Start Smart: Protecting Your Company’s IP & Unraveling Student IP
Developing an IP Road Map

- What type of protections are available?
 - Patents (Utility and Design) / Trade Secrets
 - Copyrights
 - Trademarks / Trade Dress
 - Contractual Rights (e.g., Confidentiality and Development Agreements)

- When and where would we like to pursue protection?
- What are our IP protection priorities?
- How do we best use our resources to maximize IP protection and minimize IP exposure?
Examples of Different Types of IP

Trademark (source identifier for cooking products or services)

Copyright (expression of the idea of a process for making a baked product)

1. Mix eggs, flour, milk, chocolate chips, and hot peppers.
2. Form into cookie shapes.
3. Bake at 350° C for 40 seconds.

Patent (underlying idea of a process for making a baked product) – could also be kept as a Trade Secret
Intellectual Property Fundamentals

Patents
Patent: What is it?

1. An “exclusive” right – the right, for a limited time, to exclude or stop others from making, using, selling, offering for sale, or importing the invention – these are called “infringements” of the patent right.

2. Operative word is “exclude” - a patent is not an affirmative right to make, use, or sell the invention. It is an exclusive right to prevent others from doing so. In fact, it is possible to infringe another’s patent rights by practicing your own patented invention.

3. Invention must be “novel” and “nonobvious.”

4. The right is granted in exchange for disclosing to the public the details of how to make and use the invention. Sort of a “contract” between inventor and government with the public as the third party beneficiary.
Why a Company Should Care About Patents

- Block competition.
- To attract investors.
- As collateral for financing.
- For cross-licensing in settlement of patent infringement action.
- License for revenue stream.
- Document the Company’s intellectual property.
- Establish a prior user defense to infringement.
Procurement: Patent Application Types (U.S.)

- **Utility** – protects processes, machines, articles of manufacture, compositions of matter, including functional features – generally good for 20 years from filing date.
 - **Provisional** – not a formal patent application in that it cannot issue as a patent.
 - Do not need claims, oath or declaration or prior art statement.
 - Provides evidence of a date for the invention.
 - But, description requirements are the same as for utility application.
Procurement: Patent Application Types (U.S.)

- **Design** – protects only new ornamental designs for an article of manufacture and not functional features – good for 15 years from issue date.

- **Plant** – Protects distinct and new asexually reproduced plant varieties.
Patentability Requirements

In the United States, a patent will be granted on an application:

- If the invention falls within the scope of the subject matter Congress has determined is deserving of patent protection (process, machine, article of manufacture, or composition of matter);

- If filed by the first inventor to file or to disclose and file within one year;

- If the invention is useful, novel and nonobvious; and,

- If the invention is described in the manner required by statute (written description, enablement, and best mode).
What can be covered in a utility patent application? What is patent-eligible?

- Machines (e.g., computer system)
- Articles of Manufacture (e.g., genetically-altered mouse)
- Compositions of Matter (e.g., chemical compounds)
- Processes (e.g., software or “computer-implemented methods”)

*** Software Alert – Beware *Alice v. CLS Bank*!
(12) United States Patent
Fay, Sr.

(54) LOCKING DEVICES FOR BOAT LIFTS

(76) Inventor: Shawn M. Fay, Sr., Glenshaw, PA (US)

(*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days.

(21) Appl. No.: 13/571,672

(22) Filed: Aug. 10, 2012

(65) Prior Publication Data

(51) Int. Cl.
B63C 1/00 (2006.01)

(52) U.S. Cl.
USPC .. 405/3

(58) Field of Classification Search
USPC 405/3; 054/323; 212/292; 70/14, 94, 70/209; 292/56; 67, 289; 114/44-48

See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

(10) Patent No.: US 8,876,429 B2

(45) Date of Patent: Nov. 4, 2014

OTHER PUBLICATIONS

* cited by examiner

Primary Examiner — Thomas B Will
Assistant Examiner — Jessica H Latz

(74) Attorney, Agent, or Firm — K&L Gates LLC

(57) ABSTRACT
Various security members for selectively preventing movement of a boat-supporting cradle of a boat lift system. In one form, each security member is structured to hang from a longitudinal support on the boat lift system and to operably move along the longitudinal support between an engaged position and a disengaged position. Each security member comprises a bracket structured to hold the cradle in a secured position when the security member is in the engaged position.

13 Claims, 8 Drawing Sheets
FIG. 3
FIG. 6

FIG. 7
FIG. 8

FIG. 9
FIG. 12
1
LOCKING DEVICES FOR BOAT LIFTS

BACKGROUND

A boat lift system may be used to dock and store a wide variety of boats such as power boats, pontoon boats, sailboats, and personal watercraft, for example. A boat lift system may include a cradle and a lift mechanism that affects movement of the cradle. The cradle may move upward and downward to lift and lower a boat held by the cradle relative to the surface of the water. Further, the lift mechanism may be controlled by a control system. The control system of the lift mechanism may be secured to prevent unauthorized use of the lift mechanism and subsequent unauthorized use of the boat held by the cradle. For example, the control system may be secured by requiring a key or access code for operation or by otherwise positioning the control system in a secure location such as a boathouse or garage, for example.

Some lift mechanisms for a boat lift system may include a cable that attaches to the cradle. Though the control system of the lift mechanism may be secure, an unauthorized user may never be able to drop the cradle and release the boat from the boat lift system. Additionally, environmental conditions may cause corrosion of the cable, which may similarly cause the cable to break and release the boat. When the boat is dropped into the water and released, the boat may sustain damage. Furthermore, the cable of the lift mechanism may be substantially flexible with severe weather conditions, such as wind, thunderstorms, and hurricanes, for example, may cause shifting of the cable and a corresponding shifting of the cradle and the boat held by the cradle. As the boat shifts, it may strike part of the boat lift system or another object or structure, which may cause damage to the boat.

Accordingly, there may be advantageous to provide a security member that restricts movement of the cradle and/or the boat held therein during severe weather. Furthermore, it may be advantageous to provide a security member that holds the boat in the boat lift system despite movement of the lift mechanism cables. Additionally, there may be advantageous to provide a security member that prevents the cradle from being shifted and/or unauthorized and/or unintentional release of a boat from a boat lift system. Moreover, it may be advantageous to provide an improved security member for a boat lift system.

