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1 Introduction

People can usually sense troubles in a car from noises, vibrations, or smells. An
experienced driver can even tell where the problem is. We call this kind of skill
‘Ambient Diagnostics’.

Ambient Diagnostics is an emerging field that is aimed at detecting abnor-
mities from seemly disconnected ambient data that we take for granted. For
example, the human body is a rich ambient data source: temperature, pulses,
gestures, sound, forces, moisture, et al. Also, many electronic devices provide
pervasive ambient data streams, such as mobile phones, surveillance cameras,
satellite images, personal data assistants, wireless networks and so on.

The peripheral vision of the redundant information enables Ambient Diag-
nostics. For example, a mobile phone can also be a diagnostic tool. As the sounds
generated by breathing in asthma patients are widely accepted as an indicator
of disease activity [1, 2], researchers have investigated the use of a mobile phone
and electronic signal transfer by e-mail and voice mail to study tracheal breath
sounds in individuals with normal lung function and patients with asthma [3].
The results suggest that mobile phone recordings clearly discriminate tracheal
breath sounds in asthma patients and could be a non-invasive method of moni-
toring airway diseases.

It is challenging to extract just one bit of diagnosis (positive or negative) from
massive ambient data. First, we need pivotal heuristics or domain knowledge. In
many cases, the heuristics just serve as an early warning rather than an accurate
examination. For example, medical studies show that snoring may be related to
hypertension, cardiac dysfunction, angina pectoris and cerebral infarction. The
immediate rise in systemic blood pressure during snoring has been confirmed
by polygraphic recordings [60]. A ‘snoremeter’ could be added into a mobile
phone because it already has a microphone inside. It would provide valuable
early warnings for related diseases.

Second, we need physical heuristics that effectively filter out the trivial data
while only keeping the abnormities. Knowing the physical properties of the tar-
geted system would greatly benefit a diagnosis. For example, if we know that
the needle in a hay stack is metal, then we can work around the metal proper-
ties and make the hay disappear. Ideally, physical heuristics map the data to a
feature space that only displays limited interesting features. Determining which
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modality to use for mapping the feature space is sometimes called ‘modality
intelligence.’ For instance, classic Fourier Transformation algorithms map data
from a time-domain to a frequency-domain. For many periodical data sets, this
is a blessing because it is easier to see the patterns in the frequency domain.
Wu and Siegel developed a sound recognition system that can identify types of
vehicles by sound signatures [11]. The algorithm can also be used for analyzing
the breathing patterns of asthma sufferers.

Third, we need effective feature descriptions. The human brain is mainly
wired using languages, not for pixel computations. How to transform a verbal
description into a digital representation is a non-trivial task. For example, how
do we describe the texture on the human body? How do we sense group activities
in a video from a nursing home?

Ambient Diagnostics can be traced back to ancient times. For over two thou-
sand years, physical inspection has been a unique and important diagnostic
method of Traditional Chinese Medicine (TCM). Observing abnormal changes
in the tongue, blood volume pulse patterns, breath smells, gestures, etc., can aid
in diagnosing diseases. TCM diagnosis is a black-box approach that involves only
input and output data around the body. For many years, scientists have been
trying to use modern technologies to unleash the ancient knowledge base. For
example, a recent paper published on an IEEE conference presents a computer-
based arterial blood-volume pulse analyzer. It is a ‘rediscovery’ of the diagnostic
method originated from ancient TCM [65].

This chapter was inspired by the research of computerized TCM tongue in-
spection. Through this case study, the chapter discusses the components and
potential of ambient diagnostics. We believe that it can be used in applications
such as security intelligence, where the difference is deceiving.

2 Tongue Inspection

Visual inspection of the tongue has been a unique and important diagnostic
method of Traditional Chinese Medicine (TCM) for thousands of years. Observ-
ing the abnormal changes in the tongue proper and in the tongue coating can
aid in diagnosing diseases. The inspection of the tongue comprises the inspec-
tion of the tongue body and the coating. The tongue body refers to the tissue
of the muscle and blood vessels, while the coating refers to something on the
tongue like mosses, which are formed, according to the theory of TCM, by the
rising of the ‘qi’ (energy) of the spleen and stomach. For decades, international
TCM medical professionals have conducted an enormous number of scientific
experiments on tongue inspection [26].

Clinical data has shown significant connections between various viscera can-
cers and abnormalities in the tongue and the tongue coating. Yao from China
studied 4,000 clinical cases with gastroendoscopy images over a period of 20
years. He found significant connections between various viscera cancers and ab-
normalities in the tongue and the tongue coating. Yao found that viscera cancer
patients showed less tongue coating at the tip or edge of the tongue and that
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the coating color had turned to purple. He published a book about his study,
including in it 130 tongue inspection images, along with gastroendoscopy images
and patient diagnoses [20].

