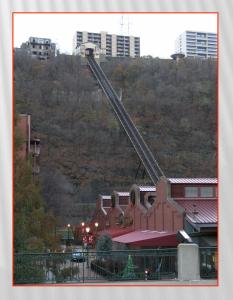

May 16, 2011: University of Illinois - Chicago

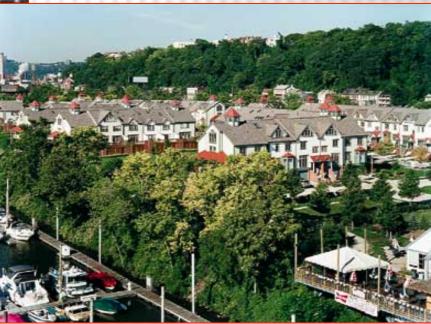
ASSESSING BROWNFIELD SUSTAINABILITY: LIFE CYCLE ANALYSIS AND CARBON FOOTPRINTING

Brownfields

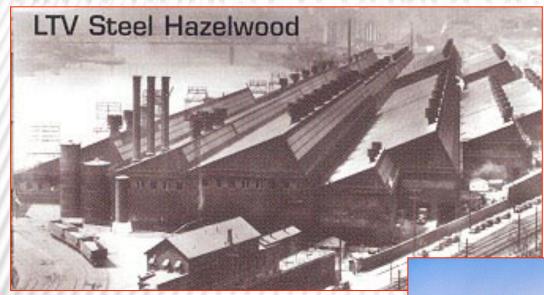

Real property, the expansion, redevelopment, or reuse of which may be complicated by the presence or potential presence of a hazardous substance, pollutant, or contaminant (HR 2869 - 2002)

PITTSBURGH

- Largest inland port in US
- **×** Population: 335,000
- × Area: 55.5 square miles
- × 3 professional sports teams
- × 29 colleges and universities
- **×** Host of UN World Env Day



WASHINGTON'S LANDING


SOUTHSIDE WORKS

PITTSBURGH TECHNOLOGY CENTER

NINE MILE RUN

WESTERN PA BROWNFIELDS CENTER

- Acts as a regional resource for communities and small businesses
 - + To realize brownfields sites' inherent benefits
 - + To eliminate development barriers
- Neutral platform which brings together a variety of stakeholders
- **×** Project-based funding from various sources

US EPA – TRAINING RESEARCH AND TECHNICAL ASSISTANCE GRANT

What is the environmental footprint of Brownfield development as compared to a Greenfield development?

T-R-TA

× Training

+ Outreach to Main Street and Elm Street Managers

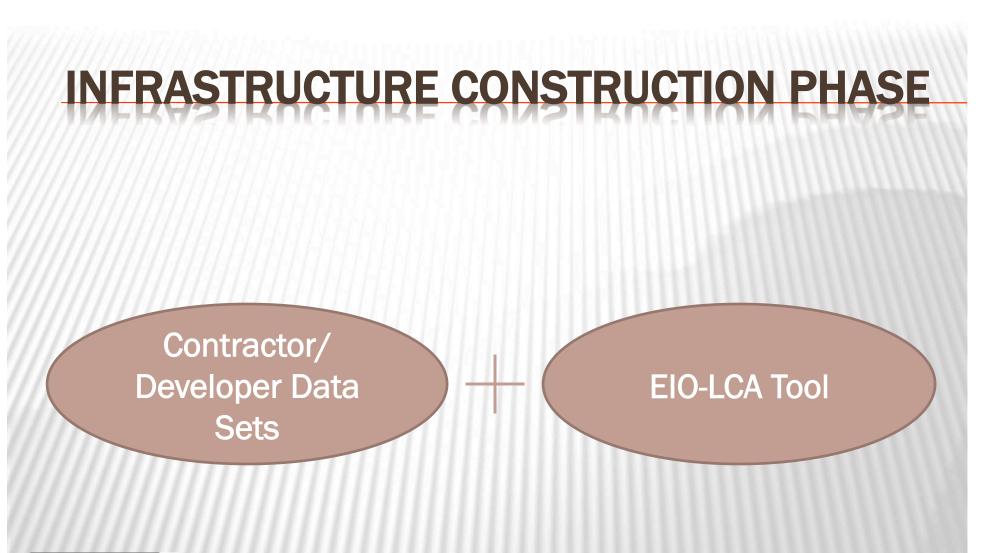
- × Research
 - + Calculating environmental impact using EIO-LCA
- **×** Technical Assistance
 - + Prioritizing sites for development