DETAILED DESCRIPTION

Various embodiments are described and illustrated in this specification to provide an overall understanding of the steps and/or steps of the disclosed devices and methods. It is understood that the various embodiments described and illustrated in this specification are non-limiting and non-exhaustive.

Thereto, the invention is not limited by the description of the various non-limiting and non-exhaustive embodiments disclosed in this specification. In appropriate circumstances, the features and characteristics described in connection with various embodiments may be combined with the features and characteristics of other embodiments. Such modifications and variations are intended to be included within the scope of this specification. As such, the claims may be amended to recite any steps, limitations, features, and/or characteristics expressly or inherently disclosed in, or otherwise expressly or inherently supported by, this specification. Further, applicants reserve the right to amend the claims to alternatively disclose steps, limitations, features, and/or characteristics that are present in the prior art regardless of whether such features are explicitly described herein. Therefore, any such amendments comply with the requirements of 35 U.S.C. §112, first paragraph, and 35 U.S.C. §112 (2006). The various embodiments disclosed and described in this specification comprise, consist of, or consist essentially of the steps, limitations, features, and/or characteristics as variously described herein.

The grammatical articles “one”, “a”, “an”, and “the”, if and as used in this specification, are intended to include “at least one” or “one or more”, unless otherwise indicated. Thus, the articles are used in this specification to refer to one or more than one (i.e., “at least one”) of the grammatical objects of the article. By way of example, “a component” means one or more components, and thus, possibly more than one component is contemplated and may be employed or used in an implementation of the described embodiments. Further, the use of a singular noun includes the plural, and the use of a plural noun includes the singular, unless the context of the usage requires otherwise.

Various embodiments described in this specification are directed to a device for securing a boat in a boat lift system. One non-limiting and non-exhaustive embodiment described and illustrated herein is a plurality of security devices for securing a boat relative to a boat lift system. However, it will be understood that the security devices described hereinafter may be used in connection with any suitable boat lift systems. Furthermore, the security devices described hereinafter can be modified, adjusted, or scaled to fit various boat lift systems.

An aspect of the present disclosure is directed to a system comprising: a boat lift system and security members. In some embodiments, the boat lift system comprises: longitudinal elements and a cradle operably moveable upward to a lifted position and downward to a lowered position relative to the

US 8,876,429 B2

FIG. 9 is an elevational view of the security member embodiment of FIG. 8.

FIG. 10 is a perspective view of a telescoping security member according to at least one other embodiment of the present disclosure.

FIG. 11 is an elevational view of the telescoping security member embodiment of FIG. 10, and

FIG. 12 is an elevational view of the security member embodiment interfacing with the boat lift system of FIG. 1 according to at least one other embodiment of the present disclosure.
longitudinal supports. Further, each security member is structured to hang, from a longitudinal support, and to operate move along the longitudinal support between an engaged position and a disengaged position. In various embodiments, each security member comprises a bracket structured to hold the cradle in a secured position when the security member is in the engaged position.

Another aspect of the present disclosure is directed to a device for a boat lift system, wherein the boat lift system comprises a plurality of longitudinal supports and a cradle, and wherein the cradle is configured to move between a lifted position and a lowered position relative to the longitudinal supports. In various embodiments, the device comprises a plurality of security members positionable relative to the boat lift system. Further, each security member comprises a hooked portion and a bracket. In various embodiments, the hooked portion is configured to engage one of the longitudinal supports such that the security member hangs therefrom. Further, the hooked portion is structured to move relative to the longitudinal support to move the security member from a supportive position to a non-supportive position relative to the cradle. In various embodiments, the bracket is structured to hold the cradle in a secured position when the security member is in the supporter position.

Another aspect of the present disclosure is directed to a method for selectively preventing movement of a cradle of a boat lift system that is operatively moveable between a lifted position and a lowered position relative to longitudinal supports of the boat lift system. In various embodiments, the method comprises hanging a plurality of security members from the longitudinal supports in disengaged position. The method further comprises position the cradle in the lowered position, moving a boat onto the cradle, moving the cradle upward from the lowered position to the lifted position, moving each security member along the longitudinal support from the lowered position to an engaged position, and moving the cradle downward from the lifted position toward the lowered position. In various embodiments, a bracket of each security member holds the cradle in a locked position intermediate the lifted position and the lowered position.

Referring primarily to FIGS. 1-3, a security member 50 can prevent unauthorized removal of a boat 10 from a boat lift system 20. FIGS. 1-3 illustrate one form of a commercially available boat lift system. As the present Detailed Description proceeds, however, a person of ordinary skill in the art will appreciate that the various features and advantages of various security member embodiments disclosed herein may be effectively employed in connection with other commercially boat lift arrangements without departing from the spirit and scope of the present disclosure. For example, the boat lift system 20 can include upright supports 22, longitudinal supports 24a, 24b, and cradle 26. In various constructions, the upright supports 22 can be anchored in place by a foundation (not shown) below a surface of the water. In at least one arrangement, the upright supports 22 can be otherwise secured at the docking location such as secured to a dock or the shore, for example. The boat lift system 20 can include four upright supports 22 that define the corners of the boat lift system 20. Further, except one upright support 22 can be positioned at one of the corners of the boat lift system 20. Referring still to FIGS. 1-3, the upright supports 22 can hold and support the longitudinal supports 24a, 24b of the boat lift system 20. Each longitudinal support 24a, 24b can traverse between two upright supports 22 on a side of the boat lift system 20. In other words, a first longitudinal support 24a can longitudinally extend along a first side of the boat lift system 20. The first and second longitudinal supports 24a, 24b can be parallel or substantially parallel and the second longitudinal support 24b can be laterally positioned relative to the first longitudinal support 24a. Further, as shown in FIGS. 1-3, each longitudinal support 24a, 24b can include two beams, one on each side of the upright support 22. A front 23 can extend into and/or through the two beams of each longitudinal support 24a, 24b and/or through the upright support 22 to secure the two beams of the longitudinal support 24a, 24b to the upright support 22.

