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Abstract
In this paper, we explore a privacy algorithm that detects human private parts
in a 3D scan data set. The analogia graph is introduced to study the propor-
tion of structures. The intrinsic human proportions are applied to reduce the
search space in an order of magnitude. A feature shape template is constructed
to match the model data points using Radial Basis Functions in a non-linear
regression and the relative measurements of the height and area factors. The
method is tested on 100 data sets from CAESAR database. Two surface ren-
dering methods are studied for data privacy: blurring and transparency. It is
found that test subjects normally prefer to have the most possible privacy in
both rendering methods. However, the subjects adjusted their privacy mea-
surement to a certain degree as they were informed of the context of security.
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doi:10.1057/palgrave.ivs.9500136

Keywords: Human body; feature recognition; 3D scan; security; privacy

Introduction
The rapidly growing market of three-dimensional (3D) holographic imag-
ing systems has created significant interest in possible security applications.
Current devices operate using a millimeter wave transceiver to reflect the
signal of the human body and any objects carried on it. The device pene-
trates less dense items, like clothing and hair. Unlike current metal detec-
tors, the system can also detect non-metal threats or contraband, including
plastics, liquids, drugs and ceramic weapons hidden under clothing as seen
in Figure 1. The technology has also been used to create body measurements
for custom-fit clothing. The holographic imager creates a high-resolution
3D body-scan, allowing shops to provide tailored measurements to design-
ers or provide recommendations on best-fit clothing. These high-resolution
scanned images reveal human body details and have raised privacy con-
cerns. Airport and transport officials in several countries are refusing to run
a test trial with the scanners until a more suitable way to conceal certain
parts of the human body is found.1

The scanner creates a 3D point cloud around the human body. As the
millimeter wave signal cannot penetrate the skin, a 3D human surface can
be found. Furthermore, since the typical pose of a subject is standing, with
arms to the side, we can segment the 3-D data set into 2-D contours, which
significantly reduces the amount of data processing. The goal of this study
is to develop a method that can efficiently find and conceal the private
parts of a human.

Relevant studies
From the computer vision point of view, detecting features from 3D body
scan data is nontrivial because human bodies are flexible and diversified.
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Figure 1 The 3D holographic imaging systems can detect contraband beneath clothing, yet they raise privacy concerns
due to the detailed human figure that is revealed.

Function fitting has been used for extracting special land-
marks such as ankle joints from 3D body scan data,2,3

similar to the method for extracting special points
on terrain.4,5 Curvature calculation is also introduced
from other fields such as the sequence dependent DNA
curvature.10 These curvature calculations use methods
such as chain code,7 circle fit, ratio of end-to-end dis-
tance to contour length, ratio of moments of inertia, and
cumulative and successive bending angles. Curvature
values are calculated from the data by fitting a quadratic
surface over a square window and calculating directional
derivatives of this surface. Sensitivity to the data noise is
a major problem in both function fitting and curvature
calculation methods because typical 3D scan data con-
tains noises. Template matching appears to be a promis-
ing method because it is invariant to the coordinate
system.2,3 However, how to define a template and where
to match the template is challenging and unique to each
particular feature.6–27

In summary, there are two major obstacles in this study:
robustness and speed. Many machine learning algorithms
are coordinate-dependent and limited by the training data
space. Some algorithms only work within small bound-
ing boxes that do not warrant an acceptable performance
since the boxes need to be detected prior to the execution
of the algorithm and are, often, not amenable to noise.
For example, if a feature detection algorithm takes 1 hour
to process, then it is not useful for a security screening sys-
tem. In this paper, we present a fast and robust algorithm
for privacy protection.

Analogia graph
Analogia (Greek: ����o�í�, means ‘proportion’) graph is
an abstraction of a proportion-preserving mapping of a

shape. Assume a connected non-rigid graph G, in which
there is an edge with a length u. The rest of edges in G can
be normalized as pi = vi/u. Let X and Y be metric spaces
dX and dY . A map f : X → Y is called Analogia Graph if
for any x, y ∈ X one has dY(f(x), f(y))/u= dX(x, y)/u.