Since the early 1980s, medical professionals in China have systematically
studied the relationship between various cancers and tongue signatures. Their
results have been published in national medical journals. For instance, China
TCM Society, China Cancer Society and TCM Diagnosis Association conducted
a national project that included cases of 12,448 cancerous patients, 1,628 non-
cancerous patients and 5,578 normal patients. The results statistically showed
that there are significant changes of color, coating, shape and dorsum shape of
the tongues of cancerous patients versus those tongues of non-cancerous patients
or normal subjects [23]. Fujin TCM Hospital in China conducted a survey of 168
stomach cancer patients and 200 healthy subjects in 1983. The results showed
that the percentage of abnormal tongues were 4 to 10 times higher in cancerous
patients than those of healthy subjects; for example, for cancer patients: 70.8%
purple/bluish color, 76.5% abnormal proper coating, 20.8% with cracks, and
83.9% dorsum deformation, and for healthy subjects: only 12.5% purple/bluish
color, 26.2% abnormal proper coating, 1.5% with cracks, and 10.5% with dorsum
deformation [25]. PLA 211 Hospital in China conducted a series of surveys on
liver cancer patients versus non-cancer patients who have liver diseases. Results
showed that liver cancer patients’ abnormal tongue percentage is about 2 to
3 times higher than those of non-cancerous patients [21]. The data shows the
method has certain selectivity for cancer diagnosis. Another survey showed that
the level of abnormal signatures on the tongue increased as the tumor size in-
creased from less than 5mm, larger than 5mm, to wide spread. The data shows
promise for cancer stage estimation and possible early diagnosis [63].

Visual inspection of the tongue offers many advantages: it is a non-invasive
diagnosis method, is simple and inexpensive. However, the current practice in
TCM is mainly experience based or subjective. The quality of the visual inspec-
tion varies between individuals. Although there are a few experts successfully
diagnosing cancers based on inspection of the tongue, their skills are not easily
transferable to other medical professionals. Their expertise is limited to qualita-
tive descriptions, not to quantitative or mathematical formulations. To circum-
vent this problem, studies have investigated and reported options such as fuzzy
logic [30] and image analysis [31]. Here we discuss a computerized vision system
for tongue inspection.

In this study, we investigate a novel imaging system for visual inspection of
the tongue [19]. The objectives are to use a digital camera to make an image
of a patient’s tongue, then use software to extract the features from the digital
image created, and finally make a diagnosis based on quantitative models. The
goal is not to replace the conventional diagnostic methods but to give an early
alert signal that can lead to further diagnosis by other methods, such as MRI,
CT, X-ray, etc. This novel approach has various significant advantages. First, it
makes the inspection objective and repeatable so that it prevents human bias
and errors. Second, it can be implemented on an inexpensive personal computer
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or laptop computer for clinic or family use. Third, it’s a unique exploration
to combine Traditional Chinese Medicine (TCM) with contemporary computer
vision technologies. The results of this project may inspire future long-term
development of bio-computing technologies and further the use of computers in
the medical field.

Studies show that there are correlations between the digestic diseases and
tongue feature changes. Here we focus on colon polyps that would likely be-
come colon cancer. This pilot study phase focuses on a preliminary investigation
of the computer-based tongue inspection technology. A set of computer vision
models have been developed to simulate the TCM diagnosis, for example, images
that showed detectable cancer signatures such as color and coating texture of
the tongue. Those visual feature descriptions will eventually be integrated into
a decision-making model that will help to generate the final diagnosis or con-
clusion: normal, abnormal, likelihood of cancer, etc. The software includes the
following issues: 1) Segmentation: The raw images are preprocessed with color
normalized so that they have better numerical representation. Then each image
is segmented to remove the background. The Deformable Template algorithm
is applied to generate an accurate outline of the tongue. After the initial image
processing, the improvement of the color normalization and segmentation is in-
vestigated. 2) Texture feature extraction: The texture, which includes cracks and
distributions of the tongue proper, is the most important feature. It is the most
challenging task in the project because the texture is not uniformly distributed
and the orientation and size varies from image to image. 3) Visualization models:
With the color measurement and texture features, a set of visualization methods
are explored. 4) Diagnosis with Neural Computing: Artificial neural networks are
used to classify samples.

3 Tongue Imaging

We have explored two scientific methods for tongue imaging so that we can
recover the realistic measurement of physical values. The first approach is to use
a modified hand-held color scanner with a microscopy slide on top of the tongue.
As the scanner is gently moved from the root of the tongue to the tip, a flat
image can be obtained. Figure 1 shows a sample image. The advantage of this
method is its simplicity; it can avoid major color calibration and the removal of
artifacts. However, it is a contact measurement that we want to try to avoid in a
clinical environment, and the hardware needs to be specially designed to fit the
size of tongues. The second approach is to take a picture of the tongue with a
commercial digital camera (640 x 480 pixels) plus a Munsell ColorChecker [27]
embedded inside the image. Since we already know the color value of the test
cells on ColorChecker, we can calibrate the color of the image computationally.

Because the color in an image varies with cameras, lighting and equipment
settings, we had to calibrate the color for each image before the analysis. We
used the Mansall color calibration board and the newly developed color cali-
bration software. Before the camera took a tongue image, the operator took a
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Fig. 1. First image from the tongue scanner.

picture of the calibration board and saved it along with the tongue image. Then
the computer performed the color calibration for the data. At this phase, we
developed and tested the color calibration software.

A semi-automatic color calibration tool was developed for the project. By
manually clicking the four corners of the ColorChecker, the software can per-
form the transformation and find the points in each square. Then a linear color
calibration model is used to recover the original color of the tongue under various
lighting conditions [27].

Parallel to the data collection from cancerous patients, tongue images were
also collected from healthy subjects for studying the range of the deviation and
mean of the ‘normal’ tongue images, such as RGB color space, coating texture,
etc. Over 17 ‘normal’ tongue images were collected in the database. Those images
helped to establish a baseline for a ‘normal tongue.’

We tested 17 tongue images taken from a “healthy” individual with a digital
camera under different combinations of illumination and lighting orientations.
The illumination conditions were daylight and indoor lighting in an office. 160
points from each tongue image were sampled to generate the data as shown in
Table 1.