Referring still to FIGS. 1-3, the cradle 26 can be positioned between the parallel-positioned longitudinal supports 24a, 24b. As described herein, the cradle 26 can move between a lifted position and a lowered position relative to the longitudinal supports 24a, 24b. Referring still to FIGS. 1-3, the cradle 26 of the boat lift system 20 can include lateral members 28 and cradle members 30. The lateral members 28 can linearly traverse the first and second longitudinal supports 24a, 24b. The lateral members 28 can be perpendicular or substantially perpendicular to the first and second longitudinal supports 24a, 24b. Further, the cradle members 30 can be parallel or substantially parallel to the first and second longitudinal supports 24a, 24b.

Referring still to FIGS. 1-3, the boat lift system 20 can include a lift mechanism 34 configured to move the cradle 26 between the lowered position and the lifted position. The lift mechanism 34 can include a motor 42 and a pulley system having a cable 44 and a pulley drum 38. The cable 44 of the lift mechanism 34 can be a rope, a belt, or a chain, for example. The motor 42 can power the pulley system of the lift mechanism 34 to draw the cable 44 around the pulley drum 38. In at least one embodiment, the controls (not shown) for the lift mechanism 34 can be secured to prevent unauthorized use of the lift mechanism and subsequent unattended use of the boat held by the cradle. For example, the controls can be secured by requiring a key or access code for operation. Additionally, the controls can be located in a secure location such as a boathouse or garage, for example, and can wirelessly communicate with the lift mechanism 34. In various embodiments, the secure location can be locked to restrict access. When the security members 50 are in an engaged position, the security member 50 can operatively hide the cradle 26 in a secured position, as described herein. The secured position 50 can be between the lifted and lowered positions.

Referring primarily to FIGS. 4-7, a security member 59 can include a shaft 52 extending between a hooked portion 60 and a bracket 79. In at least one embodiment, the security member 59 can be formed from material such as aluminum or stainless steel, for example. However, the security member 59 may be formed from other metals or composite materials having sufficient strength to support the loads applied during use. In some embodiments, the various components of the shaft 52, the hooked portion 60 and the bracket 79 can be welded together and/or constructed using appropriate finishes and/or other well-known techniques. The shaft 52 can be tubular and can have a rectangular cross-section, such as a shaft formed from a metal box tube, for example. The shaft 52 and/or other components of the security member 50 can be tubular or hollow to reduce the volume of material and the total weight of the security member 50. When the shaft 52 is tubular, a plate 53 (FIGS. 4 and 5) can cover the end of the shaft 52. In other embodiments, the shaft 52 can be partially, substantially, structurally solid and/or can have a polygonal and/or elliptical cross-section, for example. In other embodiments, the sides of the shaft 52 may remain open. In at least one embodiment, the shaft 52 can be approximately 121 inches by approxi-
US 3,876,429 B2

5

mainly 3 inches by approximately 3 inches. For example, the
dimensions of the shaft 52, as well as the other parts of
the security member 50 described herein, can be adjusted and/or
sealed to fit the security member 50 to various boat lift sys-
tems and are not intended to be limiting.

Referring now to FIGS. 4-7, the hooked portion 60 of
the security member 50 can include a hook 62, an upper gusset
64, and block 66. When the security member 50 is positioned
relative to the boat lift system 20 (FIG. 1-3), as described
herein, the hook 62 can extend over and partially around the
longitudinal support 24a, 24b to engage the boat lift system
20. In at least one embodiment, the hook 62 can be formed
from two sections of metal box tube that have been cut, mitered,
and welded together at a right angle. In at least one embodiment,
the first section can be approximately 10 inches by approximately
3 inches by approximately 3 inches, for example, and the second
section can be approximately 9 inches by approximately 3 inches
by approximately 3 inches, for example. The hook 62 is tubular;
a plate 63 (FIG. 4) can cover the end of the hook 62.

The upper gusset 64 of the hooked portion 60 can extend
between the shaft 52 and the hook 62. The upper gusset 64 can
support the hook 62 relative to the shaft 52 to increase the
strength and durability of the security member 50. In at least
one embodiment, the upper gusset 64 can be 6 x 6 x 3/8
inches, for example, and can include an angled side. The block 66
of the security member 50 can be positioned within the hook 62 or
the hooked portion 60. When the block 66 is tubular, a plate can
cover the end of the block 66. When the security member 50 is positioned relative to the
boat lift system 20, as described herein, the block 66 can rest
out of contact with any top mounted equipment such as the lift mechanism 38 (FIGS. 1 and 3), for example.

Referring primarily to FIGS. 4, 5, and 7, the security
member 50 can have two blocks 66 in the hook 62 such that a stable
anchor 38 and/or cable 49 can protrude between the two blocks.
One block 66 can be welded to the shaft 52 and a first section of
the hook 62 and another block 66 can be welded to the first and
second sections of the hook 62. In at least one embodiment, the block 66 can be formed from a metal box tube and
can be approximately 3 inches by approximately 3 inches
by approximately 3 inches, for example. The exemplary
dimensions of the hooked portion 60 of the security member
50 can be adjusted and/or sealed to fit the security
member 50 to various boat lift systems and are not intended to be
limiting.

As described herein, the security member 50 can be posi-
tioned relative to the boat lift system 20 such that the hooked
portion 60 engages a longitudinal support 24a, 24b and the
security member 50 hangs from the longitudinal support
24a, 24b (FIGS. 1-3). Furthermore, the hooked portion 60 can
be structured to move along or relative to the longitudinal
support 24a, 24b, to move the security member 50 from an
engaged, or supported, position to a disengaged, or non-
supportive, position relative to the cradle 24. In at least one
embodiment, the hooked portion 60 of each security member
can slide along a top surface of the longitudinal support
24a, 24b. The hooked portion 70 can include a polymeric
coating or pad (not shown) to reduce friction and/or move-
ment of the hooked portion 70 along the longitudinal support
24a, 24b. The coating or pad can comprise polytetrafluoro-
ether (PTFE) (Teflon), for example, in various embodi-
ments, a bottom surface of the block(s) 64 of the hooked
portion 70, which can come in contact with the longitudinal
support 24a, 24b, can include a PTFE coating.