TRAINING

- **×** Working with Pennsylvania Downtown Center
- × 150 Main Street and Elm Street Communities

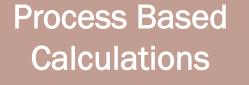
× Outreach

- + Web page
- + Annual and regional meetings
- + Case studies

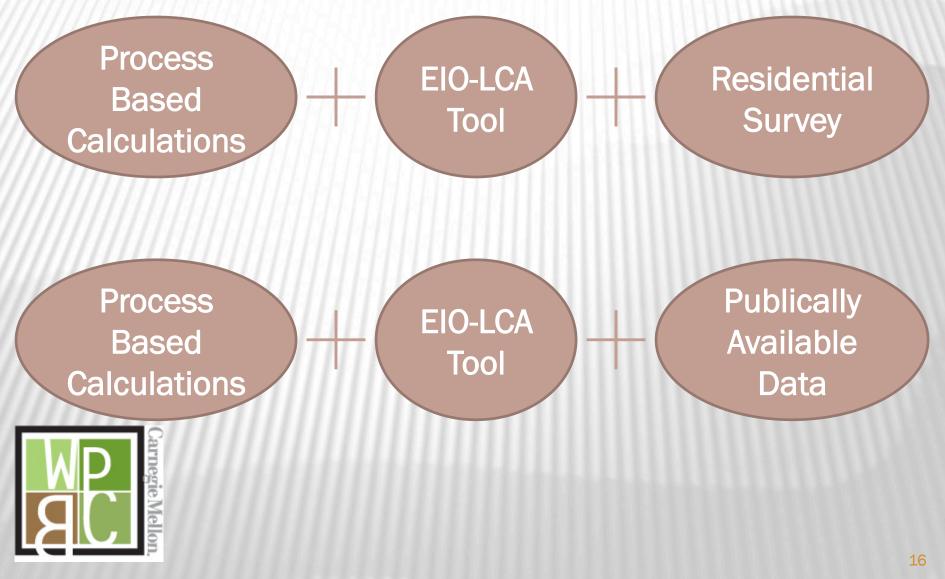


RESEARCH: LIFE CYCLE ASSESSMENT

- \times CO₂ and environmental \times Tools and Data emissions
- x Residential Areas
 - + Construction
 - × Remediation
 - × Site preparation
 - × Housing
 - + 'Operation'
- × Utilities
- × Transportation


- + EIO-LCA (Economic Input Output – Life Cycle Assessment) - eiolca.net
- + Process calculations
- + Residential Surveys
- + Contractor/Developer

Brownfields vs. Greenfields: Residential


HOUSING CONSTRUCTION PHASE

PRELIMINARY RESULTS INITIAL INFRASTRUCTURE COSTS AND EMISSIONS

Item	Unit	Greenfield (Cranberry Heights)	Brownfield (Summerset Phase I)	% Difference from Greenfield	Greenfield (Woodlands)	Brownfield (Hidden Brook)	% Difference from Greenfield
Initial Cost	\$ Million 2002	3.4	23.4	688	0.462	.673	45
CO2E Emissions	Metric Ton	2,200	9,090	413	0.45	0.64	42
Allocated Initial Cost (0% interest)	\$/person/ year	74	1,176	1589	30	28	-7
Annualized Initial Cost (5% interest)	\$/person/ year	203	3,204	1578	75	69	-8
Allocated CO2E Emissions	Metric ton/person /year	0.05	0.46	930	0	0	0

PRELIMINARY RESULTS RESIDENTIAL BUILDING DIFFERENCES

Item	Unit	Greenfield (Cranberry Heights)	Brownfield (Summerset Phase I)	% Difference Relative to Greenfield	Greenfield (Woodlands)	Brownfield (Hidden Brook)	% Difference from Greenfield
Average Floor Space	Sq. ft./ residence	2,700	2,460	-9	2800	2800	0
Land Area	Acres/ residence	1.1	0.16	-85	.50	0.44	-12
Natural Gas (monthly)	\$/residence	170	89	-52	136	83	-39
Electricity (monthly)	\$/residence	133	94	-29	103	57	-45
Water/ Sewer (monthly)	\$/residence	79	27	-66	62	41	-34
Total Utilities (monthly)	\$/residence	382	210	-45	301	181	-40
Total Utilities	\$/person	103	105	3	97	75	-23
Floor Space	Sq. ft./ person	730	1,230	68	903	1167	29
Developm't Area	Acres/ person	0.3	0.08	-73	0.13	0.18	38
Building Construction GHG	Metric ton	61,400	30,909	-50	11.8	24.5	107
Allocated Building Construction GHG	Metric ton/ person/year	1.3	1.5	15	0	.05	
Utility GHG	Metric ton/person/ year	5.9	9.6	63	8.6	6.4	-26