4 Segmentation of Tongue Image

There are many ways to segment the tongue area from the background. Color-
based segmentation is the least reliable way because of the variations of tongue
color and shadows. Active Contour may overcome the color variation problems
by tracking the gradient of the intensity along the tongue edge. The typical al-

Table 1. Color variations of a normal tongue under different conditions.

Color Before Calibrated After Calibrated
Space Mean STD Mean STD

R 0.4604 0.0439 0.6135 0.0339

G 0.4141 0.0323 0.4940 0.0288

B 0.4632 0.0492 0.5066 0.0288
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gorithm is so-called ‘snake’ [19, 29]. It is a general algorithm for matching a de-
formable model to an image by means of energy minimization. However, for this
particular problem, the snake algorithm suffers from various local optimization
problems associated with initialization, poor convergence to concave boundaries,
vulnerability to image noise and has a high computational complexity. Since reg-
ular tongue shapes are known, it makes sense to apply a Deformable Template
for segmentation [49, 34]. Deformable Template models have been successfully
used in tracking objects, such as vehicles and human figures. It is found that they
are more robust against noise and local shape distortions than snake algorithms.
The tongue has a specific shape with “landmark points” lying within a certain
variance of the trained set. The model allows deformation of the class of objects
by learning patterns from the training set of correctly annotated images.

Models of more specific classes of shapes demand the use of some hard con-
straints and “default” shapes which are more interesting than a simple straight
line. This can be achieved by using a parametric shape-model s(X), with rela-
tively few degrees of freedom, known as a “deformable template”. The template
is matched to an image, in a manner similar to the snake, by searching for the
value of the parameter vector X that minimizes the energy E(X). The goal of
the algorithm is to minimize the energy function: E = Eint +Eim +Econ, where,
Eint is internal energy of the contour due to bending or discontinuities, Eim is
energy due to image forces and Econ is energy due to external constraints.

In our study, we created a deformable template as shown in Fig. 2 and fit
these templates to the image of the tongue by adjusting the various parameters
that create the template of the tongue.

As shown in Fig. 2, we have the following parameters: xo: center x-coordinate
of the parabolic region. yo: center y-coordinate of the parabolic region. α: angle
(in radians) between the x-axis where the parabola ends and the line joining
OO’ equal to the length of the radius of the circle. r: radius of the circular
portion (determined by a and α). θ: Angle (in radians) spanned by the circular
arcs. Equation of parabola: X = aY 2, where a is a parameter that adjusts

Fig. 2. Deformable Template.
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Fig. 3. Segmentation results (The black dots are the initial shape boundary and the
white dots are the final shape boundary).

the thickness of the parabola. For the simplicity of the problem, we have not yet
considered the axes rotation. Initially, we assumed symmetry in the tongue shape
between the left and the right portions of the tongue. Then we accounted for
more flexibility in the tongue shape by having different values of a, θ (θ1left

and
θ1right

), α (α1left
and α1right

) and different parabola equations for the left and the
right portions. Further, two additional circular portions were added to the left
and the right portions giving different values for θ (θ2left

and θ2right
), α (α2left

and α2right
) and r. The template is given a good initial guess point (x0, y0).

All the parameters are varied within a certain feasible limit (which defines the
range of shapes the tongue template can take). The energy of the points (E) is
calculated for all the possible templates. The average E is maximized and the
resultant vector (or template corresponding to this maximum E) is the desired
solution.

The algorithm was implemented in MatlabTM. The black line indicates the
initial starting template and the white line gives the final solution. Result sam-
ples are shown in Fig. 3.

Currently, we provide just a single point for the initial point (i.e. (x0, y0)
or the lowest point of the tongue). It is desirable to provide more initial points
that can be located visually. A total of 5 points on the tongue could fix the
weakness mentioned above. Further, more constraints and finer step variations
on the parameters can give more accurate results. Using an array of templates
(instead of just a single template) can also give better results.

5 Feature Descriptions

Features on the tongue include color and texture. Most TCM practitioners do
not have numerical descriptions of the color or texture features. Instead, they use
analogies or qualitative descriptions, such as ‘network-like cracks’, or ‘sandpaper-
like surface’. It is possible to develop a scheme to map the qualitative descriptions
to fuzzy sets of feature values.

However, in this chapter, we only discuss the numerical expressions of the
features. In this study, we use CIE L*a*b* color space to represent the color
features on the tongue. We also use several texture analysis methods that can
correspond to human-descriptions of textures: 1) calculating fractal dimension
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Db to represent roughness or smoothness of the tongue, 2) crack index CI to
describe cracks on the tongue, 3) energy function for describing the roughness,
and 4) entropy function to represent the order of the texture on the tongue:

F = [a∗, b∗, Db, CI, energy, entropy] (1)

5.1 Color Space Coordinates

The tongue project presents a unique challenge in the overall gross variance of the
data set. There are tongues from different genders, ages and ethnic groups, which
present unique difficulties in creating texture algorithms that are applicable to
the entire data set. Minimal usage of parameters is key to developing a robust
algorithm. A color space is a way of numerically describing a color. This almost
always requires three numbers to accurately and succinctly describe all possible
colors, as it is trivial to describe simple colors yet not so easy to describe colors
like a faint red, in low-lighting. A simple example of a color space is that one
may attempt to describe a color in terms of the actual color (red, orange, etc),
its tint, or how deep the color is, and how much lighting there is on the color.
Computer displays and televisions combine three primary colors (red, green and
blue) in different proportions to form the different colors of the spectrum.