Referring still to FIGS. 4-7, the bracket 70 of the security
member 50 can include a shelf 72 and a lower gusset 74.
When the security member 50 is in the supportive position,
the bracket 70 can be structured to hold the cradle 26 (FIGS.
1-3) in a secured position, as described herein. The cradle 26
is secured on the shelf 72 of the bracket 70 when the cradle 26
is held in the secured position. In at least one embodiment, the
shelf 72 can be formed from two sections of metal box tube
that have been cut, mitered, and welded together at a right
angle. At least one embodiment, the first section can be
approximately 10 inches by approximately 3 inches by
approximately 3 inches, for example, and the second section
60 can be approximately 9 inches by approximately 3 inches
by approximately 3 inches, for example. When the bracket 70 is
tubular, a plate 73 (FIG. 8) can cover the end of the bracket 70. Furthermore, the lower gusset 74 can extend between the
shelf 72 and the shelf 21 to help secure the shelf 72 to the shelf
21.

The lower gusset 74 can support the shelf 72 relative to
the shelf 52 to increase the strength and durability of the security
member 50. In at least one embodiment, the lower gusset 74 can
be a flat or substantially flat plate that is approximately
0.5 inches thick, for example. In at least one embodiment, the
lower gusset 74 can be approximately 10 inches by
approximately 6.5 inches by approximately 8 inches, for example.
The exemplary dimensions of the bracket 70 of the security
member 50 can be adjusted and/or sealed to fit the security
member 50 to various boat lift systems and are not intended to be
limiting.

Referring primarily to FIGS. 4, 5, and 7, the hooked portion
60 of the security member 50 can extend from the security mem-
ber 56 in a first direction X. In other words, the hook 62 can
extend away from the shaft 52 in the first direction X. Further-
more, the bracket 70 of each security member 50 can extend from
the security member 56 in a second direction Y. In other words,
the shelf 72 of the bracket 70 can extend from the shelf 52 in
the second direction Y. Referring still to FIGS. 4 and 5, the
second direction Y can be rotationally oriented relative to the first
direction X. Furthermore, the second direction Y can be rotationally oriented approximately
90 degrees relative to the first direction X such that the axis
defined by the hooked portion 60 is at a right angle or sub-
stantially a right angle to the axis defined by the bracket 70.

Referring primarily to FIGS. 8 and 9, a security member
150 having a shaft 152 can be substantially similar to the
security member 50 having the shaft 52, which is described
herein. Additionally, the security member 150 can have a
handle 189 on the shaft 152 between the hooked portion 60 and
the bracket 70. The handle 189 can extend from the shaft
152 in a third direction Z that is opposite to or substantially
opposite to the second direction Y (FIG. 8). In other words, the
third direction Z can be rotationally oriented approximately
90 degrees from the first direction X (FIGS. 4 and 5) and
approximately 180 degrees from the second direction Y. The
handle 189 can provide a surface for a user to grasp in order to facilitate movement of the security member
50 relative to longitudinal support 24a, 24b (FIGS. 1-3).

Referring again to FIGS. 4-7, the shaft 52 of the security
member 50 can have a fixed, non-variable length. Referring
now to FIGS. 10 and 11, a shaft 252 of a security member
256, which is substantially similar to the security member
50, can have a non-fixed, variable length. The shaft 252 can
include two components—a first component 282 and a second
component 284. The first component 282 can include the hooked
portion 90 and the second component 284 can include the
bracket 70. Furthermore, the second component 284 can be
structured to telescope or move axially relative to the first component 282. In other words, at least a portion of the first component 282 can be retracted or extended at least a portion of the second component 284 therein such that the first and second components 282, 284 partly overlap. A plate 285 can cover the end of the hollow first component (FIG. 10). The second component 284 can slide inward and outward relative to the first component 282.

Referring still to FIGS. 10 and 11, the security member 250 can further include a locking assembly 285 structured to secure the second component 284 relative to the first component 282. The locking assembly 285 can include an opening 286 in the first component 282 and an opening 286 in the second component 284. When the openings 286 of the first and second components 282, 284 are aligned, a pin 288 of the locking assembly 285 can be positioned through the openings 286 to secure the first component 282 relative to the second component 284. In at least one embodiment, the pin 288 can include a lock or detent 287 along the shaft of the pin 288 to secure the pin 288 in position in the openings 286. The pin 288 can also include a pulling eye 289 to facilitate removal of the pin 288 from the openings 286. Referring still to FIGS. 10 and 11, the first and/or the second components 282, 284 can include a plurality of openings 286 arranged in a row by increasing or decreasing the overlapping sections of the first and second components 282, 284. The length of the security member 150 can be adjusted. In at least one embodiment, a first component of a variable-length security member shaft can be positioned relative to a second component of a variable-length security member shaft by other well-known techniques such as a detent assembly and/or a threaded connection, for example.

Referring again to FIGS. 1-3, a plurality of security members 59 can be positioned relative to the boat lift system 20 to prevent unauthorized or otherwise unintended deployment of the cradle 26. For example, the hooked portion 60 of each security member 59 can engage a longitudinal support 24a, 24b such that each security member 59 hangs from a longitudinal support 24a, 24b. Furthermore, in at least one embodiment, a single security member 59 can hang from the first longitudinal support 24a and a single security member 59 can hang from the second longitudinal support 24b such that only one security member 59 is positioned on each side of the cradle 26. Referring again to FIGS. 1-3, two security members 59 can hang from the first longitudinal support 24a and two security members 59 can hang from the second longitudinal support 24b. In such an arrangement, two security members 59 can hang from each longitudinal support 24a, 24b between adjacent upright supports 24a, 24b. In other words, two security members 59 can be positioned on each side of the cradle 26 and four total security members 59 can be positioned relative to the boat lift system 20.