PRELIMINARY RESULTS ESTIMATED TRAVEL DIFFERENCES

Item	Unit	Greenfield (Cranberry Heights)	Brownfield (Summerset Phase I)	% Difference Relative to Greenfield	Greenfield (Woodlands)	Brownfield (Hidden Brook)	% Difference from Greenfield
Private Vehicle	Miles/year/ person	8230	7350	-11	6970	6250	-11
Public Transit	Miles/year/ person	2040	600	-71	419	152	-64
Other	Miles/year/ person	240	325	35	17	130	764
Private Vehicle	\$/year/ person	4100	3700	-10	3485	3625	4
Public Transit	\$/year/ person	580	170	-71	119	43	-64
Private Vehicle GHG	Mt CO2E /year/ person	3.9	3.5	-10	3.2	2.9	-10
Public Transit GHG	Mt CO2E /year/ person	1	0.3	-70	0.2	0.1	-50

OBSERVATIONS

- Remedial efforts, added to the amount of construction required, results in greater environmental emissions for brownfields
- **x** Use phase emissions:
 - > Utility consumption: relatively equivalent
 - > Vehicle usage: Greater for Greenfield developments

HOW TO COLLECT SIMILAR INFORMATION ON COSTS RELATED TO

REMEDIATION
SITE PREPARATION
INFRASTRUCTURE IMPROVEMENTS
HOUSING CONSTRUCTION COSTS
'OPERATIONAL' DATA – UTILITIES AND TRANSPORTATION

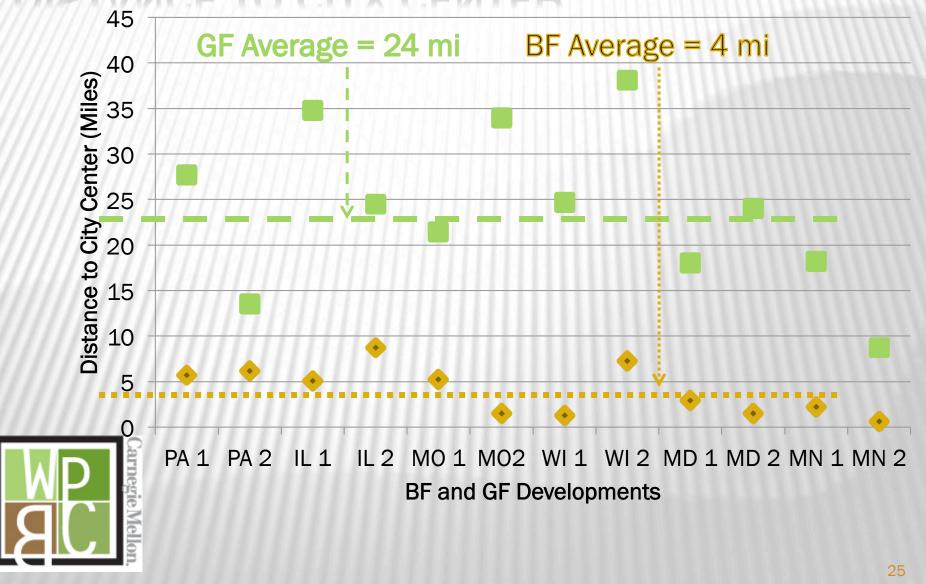
.....THROUGH PUBLICLY AVAILABLE INFORMATION