CIE 1976 L*a*b* is a color space that is an attempt to linearize the per-
ceptibility of color differences. The non-linear relations for L*, a*, and b* are
intended to mimic the logarithmic response of the eye, where L represents the
lightness, a is the Redness/Greeness and b is the Yellowness/Blueness. However,
the values from a digital camera are RBG-based. RGB values in a particular
set of primaries can be transformed to and from CIE XYZ via a 3x3 matrix
transform. To transform from RGB to XYZ (with D65 white point), the matrix
transform used is [27, 39, 37]:


X
Y
Z


 =




0.412453 0.357580 0.180423
0.212671 0.715160 0.072169
0.019334 0.119193 0.950227


 ∗




R
G
B


 (2)

The L*, a*, and b* values can be converted from CIE XYZ, where coloring
information is referred to the color of the white point of the system, subscript
n. Here Xn, Yn and Zn are the tristimulus values of the reference white.

L∗ =





116 ∗ ( Y
Yn

)
1
3 − 16 for Y

Yn
> 0.008856

903.3 ∗ Y
Yn

otherwise
(3)

a∗ = 500 ∗ (f
[

X

Xn

]
− f

[
Y

Yn

]
) (4)

b∗ = 200 ∗ (f
[

Y

Yn

]
− f

[
Z

Zn

]
) (5)

where f(t) =
{

t
1
3 for t > 0.008856

7.787 ∗ t + 16
116 otherwise

(6)

Since we tried to eliminate the lightness effect, we only used a* and b* as
the color feature vector.
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5.2 Fractal Dimensions

Fractal Dimension is another characterization of the texture on the tongue sur-
face. Differential Box-Counting Dimension (DBCD) is an estimator of Hausdorff-
Besicovitch dimension [8]. Like many other estimators of fractal dimension,
DBCD is estimated by examining the relationship between a measure and the
scale at which the measure was taken. DBCD is calculated on black and white
images, where one value (for example, black) is taken to represent the object and
the other value (white in this case) is taken to represent the background [28].

The image being measured was divided into equal sized squares. For a given
size square (r x r pixels), the number of boxes containing any pixels belonging
to the image, N(r), is counted. This was done for several scales (several different
r values), after which the relationship between log(N) and log(r) was calculated
by finding the best-fit line between all r, N(r) data points. The best-fit line
corresponds to the relation:

N(r) = k · r−Db (7)

The constant k is not important, but Db, the box dimension, is an estimator
of fractal dimension. The implementation created for this project takes as a
parameter an initial window size r to begin measuring. This window size was
doubled repeatedly as long as the window size did not exceed the image size.
Db was then calculated from the measurements taken at these scales. To adapt
tongue images to be feasible for this algorithm, tongues were first converted
to gray scale, using MatLab’s rgb2gray function, and then from gray scale to
black while running a Canny edge-detector on the gray scale image. The black
and white image was analyzed using the DBCD algorithm described above.

5.3 Crack Detection

We also developed an algorithm to find and isolate cracks in the tongue. Cracks
in the tongue can be an indicator of abnormality. Other crack detectors and clas-
sifiers [45, 46] have also been based on threshold and morphological operations
in the primary stages. The system, outlined by Ukai [45], was used for detect-
ing cracks in tunnel walls, and worked by using dynamic binarization (adaptive
thresholding), dilation and erosion, eliminating particles, and analyzing the re-
maining particles. The interesting part of this system is its use of spatial fre-
quency filters to distinguish between normal wall joints and cracks. It should
be noted that this system appears to rely on hand-tuned parameters for each
stage, which may be okay for its usage (provided that the equipment used to
capture the input data, and the general properties of the walls do not change). A
detector and classifier of cracks, described by Nieniewski et al [46], was used for
analyzing cracked regions of ferrite. This system used morphological operations,
bi-level thresholding, and a feature-based parallel K-nearest neighbor classifier
[10]. This system was mainly intended for separating out cracks that are defects
from grooves that occur from grinding. The morphological parts quickly gener-
ated all candidates for cracks, and the K-nearest neighbor classifier is used to
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reject those candidates who matched a training set of grooves. This system is
interesting for its use of a K-nearest neighbor classifier, however it also relied on
the grooves in the material to normally lie in a uniform direction. Also, the initial
portion of the detector depends on hand-tuned parameters for the morphological
operation and thresholding operations.

Crack detection is a multiple stage process that attempts to find places where
there are cracks in the tongue. Each stage is essentially a filtering process to
attempt to get rid of more unwanted information. The essential steps behind of
the process are:

1. Find all pixels that are bright in the S channel and dark in the V channel.
2. Remove pixels that fall on the edge of the tongue, as the edge area often has

the most extreme illumination variances and causes difficulties for accurately
finding cracks.

3. Remove all particles in the image except the largest ones.

To convert color coordinates from RGB to HSV (Hue, Saturation, and Value),
we used the following pseudo code:

max = largest RGB component
min = smallest RGB component

H =




60*(G-B)/(max-min) if red is largest
180*(B-R)/(max-min) if green is largest
300*(R-G)/(max-min) if blue is largest

S = (max-min)/max

V = max

Step 1 is based on the discovery that cracks appear bright in the S channel,
and dark in the V channel. HSV color space is another way of representing color
image. Computers typically use the RGB color space, which separates color into
its red, green and blue components. In the RGB color space, white is represented
by red, green and blue being at maximum intensity. Purple is represented by
putting red and blue at half-intensity, and green at zero intensity. HSV represents
colors in a method more understandable by humans: H represents the hue, or
actual color, S represents the saturation, which is essentially how strong the hue
appears, and V is the overall illumination present.