As described herein, the security members 59 can move between the engaged or supportive position and the disengaged or non-supportive position. In the engaged position, the bracket 70 can be aligned with a lateral member 28 of the cradle 26 and can be structured to receive a portion of the lateral member 28 on the shelf 72 thereof. The bracket 70 of the security member 59 on the first longitudinal support 24a can receive a first end of a corresponding lateral member 28 and the bracket 70 of the security member 59 on the second longitudinal support 24b can receive a second end of that same lateral member 28. Referring primarily to FIGS. 1 and 2, the lateral member 28 can rest on the shelf 72 of each bracket 70 when the security member 59 is engaged with the cradle 26 in the engaged or supportive position. In the disengaged or non-supportive position, the bracket 70 can be misaligned with the lateral member 28 of the cradle 26 to permit the cradle 26 to be raised or lowered. In other words, though the cradle 26 can be lowered and can receive the secured position, the bracket 70 will not engage or catch a lateral member 28 of the cradle 26. The disengaged position, the cradle 26 can move upward and downward past the bracket 70 without engaging it, and thus the cradle 26 can be lowered to the lowered position, for example, to place the boat 18 in the water.

Referring again to FIGS. 1-3, to dock the boat 18 in the boat lift system 20, the cradle 26 can be positioned in the lowered position. The lift mechanisms 36 can be used to draw the pulley cable 40 from the pulley drum 38 to lower the cradle 26. Once the cradle 26 is positioned in the lowered position, the boat 18 can be moved onto the cradle 26. The members 30 of the cradle 26 can securely hold the boat 18. In at least one embodiment, the cradle members 30 can surround a portion of the boat 18 such that the arrangement of the cradle members 30 can match or substantially match the form of a bottom portion of the boat 18.

Once the boat 18 is securely held in the cradle 26, referring still to FIGS. 1-3, the lift mechanism 36 can be employed to affect the position of the cradle 26 and the boat 18 thereon. The lift mechanism 36 can be used to wrap the pulley cable 40 around the pulley drum 38 to lift the cradle 26 from the lowered position to the lifted position. The security members 59 in the lifted position, the security members 59 can be moved along the longitudinal supports 24a, 24b from the disengaged position to the engaged position. The security members 59 can slide along the longitudinal supports 24a, 24b, for example, and a handle 180 (FIG. 8 and 9) can facilitate movement of the security members 59 between the disengaged and the engaged positions. Upon positioning the security members 59 in the engaged position, the cradle 26 can be moved downward from the lifted position towards the lowered position.

The lift mechanism 36 can be used to draw the pulley cable 40 from the pulley drum 38 to lower the cradle 26. Downward movement of the cradle 26 can be limited by the brackets 70 of the security members 59 in the engaged position. The brackets 70 can receive the lateral members 28 of the cradle 26 from lowering beyond the secured position. In other words, the cradle 26 can be held in the secured position, though the lift mechanism 36 can continue to draw the pulley cable 40 from the pulley drum 38 and attempt to lower the cradle 26. Slack may gather in the pulley cable 40 as the lift mechanism 36 attempts to continue lowering the cradle 26 after the cradle 26 has reached the secured position.

Referring still to FIGS. 1-3, wherein the security members 59 hold the cradle 26 in the secured position, the boat 18 can exert a gravitational force on the cradle 26 and a corresponding force among the hooked portions 60 of the security members 59. The gravitational force exerted by the boat 18 can operatively restrain movement of the security members 59 from the engaged position to the disengaged position. In other words, the weight of the boat 18 can prevent disengagement of the security members 59 and thus, lock the secured position of the boat 18 in the boat lift system 20. (In at least one embodiment, a boat owner can turn off power to the lift mechanism 36 and prevent access to the lift mechanism control. Accordingly, the cradle 26 can remain in the secured position even if the pulley cable 40 is severed or broken.)

To release the boat 18, referring still to FIGS. 1-3, the lift mechanism 36 can be used to lift the cradle 26 upward from the secured position to the lifted position. The cradle 26 can be moved upward at least until it disengages the bracket 70 of the security member 59. Once the cradle 26 disengages the bracket 70, the security member 59 is released, and the boat 18 can be removed from the cradle 26.
bracket 76, the security members 50 can be moved along the longitudinal support 24a, 24b from the engaged position to the disengaged position. The security members 58 can slide along longitudinal supports 24a, 24b, for example, and a handle 180 (FIGS. 8 and 9) may be used to facilitate movement of the security members 50 along the longitudinal supports 24a, 24b between the engaged and disengaged positions. Once the security members 58 are in the disengaged position, the cradle 26 can be moved downward from the lifted position to the lowered position, for example, to lower the boat 18 into the water. The boat locking and unlocking process described herein can be repeated as necessary to re-lock the boat after use and to re-unlock the boat for subsequent use.

Referring now to FIG. 12, a security member 350 can include a first component 382 and a second component 384, similar to the security member 250 described in the herein described herein. The first component 382 can include the engaged portion 60 and the second component 384 can include the bracket 70. Similar to other embodiments described herein, the engaged portion 60 can be structured to engage the longitudinal member 24a, 24b and the bracket 70 can support the cradle 26. A hinged 390 can hingedly connect the first component 382 and the second component 384 such that the security member 350 is structured to pivot or rotate at the hinge 390. The security member 350 can pivot or rotate at the hinge between an engaged position and a disengaged position. Where the security member 350 is in the engaged position, the security member 350 can hold the cradle 26 in a secured position. Further, when the security member 350 is in the engaged position, the cradle 26 can be moved to the lowered position. The first component 382 can pivot upward towards the disengaged position such that the engaged portion 60 moves out of alignment with the lateral member 28 of the cradle 26. Further, the second component 384 can pivot downward to the engaged position such that the bracket 70 moves into alignment with the lateral member 28 of the cradle 26.