VEHICLE USAGE

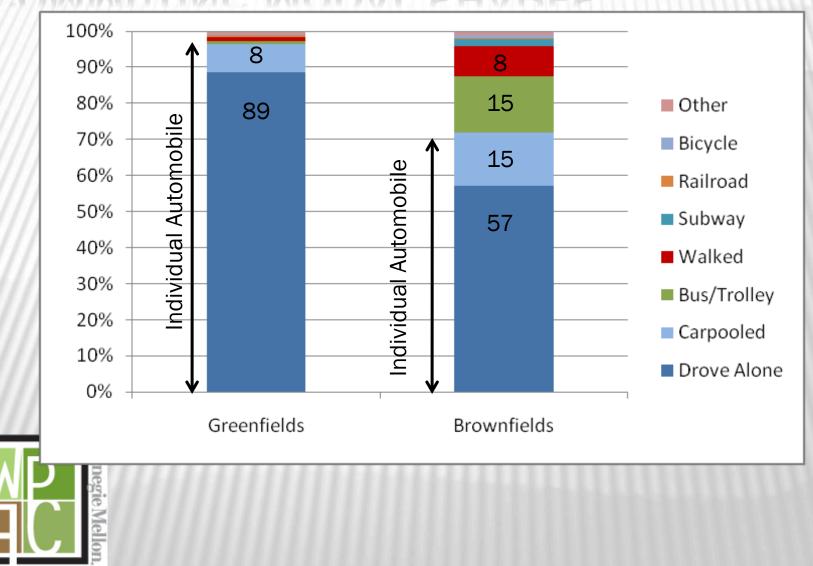
Three Different Methods

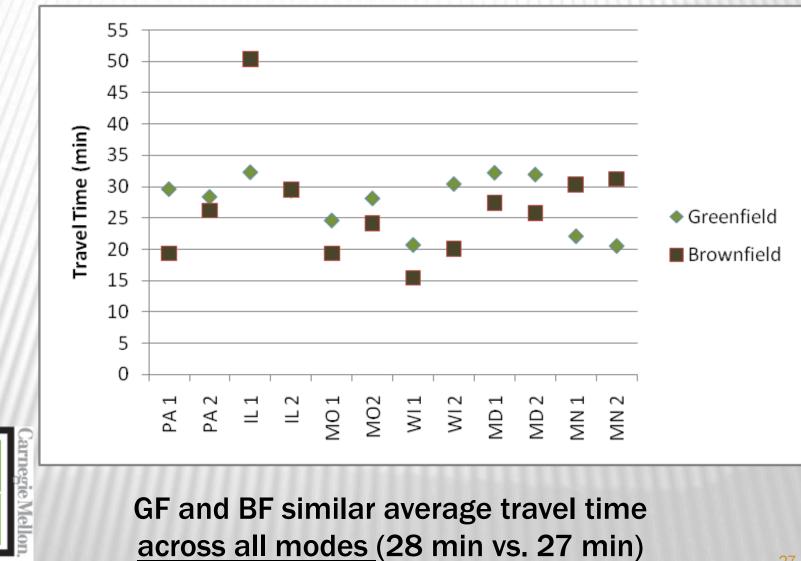
- Residential survey based
- Census based data
- TAZ (traffic analysis zone) based data

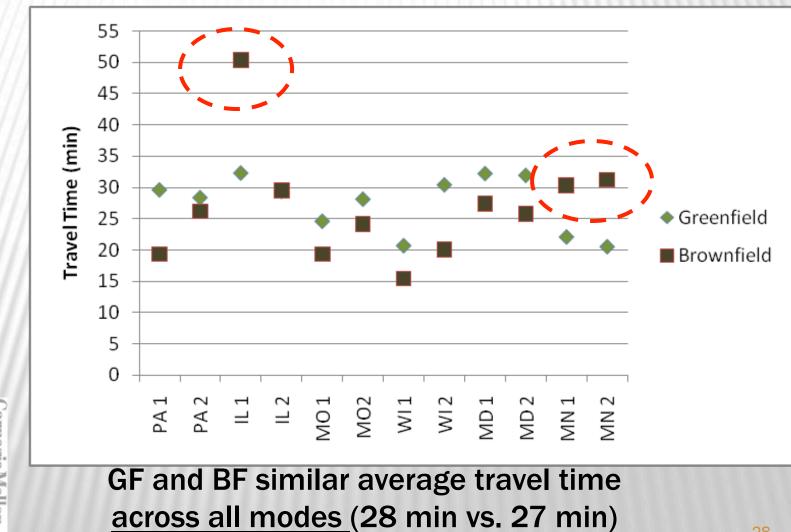
Brownfield developments result in about 40% less greenhouse gas emissions compared



to Greenfield developments.