The HSV color space is used to accentuate cracks. As stated before, cracks
appear bright in the S channel and dark in the V channel. “Appearing” bright
and dark, is relative to other pixels in the same channel, as they are actually
darker in the S channel, and only appear brighter because they are relatively
bright compared to their surrounding pixels. Therefore, the algorithm enhances
this contrast by thresholding local blocks relative to themselves. This is different
than a normal threshold that simply compares each pixel to a number such as
the mean of the entire image. The problem with the normal approach is that
near the edges of the tongue, there is a very high variation, which can throw
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Fig. 4. Cracks on the Tongue.

off thresholding for the rest of the image. Since an adaptive threshold considers
each block individually, this problem is avoided. For each window analyzed, the
adaptive threshold sets its threshold first by finding the mean value and standard
deviation of non-black pixels, and then setting a threshold based on these values.
This allows the thresholder to provide consistent behavior for images with dif-
ferent illuminations, provided they fit a relatively normal lighting distribution,
which was found to be typical for the tongues analyzed. For this project, the
mean pixel value was used.

The next part of step one is to invert the V channel. This is done to reflect
the fact that the cracks are dark in the V channel. By inverting it, the cracks
(which would have been thresholded down to 0) are once again changed back to
1. The next step, essentially an “AND” operation on both images, chooses all
pixels that appeared “bright” in the S channel and “dark” in the V channel.

At this stage, there is still a lot of noise. The main cracks, however, appear
to be large, whereas the noise is limited down to small size pixels. To remove the
noise in the image, the image is first eroded, then all remaining small pixels are
removed. Eroding is a morphological operation that shrinks objects in an image,
much like land erosion washes away dirt on hills, making the hills smaller. Erosion
works by passing a structuring element over the image, and outputting a pixel
only when the structuring element is completely covered by pixels in the original
image [49].

Once the image has been eroded to enhance the separation of objects in the
image, all objects belonging on the fringe edge of the image are removed. This is
done to prevent erroneous detection of cracks that are really just places on the
edge of the tongue where illumination falls off steeply. The first step in doing
this is to calculate a mask that describes the edge of the tongue by thresholding
the image. The mean pixel value of the non-black pixels in the image minus
one-half of the standard deviation of the non-black pixel values is used as the
threshold. Next, this mask is smoothed by performing a closing operation on it.
Closing is simply dilating the image then eroding it, and has the effect of closing
small gaps in the image. Just as dilating has its counterpart eroding, closing has
a counterpart called opening which does the opposite by eroding then dilating.
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Fig. 5. Cracks detected by the algorithm.

The previous result image is then masked with the inverse of the tongue-edge
mask to retain only data that does not appear on the edge of the tongue.

After all objects in the image are shrunken with erosion, the pixel groupings
are separated out into particles so that they can be analyzed individually. This
is done by scanning the image and grouping pixels that are connected to each
other. There are two typical definitions of pixels being “connected” to another.
According to the 4-way definition, a pixel is connected to a group if the group
appears to the right, left, bottom or top of the pixel. Under the 8-way definition,
a pixel is connected to a group if any of the bordering pixels are in the group.

Once all pixel groupings are determined, then only the largest pixel groupings
are chosen. This is done simply by comparing the area of the group to a threshold
value. The area of a group is the number of pixels that form it. The threshold
value is calculated by taking the mean plus one standard deviation of particle
area values. This is done to keep only “large” particles and exclude smaller
particles that result from noise in the image. Figure 5 shows the finished crack-
detected image.

In order to summarize the crack information of an image, we have developed
a simple numerical descriptor to describe cracks called “Crack Index”. Crack
Index (CI), is a number between 0 and 100 that describes the content of cracks
in the image.

CI = 100 ∗ Acracks

Atotal
(8)

A CI of 0 indicates no cracks were found, whereas increasing values indicate
an increasing density of cracks. Crack Index is calculated by taking the area of
cracks divided by the area of the total tongue and multiplying by 100.

5.4 Describers for Texture Homogeneous and Complexity

To give further descriptions of texture details such as homogeneous and com-
plexity, we use energy and entropy functions that are based on the co-occurrence
matrix. It describes the repeated occurrence of some gray-level configuration in
the texture [36]. P is a 2-D n x n co-occurrence matrix, where n is the num-
ber of gray-levels within an image. The matrix acts as an accumulator so that
P [i, j] counts the number of pixel pairs having the intensities i and j. The idea
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is to scan the image and keep track of how often pixels that differ by ∆z in
value are separated by a particular distance d in position [49, 41]. Based on the
co-occurrence matrix, we compute the energy function and entropy function for
further texture descriptions. The energy function, or angular second moment,
is an image homogeneity measure; the more homogeneous the image, the larger
the value.

Hentropy = −
∑
i,j

(P [i, j] log2(P [i, j])) (9)

The entropy function, can also be used as a measure for “textureness or
complexity.”

Hentropy = −
∑
i,j

(
P [i, j]

1 + |i − j|
)

(10)

where, P is a gray level co-occurrence matrix that contains information about
the position of pixels having similar gray level values.