The security member 350 can include a pulley system 392 to facilitate rotation of the security member 350 at the hinge 390 to move the security member 350 between the engaged position and the disengaged position. The pulley system 392 can include a sheave 394 and a cable 396. The cable 396 can run through the sheave 394 and be secured to an eye bolt 398 in the second component 384 of the security member 350. A force exerted on one end of the cable 396 can pull the cable 396 through the sheave 394 to pivot the second component 384 upward towards the first component 382 and to a disengaged position. In at least one embodiment, the pulley system 392 can include a cleat (not shown), such as a jamb cleat, for example, that holds the cable 396 in place relative to the sheave 394. In such embodiments, the security member 350 can be held in the disengaged position when not in use. Alternatively, the second component 384 can fall back into the engaged position upon removal of the force to the end of the cable 396. Additionally, a brace rod (not shown) can be positioned between the first components 382 of adjacent security members 350 to maintain the distance between the first components 382 when the second components 384 are pulled upward to the disengaged position.

In various embodiments, a system comprises a boat lift system and security members. The boat lift system comprises longitudinal supports and a cradle openly moveable upward to a lifted position and downward to a lowered position relative to the longitudinal supports. Each security member is structured to hang from a longitudinal support and to operatively move along the longitudinal support between an engaged position and a disengaged position. Each security member comprises a bracket structured to hold the cradle in a secured position when the security member is in the engaged position.

In some of these embodiments, each security member comprises a bracket portion structured to engage one of the longitudinal supports to enable the security member to hang therefrom. In some embodiments, each bracket portion extends from the security member in a first direction, wherein each bracket extends from the security member in a second direction, and wherein the second direction is rotationally oriented relative to the first direction. In some of these embodiments, the second direction is rotationally oriented approximately 90 degrees relative to the first direction. In some embodiments, the boat lift system comprises a lift mechanism configured to move the cradle between the lowered position and the lifted position. In some embodiments, the longitudinal supports comprise a first longitudinal support and a second longitudinal support laterally positioned relative to the first longitudinal support wherein the cradle is positioned between the first and second longitudinal supports, and wherein at least one security member is constrained to hang from the first longitudinal support and at least one security member is constrained to hang from the second longitudinal support. In some of these embodiments, two security members hang from the first longitudinal support and two security members hang from the second longitudinal support. In some of these embodiments, the cradle comprises lateral members between the first and second longitudinal supports, wherein the end of each security member is configured to receive a portion of one of the lateral members.

In some embodiments, at least one security member comprises a variable length. In some of these embodiments, at least one security member comprises a first component, a second component comprising the bracket, wherein the second component is configured to move axially relative to a portion of the first component, and a locking assembly structure to secure the second component relative to the first component. In some embodiments, a gravitational force exerted by a boat positioned on the cradle openly moveable upward in a movement of each security member from the engaged position.

In some embodiments, a method for selectively preventing movement of a cradle of a boat lift system comprises positioning the security members relative to the boat lift system such that each security member hangs from a longitudinal support of the boat lift system, positioning the cradle in the lowered position, moving the boat onto the cradle, moving the cradle upward from the lowered position to the lifted position, moving each security member along the longitudinal support from the disengaged position to the engaged position, and moving the end cradle downward from the lifted position to the secured position, wherein the bracket of each security member holds the cradle in the secured position.

In various embodiments, a device for a boat lift system comprises a plurality of security members positionable relative to the boat lift system. The boat lift system comprises a plurality of longitudinal supports and a cradle, and wherein the cradle is configured to move between a lifted position and a lowered position relative to the longitudinal supports. Each security member comprises a bracket portion and a bracket. The bracket portion is structured to engage one of the longitudinal supports such that the security member hangs therefrom. The bracket portion is structured to move along the longitudinal support to enable the security member from a supportive position to a non-supportive position relative to the cradle. The bracket is structured to hold the cradle in a secured position between the lifted and lowered positions when the security member is in the supportive position.
In some of these embodiments, the hoisted portion of each security member extends from the security member in a first direction, whereas the bracket of each security member extends from the security member in a second direction, and wherein the second direction is rotationally oriented approximately 90 degrees relative to the first direction. In some embodiments, at least one security member comprises a handle between the hoisted portion and the bracket. In some of these embodiments, the plurality of security members consists of four security members. In some embodiments, each security member comprises a hinge, and wherein each security member is structured to rotate at the hinge. In some of these embodiments, the device comprises a pulley system configured to rotate each security member at its respective hinge to selectively facilitate movement of each security member between the supportive position and the non-supportive position.

In various embodiments, a method for selectively preventing movement of a cradle of a boat lift system that is operably moveable between a lifted position and a lowered position relative to longitudinal supports of the boat lift system comprises hanging a plurality of security members from the longitudinal supports in disengaged positions. Each security member comprises a bracket, the boat lift system comprises longitudinal supports and a cradle operably moveable between a lifted position and a lowered position relative to the longitudinal supports. Each security member hangs from a longitudinal support of the boat lift system. The method further comprises positioning the cradle in the lowered position, moving a boat onto the cradle, moving the cradle upward from the lowered position to the lifted position, moving each security member along the longitudinal support from the disengaged position to the engaged position, and moving the cradle downward from the lifted position toward the lowered position. A bracket of each security member holds the cradle in a locked position intermediate the lifted position and the lowered position. In some of these embodiments, the method further comprises lifting the cradle upward from the locked position to the lifted position, moving each security member along the longitudinal support from the engaged position to the disengaged position, and lowering the cradle downward from the lifted position to the lowered position.

This specification has been written with reference to various non-limiting and non-exhaustive embodiments. However, it will be recognized by persons having ordinary skill in the art that various substitutions, modifications, or combinations of any of the disclosed embodiments (or portions thereof) may be made within the scope of this specification. Thus, it is contemplated and understood that this specification supports additional embodiments not expressly set forth herein. Such embodiments may be obtained, for example, by combining, modifying, or reorganizing any of the disclosed steps, components, elements, features, aspects, characteristics, limitations, and the like, of the various non-limiting embodiments described in this specification. In this manner, Applicants reserve the right to amend the claims during prosecution to add features as variously described in this specification, and such amendments comply with the requirements of 35 U.S.C. §112, first paragraph, and 31 U.S.C. §132(a).

