 11/20 (2006.01)

U.S. CL 604/8; 604/9; 604/264; 137/597

Field of Classification Search 604/8, 604/9, 264; 128/898

See application file for complete search history.

References Cited

U.S. PATENT DOCUMENTS
5,984,955 A 11/1999 Wisselink
6,234,203 B1 5/2001 Backlund

OTHER PUBLICATIONS
* cited by examiner

Primary Examiner—Leslie R Deak
Attorney, Agent, or Firm—Troutman Sanders LLP; Ryan A. Schneider; James Hunt Yancey, Jr.

ABSTRACT

A device for use in the total cavopulmonary connection (TCPC) in order to optimize its hemodynamics. Although the current procedure of choice for single ventricle heart repairs, the TCPC has reduced the post-operative mortality to the level of simpler types of congenital heart disease repairs. Fontan patients are still subjected to serious long-term complications. The TCPC procedure, which restores the vital separation between oxygenated and deoxygenated blood, also leads to an increased workload for the remaining single ventricle, as it is now responsible for pumping the blood through both the systemic and pulmonary circulation. The present device reduces this workload by altering the surgically created design of the TCPC. Improved fluid mechanics and reduced energy dissipation at the connection site translates into less work for the single ventricle and improved transport of deoxygenated blood to the lungs, which may in turn contribute to improved post-operative results and quality of life.

22 Claims, 21 Drawing Sheets