6 Visualization Techniques and Process

In this section, we show how visualization can provide insights and facilitate the
analysis and clustering of tongues based on feature values. We have a feature
vector: F=[a*,b*,Db,CI,energy,entropy]. Li & Cai extracted the values for these
six features for a set of 34 tongues which belong to people of five different diag-
nostic categories: Healthy (H), History of Cancers (HC), History of Polyps (HP),
Polyps (P), Colon Cancer (C) [50]. We used this data set to demonstrate the
visualization techniques and process.

6.1 Cluster Plots

The goal of data exploration is to investigate if there are some obvious corre-
lations between different features. This can be achieved by 2D and 3D cluster
plots. We found that there are definite patterns for some categories as summa-
rized in Table 2. Figure 6 shows a 2D cluster plot of Db-entropy which shows a
clear pattern for Healthy (H) and Polyps (P) cases.

As a* and b* are two chromatic dimensions in the L*a*b* color space, ob-
served definite ranges of values for these features for certain diagnostic conditions
indicate that there is a strong correlation between the tongue color and these
diagnostic conditions. We also observe two outliers with very high crack index,
one with a Healthy condition and one with History of Polyps and History of
Cancer. This suggests that these are special cases where these tongues normally
have lots of cracks, and the amount of cracks therefore does not reflect on the
disease condition.

For 3D cluster plots, we used different colors and glyphs for each category (see
Fig. 7) and allowed users to rotate them around each axis to facilitate viewing.
Rotating the plots increased the sense of depth and the perception of clusters
and correlations. We also observed that the high precision of the raw data might
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Table 2. Observed patterns obtained from 2D and 3D cluster plots.

category Db CI a* b* Energy Entropy

HP medium low narrow mid-range low
medium mid-range

P high mid-range high

HC low low narrow narrow
mid-range mid-range

C low very high high

H low Db or high CI

Fig. 6. 2D cluster plot of Db-CI.

have adverse effects on the cluster viewing (in other words, the precision was
higher than what was required). We therefore tried different quantization scales
and finally chose a 10-interval scale which was the coarsest scale that could still
distinguish each data point. The plots for each triplet of features (with a* and b*
being always kept together) re-confirm the observations summarized in Table 2.

We also wished to determine from the 3D cluster plots which triplets of
features give better discriminating power, in order to use these as a starting
point to gradually explore rules for clustering in higher dimensions using parallel
coordinates. Figure 7 shows a 3D cluster plot (Db, a*, b*) for Healthy and Polyps
cases. However, we observed that although there appeared to be some groupings,
these groupings were not separable and the rules underlying these groupings were
not simple. We investigated this problem further using another visualization
method based on parallel coordinates, which allowed the simultaneous viewing
of multi (more than 3) dimensions.

6.2 Discovery of Rules Using Parallel Coordinates Plots

High dimensional data is often transformed or projected to 2D or 3D representa-
tions for visualization. However, this practice usually causes a loss of information.
Parallel coordinates allow n-dimensional data to be displayed in 2D [51]. In this
method, n Cartesian coordinates are mapped into n parallel coordinates, and an
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Fig. 7. 3D cluster plot for (Db,a*,b*) for H & P cases.

n-dimensional point becomes a series of (n − 1) lines connecting the values on
n parallel axes. Berthold and Holve, [52] used this technique to visualize fuzzy
rules underlying 3 classes of irises which resulted from a training set of 75 data
samples with 4 features (petal length, petal width, sepal length, sepal width).
Pham & Brown [54] extended this technique to 3D to provide better visualiza-
tion of the membership function of the fuzzy sets and insight into the strength
of the clustering. We now show how to apply these techniques to analyze the
tongue data.

Since the set of data available at this stage only consisted of 34 tongues (6HP,
5P, 5HC, 2C, 16N), we attempted to cluster this data set through a display in
six parallel coordinates: Db, CI, a*, b*, energy and entropy. Figure 8 shows
the results for three categories: P, H and C. The shaded area representing each
category is obtained by plotting the extent covered by the extreme values for
each coordinate. It can be readily seen that these areas, though overlapped, are
distinguishable from each other.

The order of the coordinates does not change the results, although it might
affect the perceptibility. For example, a large number of intersections might cause
confusion and make it difficult to discern the clusters. Thus, we provided tools
to swap coordinates in order to choose the order with best perceptibility. We
observed that the Cancer cases form a narrow band for all six coordinates as
seen in Fig. 8.

We also observed that for Healthy cases, the variability in feature values is
much greater than in the disease cases. However, this fact can only be confirmed
when more data on disease cases is available. If a much larger set of data is
available, it would also be possible to provide a more sophisticated visualization
by integrating fuzzy sets and using 3D parallel coordinates. We discuss how this
may be achieved in the next subsection.

6.3 Integration of Fuzzy Sets to Visualization

Fuzzy logic has been used extensively and successfully in many areas, especially
in social sciences and engineering. While mathematical models are based on
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Fig. 8. Pattern of the cancer cases displayed in parallel coordinates.

algebraic operations (e.g. equations, integrals), logic models rely on logical con-
nectives (and, or, if-then), often with linguistic parameters, which give rise to
rule-based and knowledge-based systems. Fuzzy logic models can combine both
of these types of modeling via the fuzzification of algebraic and logical opera-
tions. There are three common classes of fuzzy logic models: information pro-
cessing model, which describes probabilistic relationships between sets of inputs
and outputs; control models, which control the operations of systems governed
by many fuzzy parameters; and decision models, which model human behavior
incorporating subjective knowledge and needs, by using decision variables. For
some applications, fuzzy systems often perform better than traditional systems
because of their capability to deal with non-linearity and uncertainty. While
traditional systems make precise decisions at every stage, fuzzy systems retain
the information about uncertainty as long as possible and only draw a crisp
decision at the last stage. Another advantage is that linguistic rules, when used
in fuzzy systems, not only make tools more intuitive, but also provide better
understanding and appreciation of the outcomes.