The invention claimed is:

1. A method for selectively preventing movement of a cradle of a boat lift system, wherein the boat lift system comprises longitudinal supports and a cradle operably moveable upward to a lifted position and downward to a lowered position relative to the longitudinal supports, wherein the cradle comprises a lateral member that is oriented transverse to the longitudinal supports and that extends adjacent between adjacent longitudinal supports, and wherein the method comprises:

2. A method for selectively preventing movement of a cradle of a boat lift system that is operably moveable between a lifted position and a lowered position relative to longitudinal supports of the boat lift system, wherein each security member is structurally distinct from each of the longitudinal supports and is operably moveable along the longitudinal support in a direction transverse to the orientation of the lateral member between the engaged position and the disengaged position while hanging from the longitudinal support, wherein each security member comprises a bracket structured to engage the lateral member to hold the cradle in a secured position where the security member is in the engaged position, and wherein each bracket is disengaged from the cradle when the corresponding security member is in the disengaged position:

3. The method of claim 2, further comprising:

4. The method of claim 2, wherein each security member comprises a hoisted portion structured to engage one of the longitudinal supports to enable the security member to hang thereto.

5. The method of claim 4, wherein each hoisted portion extends from the security member in a first direction, wherein each bracket extends from the security member in a second direction.
direction, and wherein the second direction is rotationally oriented relative to the first direction.

6. The method of claim 5, wherein the second direction is rotationally oriented approximately 90 degrees relative to the first direction.

7. The method of claim 2, further comprising moving the cradle between the lowered position and the lifted position with a lift mechanism.

8. The method of claim 2, wherein the longitudinal supports comprise:
 a first longitudinal support; and
 a second longitudinal support laterally positioned relative to the first longitudinal support, wherein the cradle is positioned between the first and second longitudinal supports, and wherein at least one security member is constructed to hang from the first longitudinal support and at least one other security member is constructed to hang from the second longitudinal support.

9. The method of claim 8, wherein two security members hang from the first longitudinal support and two security members hang from the second longitudinal support.

10. The method of claim 9, wherein the cradle comprises a plurality of lateral members between the first and second longitudinal supports, wherein the bracket of each security member is configured to receive a portion of one of the lateral members.

11. The method of claim 2, further comprising adjusting the length of at least one security member.

12. The method of claim 11, wherein at least one security member comprises:
 a first component;
 a second component comprising the bracket, wherein the second component is structured to move axially relative to the first component; and
 a locking assembly structured to secure the second component relative to the first component.

13. The method of claim 2, wherein a gravitational force exerted by a boat positioned on the cradle operably restrains movement of each security member from the engaged position.
Design Patent Samples – Protecting “Ornamental” Aspects of Inventions

D593,087

D504,889

D604,305
Effect of Patent Law Changes:

- We now have a “First-Inventor-to-File” patent system in the United States.
- No “credit” given for prior “conception” date.
- Likely to be a broader body of prior art that can be used against a pending patent application to attack the patentability of a claimed invention.
Patentability - Novelty of Claimed Invention

Under the AIA (effective 3/16/13)

A person shall be entitled to a patent unless –

(1) the claimed invention was patented, described in a printed publication, or in public use, on sale, or otherwise available to the public before the effective filing date of the claimed invention; or

(2) the claimed invention was described in a patent or a published application naming a different inventor and was effectively filed before the effective filing date of the claimed invention.
Patentability - Non-Obviousness of Claimed Invention

Under the AIA
(effective 3/16/13)

A patent for a claimed invention may not be obtained if the differences between the claimed invention and the prior art are such that the claimed invention as a whole would have been obvious before the effective filing date of the claimed invention to a person having ordinary skill in the art to which the claimed invention pertains.
What is Obvious?

- Combining prior art elements according to known methods to achieve predictable results;
- Simple substitution of one known element for another to obtain predictable results;
- Use of known techniques to improve similar devices (methods, or products) in the same way;
- Applying a known technique to a known device (method, or product) ready for improvement to yield predictable results;
- “Obvious to try” – choosing from a finite number of identified, predictable solutions, with a reasonable expectation of success; or
- Known work in one field of endeavor may prompt variations of it for use in either the same field or a different one based on design incentives or market forces if the variations would have been predictable to one of ordinary skill in the art.
Racing to the Patent Office

"Prior Art" is Constantly Being Generated

- Websites and Public Uses
- Papers, Articles, and Other Publications
- Our Inventor
- Other Inventors
- Filing Date

Patent Office
Things Not To Do Before Filing at Least a Provisional Patent Application, Especially If Protection Outside the United States is Desired

- Publish manuscript, paper or thesis – beware of early electronic publishing.
- Disclose invention in a presentation.
- Discuss the invention without a confidentiality agreement.
- Offer the invention for sale or conduct other commercial activity.
- Discuss the invention in a trade show presentation.
- Submit a non-confidential grant application.
- Conduct experiments with the invention in a public way.
Patent Application Costs

- Costs include filing fees, drawing fees and attorneys’ charges
 - Entity size considerations
- Prosecution costs
- Issuance costs
Patents vs. Trade Secrets

- A trade secret may be anything that can be and is kept confidential and that provides a commercial advantage.

- Example - a method of manufacturing that reduces manufacturing costs and that can be kept secret.

- Patent has a limited duration. Trade secret rights may be of unlimited duration (e.g., Coca-Cola formula).

- Once a trade secret becomes publicly known or is reverse engineered, it loses its trade secret status.

- One cannot enforce trade secret rights against another who independently develops the same trade secret.
Trade Secrets

Examples:

- Economic terms of arrangements
- Configurations of systems
- Underlying software
- Methods of doing business
- Supplier data
- Customer data
- User data
Trade Secrets (continued)

Protect trade secrets by:

• Contracts with third parties
• Contracts with employees
• Limiting access
Key Points on Trade Secrets

- Know what you have.
- Know who will have it.
- Lock it up—legally and physically.
Intellectual Property Fundamentals

Copyrights
What is a Copyrightable Work?