Analogia Graph is common in arts. The Russian Realism
painter Ropin said that the secret of painting is ‘compari-
son, comparison and comparison.’ To represent objects in
a picture realistically, a painter has to constantly measure
and adjust the relationship among objects. ‘You should
use the compass in your eyes, not in your hands,’ Ropin
said. Instead of using absolute measurements of the dis-
tances and sizes, artists often use intrinsic landmarks in-
side the scene to estimate the relationships. For example,
using a number of heads to estimate the height of a per-
son and using a number of eyes to measure the length
of a nose, and so on. Figure 2 is an Analogia Graph of a
human body.

Using this artistic approach, we can create a graph where
nodes represent regions and are connected to each other
by edges, where the weight is defined as the distance be-
tween the nodes in proportion to the height of the head.
Initially, we stretch the graph such that it overlays the en-
tire body. We then create a link between each node and its
respective counterpart. We link the head, shoulders, arms,
elbows, hands, neck, breasts, waist, legs, knees, and feet to
their respective regions. There is some tweaking required
to assure that the waist region does indeed cover that area.
Here, we run a quick top-down search through the plane
slices until there are at least two disjoint areas, which we
consider to be the middle of the waist. This change also
makes modifications to where the knees and breasts are,
and how large their regions are.

We take into account that not every subject has all four
limbs. Our algorithm still accepts the scan if such items

Information Visualization



Feature hiding in 3D human body scans Joseph Laws et al
273

Figure 2 Analogia graph of a human figure.

are missing, such as half an arm or half a leg. It is also
amenable to a complete loss of an arm or leg by looking
at the expected ratio vs the real ratios when determining
the length of each particular region.

However, convenient it is to find such broad range of
regions, it is not possible to expand this algorithm to find
more details like specific fingers, toes, ankle joints, or the
nose. These searches are more complicated and require
additional template fitting per feature and would signifi-
cantly reduce the algorithm’s run time.

We found that the intrinsic proportion method can
reduce the search space in an order of magnitude. In addi-
tion, it reduces the risk of finding the local optima while
searching the whole body.

Intrinsic proportions of humans
Our first step is to reduce the search space of the 3D
body scans with the Analogia Graph. In this study, we
assume that the body is standing with the arms hanging
to the sides in a non-concealing way. If the arms are too
close to the body, then the holograph imager cannot pro-
duce an accurate representation of the body and items on
the side of the body could be completely missed because
the area between the arm and the body would not be
clearly defined. We start by dividing the 3D data points
into 2D slices. The points are ‘snapped’ to the nearest
planes enabling us to convert a 3D problem into a 2D
one. Examining each slice from top to bottom is rather
an expensive process. Here, we present a novel approach
to reduce the search space by making use of intrinsic

proportions. It is a relative measurement that uses an
object in the scene to measure other objects.8

Intrinsic proportion measurements have been used in
architecture and art for thousands of years. Roman ar-
chitect Vitruvius said that the proportions of a building
should correspond to those of a person, and laid down
what he considered to be the relative measurements of an
ideal human. Similarly in art, the proportions of the hu-
man body in a statue or painting have a direct effect on
the creation of the human figure. Artists use analogous
measurements that are invariant to coordinate systems.
For example, using the head to measure the height and
width of a human body, and using an eye to measure the
height and width of a face.

Figure 3 shows a sample of the vertical proportion in
a typical art book and the actual distribution of head-
to-body proportions calculated from our CAESAR data
set.9,26 The results show that on average an adult hu-
man is six to eight heads tall. Based on our observations
from one hundred 3D scan data sets of adults from 16
to 65 years old, including subjects from North America,
Europe and Asia, we found that the length of one and a
half head units from the bottom of the head is enough
to cover the chest area. In addition, the chest width is
about three heads wide. Figure 4 shows an output from
the intrinsic proportion calculation based on the sample
from CAESAR database.