As more tongue data is available, it would be more appropriate to treat the
extent of each feature value for each diagnostic category as a fuzzy set. The
membership function for this fuzzy set can be computed from the frequency of
each value. This membership value gives an indication of the confidence level
that each value belongs to this set. Hence, the level of overall confidence that
a given case belongs to a particular diagnostic category is the minimum of the
membership values for all features. Since we have not yet obtained a large enough
set of tongue data, we demonstrate this technique using the Iris data example.
Figure 9 shows a 3D parallel coordinates display for this data set. The advantages
of integrating fuzzy sets are two-fold. First, it provides an intuitive match with
the way doctors fuzzily assess the condition of the tongues. Secondly, it is possible
to select the tightness of clusters through the use of an alpha cut plane to discard
those cases whose feature values have too low membership values (i.e. the level
of confidence that a particular case belongs to a specific class is low).
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Fig. 9. A 3D parallel plot of Iris data example [Pham & Brown, 2003].

Another improvement can be made by asking doctors to provide the as-
sessment of diagnostic categories with fuzzy grading. For example, instead of
Healthy, three grades are introduced: Very Healthy, Moderately Healthy, and
Slightly Healthy. Similarly, disease conditions can be expressed in three grades:
Very Serious, Moderately Serious, Slightly Serious. Such fuzzy assessment would
match more faithfully with real diagnosis practice. By linking fuzzy values for
the color and texture features of the tongue with fuzzy diagnostic categories, it
is envisaged that a more accurate classification of cases would result. However,
in order to achieve this, we will need to collect more cases and more detailed
diagnosis from doctors for each case.

7 Diagnosis with Neural Computing

Fuzzy visualization methods provide a promising interface for medical doctors to
interact with the ambient diagnostic systems, especially at the early explorative
stages. As we gain more insight about the data, it is time to build numerical
models for diagnosis.

Ambient diagnostics is made largely by the interconnected elements. The
metaphor can be simulated by artificial neural networks, which are composed of
simple elements operating in parallel. We can train a neural network to perform
a particular diagnostic function by adjusting the values of the connections (soup
of weights) between elements. In the supervised learning process, many such
input/target pairs are used to train a network [62].

Radial Basis Network is a feedforward backpropagation network. It is fast
but needs more neurons so requires more memory [63]. It is also simple to be
implemented on hardware, for example, a neural network on a chip, can perform
1 million recognitions per second. In a radial basis function network, each hidden
unit produces a ball-shape ‘pulse’ driven by a Gaussian function. The output unit
produces a linear combination of hidden unit pulses. In this case,

R(n) = e−n2
(11)
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Table 3. Test samples (not included in the training dataset).

data set target Db CI a* b* energy entropy

1 10 (P) 1.68 0.62 18.76 9.97 0.25 4.76

2 10 (P) 1.73 1.92 7.75 4.73 0.33 4.59

3 5 (HP) 1.64 0.55 9.98 5.35 0.33 4.66

4 5 (HP) 1.64 1.23 13.07 5.84 0.19 5.12

5 1 (NP/NHP) 1.63 0.1 11.55 8.77 0.33 4.91

6 1 (NP/NHP) 1.61 0.61 24.56 6.08 0.16 4.64

Table 4. Results for three types (spread factor = 0.4).

data set target GRNN PNN

1 10 (P) 5 (HP) 5 (HP)

2 10 (P) 1 (NP/NHP) 1 (NP/NHP)

3 5 (HP) 4.56 (HP) 5 (HP)

4 5 (HP) 2.46 (NP/NHP) 1 (NP/NHP)

5 1 (NP/NHP) 1 (NP/NHP) 1 (NP/NHP)

6 1 (NP/NHP) 1 (NP/NHP) 1 (NP/NHP)

We test two variations of radial basis function: probabilistic neural network
(PNN) and generalized regression neural networks (GRNN) provided by Math-
works [62]. Probabilistic neural networks (PNN) are suitable for classification
problems. The PNN model f(P, T, spread) takes three arguments: P is an R x
Q matrix of Q input vectors; T is an S x Q matrix of Q target class vectors; and
spread is the width of the radial basis function. To fit data very closely, we use
a spread smaller than the typical distance between vectors. To fit the data more
smoothly, we have to use a larger spread value. Generalized regression neural
networks (GRNN) [61] are a radial basis network that is often used for function
approximation. The GRNN model f(P, T, spread) takes three inputs: P is an R
x Q matrix of Q input vectors; T is an S x Q matrix of Q target class vectors;
spread again is the width of the bottom of the radial basis function.

We used 28 samples to train the neural networks and another 6 samples to
test the models. In our first case, we considered three types of targets: Polyps
(P=10), History of Polyps (HP = 5), and the rest of the cases (NP/NHP = C
= HC = H = 1). The test data set is listed in Table 3. We have the results in
Table 4.

In the second test case, we only considered two types of targets: either Polyps
(P = 10), or Non-Polyps (NP = 1). The input data set is listed in Table 5 and
the results are in Table 6.