- Rights arise automatically upon creation of work.
- Protects original works of authorship fixed in a tangible medium, including:
 - Books and other literary works
 - Paintings, photographs and graphic works
 - Music and recordings
 - Dramatic and choreographic works
 - Motion pictures / audiovisual works
 - Computer software / programs
 - User interfaces and web site pages
Idea / Expression Dichotomy

- Copyright protection does not extend to “any idea, procedure, process, system, method of operation, concept, principle, or discovery, *regardless of the form in which it is described, explained, illustrated, or embodied.* . . . ”

- Compare copyrights to patent rights, which are generally broader in scope.

- Federal copyright registration is not necessary until a lawsuit is filed.
 - Minimal application costs, though.
Authorship

- The “author” of the work owns the copyright.
- Who is the “author”?
 - The person(s) who created the work; or
 - If it can be considered a “work made for hire,” then it is the employer or other person for whom the work was prepared.
Work Made for Hire

What constitutes a “work made for hire”?

- A work prepared by an “employee” (i.e., salary/wages paid, taxes withheld, benefits offered, etc.) within the scope of employment; OR

- A work specially ordered or commissioned:
 - If the parties expressly agree in a written instrument signed by them that the work shall be considered a work made for hire,
 - and the work falls in one of nine specific statutory categories of works: a contribution to a collective work, a part of a motion picture or other audiovisual work, as a translation, a supplementary work, a compilation, an instructional text, a test, answer material for a test, or an atlas.
Work Made for Hire – Independent Contractor

- Agreements should state that works created by independent contractors are works made for hire, where applicable.
- Agreements should also provide for an assignment of IP rights in the work in case the type of work created does not fall within the statutory definition of a specially ordered or commissioned work.
- Benefit as the “author” of a work – rights may revert back to the author in the future.
- Many works do not fall under the statutory definition of specially ordered or commissioned work.
Exclusive Rights

The copyright owner has the exclusive rights to:

- reproduce the work in any form
- prepare derivative works
- distribute copies
- publicly perform
- publicly display
- transmit
- each right above may be licensed separately
Copyright Ownership vs. Physical Ownership

- Although you may own physical work, you may not own the copyright.
- Without the copyright, you may not be able to legally duplicate the work, distribute copies, or revise the work.
Copyright – Duration

- Currently, copyright subsists from creation of the work and endures for the author’s life plus 70 years

- Works made for hire
 - Term is 95 years from publication or 120 years from creation, whichever expires first
Copyright – Fair Use

• Fair use of a copyrighted work, including by reproduction of copies, for purposes of criticism, comment, news reporting, teaching, scholarship or research is not infringement.

• Factors to be considered in determining fair use include:
 • Purpose and character of the use, including whether it is of a commercial or for non-profit educational purposes;
 • The nature of the copyrighted work;
 • The amount and substantiality of the portion used in relation to the copyrighted work as a whole; and
 • The effect of the use on the potential market for or value of the copyrighted work.
Copyright – Notice and Registration

- Copyright notice may be given: ©, year, owner
 - If notice is used, no weight will be given to a defense based on innocent infringement in mitigation of actual or statutory damages
- Registration is permissive, but no infringement action may be commenced until copyright is registered
 - Also, no statutory damages or attorney’s fees are available for infringement commenced after first publication of the work, unless registration is made within three months of first publication.
Intellectual Property Fundamentals

Trademarks
What is a Trademark?

A trademark is any word, name, symbol, or device, or any combination thereof used to identify the source of goods or services and to distinguish the goods or services from those manufactured or sold by others.
What is a Trademark?

- Trademarks can be words or slogans:
 - U2®
 - JUST DO IT.®

- Trademarks can be designs:

- Trademarks can be colors or sounds:
 - Pink for insulation
 - NBC chimes
What is a Trademark?

- Functions of a Trademark:
 - Identify and distinguish the goods of the owner from competing goods in the marketplace.
 - Guarantee a consistent level of quality.
 - Function as an advertising or marketing tool.

- A trademark represents the goodwill and reputation of a company.
Acquiring Rights in Trademarks

Rights accrue through use of the mark:

▪ Once a mark is used, consumers begin to associate the mark with a specific product.
▪ The mark becomes a symbol of the company’s reputation.
▪ This is a U.S. concept - most other countries recognize trademark rights only on the basis of formal registration.
▪ Rights last as long as use of mark continues.
▪ Consider benefits of federal registration – proof of nationwide protection, federal jurisdiction, litigation advantages. Modest application costs.
Intellectual Property Fundamentals

Agreements / Corporate Issues
Contracts

- Invention Assignment Agreements
- Non-Disclosure Agreements
- Non-Compete Agreements
Intellectual Property Assignments

- Why are they necessary?
 - Current
 - Prospective
- Employee v. Independent Contractor
- Post-employment
Non-Disclosure Agreements

- Two material provisions
 - Confidentiality obligation
 - Limited use of confidential information
- Exceptions (e.g., publicly available information)
- Term
- Significance for trade secret and patent protection
Non-Competition Obligations

• One party agrees NOT to undertake certain activities

• In many states they are enforceable if they are ancillary to the sale of a business or taking of employment – if reasonably limited in scope, time and territory

• California takes narrower view – must generally be in connection with sale of business and be very narrowly drawn.
Non-Competition Obligations

- Length of time
- Substantive scope
- Geographic scope
- Consideration
- Reasonableness
Rights in Jointly Developed Intellectual Property (Generally)

- Patents—each co-inventor owns an equal and undivided interest in the entire patent. No duty to account.
- Copyrights—co-authors have independent rights. Duty to account.
- Trade Secrets—co-owners can independently exploit and license. Probably no duty to account.
- Trademarks—co-owners need to cooperate.
Multi-Creator Potential Arrangements

- Do nothing
- Get assignment
- Potential forms of consideration
 - Up-front payment
 - Deferred payment
 - Royalty [perhaps with cap]
 - Equity
Start-up Company – Summary of the Big Issues

- Own or have clear rights in the intellectual property
 - Understand University policies and relationships regarding IP rights
 - Due diligence
 - Inventor assignments
 - Problems with joint ownership
- Develop a road map to protect intellectual property
 - Traditional IP protection
 - Contractual obligations
- Don’t infringe third party IP
 - Freedom to operate
THANK YOU!

George Dickos
(412) 355-6785
george.dickos@klgates.com