Template matching
Template matching is an image registration process that
matches a surface, of which all relevant information is
known to a template of another surface. The matching of
the two surfaces is driven by a similarity function. We need
to solve two problems before applying template match-
ing on the regions of interest. First, a suitable template
has to be created. Second, a similarity function has to be
selected so that a minimization algorithm can align
the template onto the region of interest. For each plane of
the scan data, the back of the body contour can be re-
moved. By assigning the X-axis between the two points
with the greatest distance, we can obtain the front part of
the body contour. This aligns the subject to our template
such that the matching is never attempted on a twisted or
backward body. We then use three radial basis functions
to configure the template for a female breast pattern.

y =
3∑
i=1

ai ∗ exp(−(x− si)2), (1)

where, a=a1=a2, b=a3, s=s1=s2, and s3=0. We use non-
linear regression on the variables a, b, and s to match the
template with the scan data. Figure 5 shows the matching
results for the female and male samples.

Coordinate invariant measurements
Most shape descriptions depend on particular coordinate
systems and particular viewpoints, meaning that the
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Figure 3 Body height measured by head example (A), normal distribution of heads per body (B), spread of actual
number of heads per body size for 100 models (C).

Figure 4 Using calculated ratios, the chest region is shown in white.

Figure 5 Variable definitions for the breast template (left), matching results for the female sample (middle) and male
sample (right). The solid black curves are the template contours. The red points are the 3D scan data.
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algorithm can only work within the same ‘space’ as the
training data. Our shape invariant measurements are
aimed to compute the shape properties from the ratio,
rather than absolute values. This reduces this dependency
onto a particular pose that is easily controlled, as opposed
to creating an algorithm for each available holograph
imager.

Template matching not only filters out noises, but also
describes the characteristics of a shape. We define the fol-
lowing invariant similarity functions to the coordinate
system: height ratio and area ratio. The height ratio is
defined as:

Hr = H1
H2

= Ymid/2

Ymid
. (2)

The area ratio is defined as the ratio of the area of curvature
feature (A1) to the total area (A2) of the model by the
following formula:

Ar = A2
A1

, (3)

where

A2 =
∫
l

3∑
i=1

ai ∗ exp(−(x− si)2)dx, (4)

A1 =
∫
l


 3∑
i=1

ai ∗ exp(−(x− si)2)− c

dx, (5)

c =
3∑
i=1

ai ∗ exp(−(mid − si)2). (6)

We use the Taylor series to find an appropriate approxi-
mation of the areas.

A1 =
3∑
i=1

ai ∗
(
1 − (x− si)2 + (x− si)4

2!

+ (x− si)6
3! + (x− si)8

4!

)
, (7)

A2 =
3∑
i=1

ai ∗
(
1 − (x− si)2 + (x− si)4

2!

+ (x− si)6
3! + (x− si)8

4!

)
− c. (8)

It is necessary to attempt to match the template to each
slice within the detected area, where only the greatest ratio
of curvature is kept and used as the final result.

Results
We tested our algorithm with a subset of the CAESAR
database, which contains 50 males and 50 females aged
16–65 years, where 50 of them are North American, 24 are

Figure 6 Classification test results with male and female
samples.

Asian, and 26 are from the European survey of Italy and
the Netherlands. We tested our algorithm to find the
breast features from known female and male scan data
samples. Figure 6 shows these test results. From the plot,
we can see that there are two distinguishable groups,
which happen to coincide with the particular gender of
each subject. The male subjects tend to have no curva-
ture features and lie in the lower left range of the graph,
whereas female subjects do demonstrate these curvature
features and lie in the upper right range of the graph.
There is a ‘dilemma’ zone where some over-weight males
do have the curvature features. However, the over-lapped
zone is small, less than 8% of the total one hundred
samples.