As the two test scenarios show, PNN performs the same as GRNN. Also we
learned that neural networks work better when the target classes are fewer, e.g.
in our cases, two targets are better than three targets. Although both GRNN
and PNN can correctly identify 2 out of 3 Polyps cases, it just may be a result
of the over-simplified process. It is not necessary to imply that these methods
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Table 5. Test samples (not included in the training dataset).

data set target Db CI a* b* energy entropy

1 10 (P) 1.68 0.62 18.76 9.97 0.25 4.76

2 10 (P) 1.64 0.55 9.98 5.35 0.33 4.66

3 10 (P) 1.73 1.92 7.75 4.73 0.33 4.59

4 1 (NP) 1.63 0.1 11.55 8.77 0.33 4.91

5 1 (NP) 1.61 0.61 24.56 6.08 0.16 4.64

6 1 (NP) 1.72 1.17 11.53 11.34 0.26 4.46

Table 6. Results for two types (spread factor = 0.4).

data set target GRNN PNN

1 10 (P) 10 (P) 10 (P)

2 10 (P) 9.0049 (P) 10 (P)

3 10 (P) 1 (NP) 1 (NP)

4 1 (NP) 1 (NP) 1 (NP)

5 1 (NP) 1 (NP) 1 (NP)

6 1 (NP) 1 (NP) 1 (NP)

would work well with a larger sample size. There is still a long way to go before
we can come up with a selective and robust classification method for the tongue
inspection.

8 Conclusions

Ambient Diagnostics is a contemporary technology that is inspired by ancient
medical practices. The goal is to detect abnormities from seemly disconnected
ambient data. In this chapter, we focused on computerized tongue inspection.
Our research started with collecting tongue samples at a clinical lab setting
and building conceptual prototypes for scientific discovery along the way. The
explorations include digital imaging, color calibration, feature descriptions, vi-
sualization and neural computing. From this preliminary study, we have learned
the following lessons:

The portable tongue scanner is more reliable than the digital camera in terms
of invariance of illumination, reflection and angles. However, its resolution is low
and cost is rather high. We will do further investigation to reduce the cost and
increase the resolution.

Previous TCM studies have shown strong correlations between the color of
tongue coating and cancers. We found that the texture characteristics on the
tongue surface is more sensitive to the colon polyps (pre-cancerous) or history of
polyps than color characteristics. This discovery will lead us in a new direction
toward effective tongue feature expressions, such as adding more texture de-
scribers in the feature vector. The more dimensions of the describers, the more
accurate the classification and recognition of the model. We had four dimensions:
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Energy, Entropy, Crack Index, and Fractal Dimension. We plan to add six more
in the near future. In addition, we will add TCM expert’s verbal descriptions
into the model. We need to devise a scheme to map these qualitative descriptions
into fuzzy sets of quantitative values so that computers can process them.

As comparing one patient’s tongue to another patient’s tongue is difficult in
terms of shape, color and texture registration, we found that it is more accurate
to compare the tongue images at a personal basis, e.g. the images of a cancer
patient before and after chemo, etc. It could be used as a measurement of the
effectiveness of a treatment. This is similar to the self-monitoring process that has
been used in the head injury study with fMRI personal data. For each person,
we can establish a base line and then use ubiquitous computing technologies
to monitor the patient and compare the collected data to the base line at a
predefined duration.

Neural computing is a promising method for generating diagnostic results
and potentially can be hardened onto a chip that is less than one dollar. We use
two neural networks for testing the concept: a general regression neural network
(GRNN) and a probabilitistic neural network (PNN). As the two test scenarios
show, both have virtually the same performance. Also we learned that neural
networks work better when the target classes are fewer, e.g. in our cases, two
targets are better than three targets. Although PNN and GRNN can correctly
classify 2 Polyps test cases out of 3, it should not be implied that the methods
would work well with a larger sample size. We still need more work to verify the
selectivity and reliability of the models.

Visualization utilities are helpful in early stage data explorations. At this
stage, the aim of visualization is to provide tools to aid the analysis, rather
than to provide a precise proof of clustering decisions that can be provided by
statistical and data mining techniques. We have not yet coupled visualization
techniques with fuzzy algorithms. The 3D clustering figures were actually an
animation that allows viewing from different angles with different triplets of
variables. Clusters are observed in some cases, while in other cases, we could not
see clusters. It is also not possible to see this effect when viewed as a figure on a
flat piece of paper. The parallel coordinates approach provides multi-dimensional
visualization. Although the variable values may overlap, as clusters, they do have
distinct characteristics.

As more tongue data is available, we will be able to use more advanced
techniques for visualization and classification of tongues to obtain better analysis
and more accurate classification. We have received letters from a few colon cancer
patients who have had ‘geographical tongues’. Those feedbacks are significant
resources for investigation. The combination of the tongue feature changes and
other medical indications will increase the effectiveness of early diagnosis. We
will continue to follow up the cases.

Affordable self-diagnostic kits are changing our lives. Decades ago, diabetes
patients had to check their blood glucose in a lab or burn the sample with a
candle. Today, they can buy a digital kit from a drugstore and test anywhere.
Modern electronic technologies have been the building blocks for eDiagnostic
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kits. According to Gorden E. Moore’s famous paper in 1965 [64], transistor den-
sity on integrated circuits doubles every couple of years. This exponential growth
and ever-shrinking chip size results in more affordable Ambient Diagnostic de-
vices.

Errors or mistakes are as inherent a possibility for ambient intelligence in
scientific discovery as they are to any human activity. This initial study is no
exception. Nevertheless, we hope that by presenting our findings we may inspire
further explorations in this area of research.
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