After the area and height factors have been calculated,
we determine the feature area. Once we find the feature
area, we reduce the polygon resolution so that the area is
blurred. Figure 7 shows the results of the blurring effects in
wire-frame mode. Figures 8 and 9 show scales of blurring
and transparency, respectively.

Usability study
It is common knowledge that most people disagree on
how much privacy can be given up for security. It was
also another goal of ours to find out what most end-users
would give up for that security. We ran two sets of two
tests. Both sets included Figures 8 and 9 as scales where
the subjects rated which they preferred, given the particu-
lar privacy concerns discussed prior to showing them the
images. Ten random males and ten random females, ages
from 19 to 59 were asked to participate in the study.

In the first study, subjects were told to imagine that they
(or their girlfriend or wife) were in an airport and had
to walk through the 3D holographic scanner, mentioned
in the introduction, and that the resulted images would
be displayed to the security officials on duty. They were
asked to choose a blurred image, or a transparent image.
The men averaged a 4.8 on the blurred scale and a 4.2 on
the transparent scale. The women averaged a 4.0 on the
blurred scale and a 3.8 on the transparent scale (Table 1).

In the second study, subjects were told to rate their pri-
vacy on a scale vs security in a context which not only
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Figure 7 The blurred surface rendering.

Figure 8 The blurred scale.

Figure 9 The transparent scale.

Table 1 User preferences without security concerns

Gender Method Rank Average

Male Blurring 5 5 5 5 4 5 4 5 5 5 4.8
Transparency 4 4 4 4 4 5 4 4 4 5 4.2

Female Blurring 5 5 4 4 4 3 4 4 4 3 4.0
Transparency 5 5 4 4 4 4 3 3 4 2 3.8

were they being observed, but others who may or may
not be attempting to conceal weapons were also being
observed. Such oddities as a pocketknife between the
breasts would be more difficult to detect in a very blurred

mesh. The men averaged a 3.2 on the blurred scale and
a 2.9 on the transparent scale. The women, on the other
hand, averaged a 2.5 on the blurred scale and a 2.3 on
the transparent scale (Table 2).
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Table 2 User preferences with security concerns

Gender Method Rank Average

Male Blurring 4 3 3 3 5 3 2 3 3 3 3.2
Transparency 3 3 3 3 4 3 2 3 3 2 2.9

Female Blurring 2 3 3 2 2 2 2 3 3 3 2.5
Transparency 2 2 3 2 2 2 2 3 3 2 2.3

The two studies display how different contexts can af-
fect a subject’s response and personal choice. It is clear
that in the first study the men were more concerned about
having their girlfriends/wives seen than the women con-
cerned with how much they were seen. In the second
study, it is clear that nearly every subject gave up more of
their privacy to a certain degree for the benefits of security
and the safety of their travels.

Conclusions
In this paper, we explored an algorithm to recognize body
feature areas and hide them to protect a subject’s privacy.
The intrinsic human proportions are used to drastically
reduce the search space and reduce the chance of local
optima in detection. The Radial Basis Function is used as
the feature template whose parameters are determined by
non-linear regressions along each contour slice. Feature
factors of the height and area are then used to classify
the curvature feature as being male or female. The relative
measurements are coordinate invariant, meaning that
the algorithm is robust and is capable to work with mul-
tiple data sets. With the non-linear regression method,
the template matching is effective and convergent within
a given error range. We have tested one hundred body
scans from the CAESAR database and found that the algo-
rithm can successfully classify the male and female bodies
based on the curvature features at a rate of over 90%.

Two surface rendering methods are studied for data pri-
vacy: blurring and transparency. It is found that test sub-
jects normally prefer to have the most possible privacy in
both rendering methods. However, the subjects adjusted
their privacy measurement to a certain degree as they were
informed of the context of security.

Our future work includes the development of more ro-
bust coordinate invariant methods to detect more prede-
fined body features, and to calibrate the algorithms for
both protecting privacy and detecting concealed weapons.
Ultimately, we will work with the real field data to fine
tune the algorithms.
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