VEHICLE USAGE - CENSUS BASED


DISTANCE TO CITY CENTER


COMMUTING MODAL SHARES

<u>GE TRAVEL TIME TO WORK(ONE WAY)</u>

ERAGE TRAVEL TIME TO WORK(ONE WAY)

COMMUTING ENVIRONMENTAL IMPACTS ANALYSIS: TRAVEL TIME BY MODE

- Energy and Greenhouse gas emissions Impacts
 - + Individual Automobile ("Other")
 - + Public Transportation ("Public Transportation")
- × Use Phase
 - + Upstream Supply Chain Energy Production
 - + Combustion of Fuel

INDIVIDUAL AUTOMOBILE ENERGY IMPACT

$EVT_i = t_i \times v_i \times 181/20.3$

- **×** EVT = Energy per vehicle trip
- **t**_i = Average Travel Time (min) for Development i (Census 2009)
- v_i = Average Metropolitan Commuting Speed (mph) for Development i (Schrank 2009)
- * 181 MJ/gallon = embodied energy in gasoline (GDI 2010; EIA 2009)
- 20.3 mpg = Industry wide car and light truck fuel efficiency in 2001 (US EPA 2005)

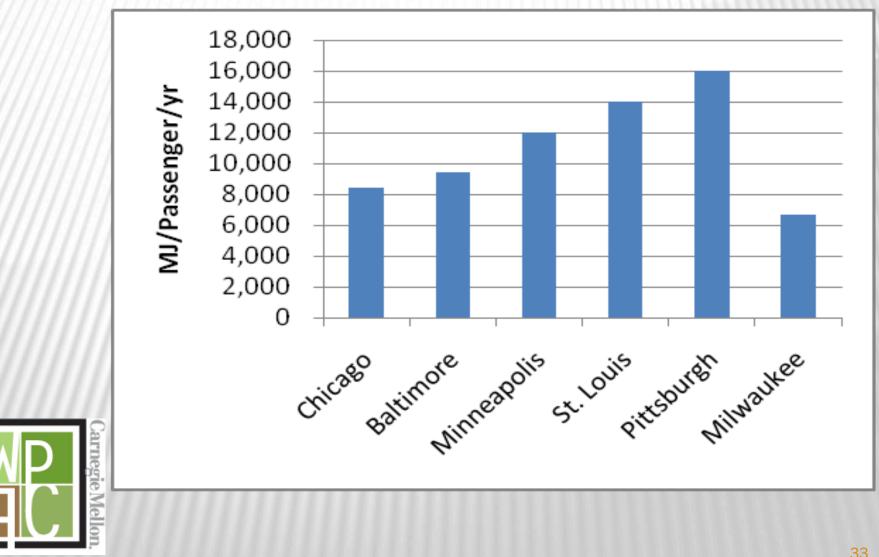
Greenfield=Avg.150 MJ/vehicle trip Brownfield =Avg. 130 MJ/vehicle trip

PUBLIC TRANSPORTATION FUEL INTENSITY

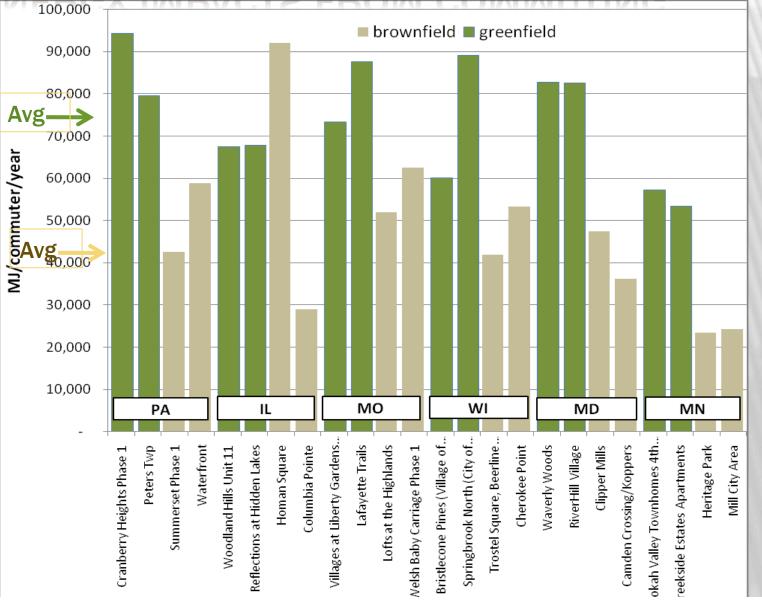
EPT= $(\Sigma f_i \times e_i)/p_i$

EPT=Energy Per passenger trip

- *f* = fuel type consumption for city i
- e = energy intensity of fuel for city i
- p = annual ridership

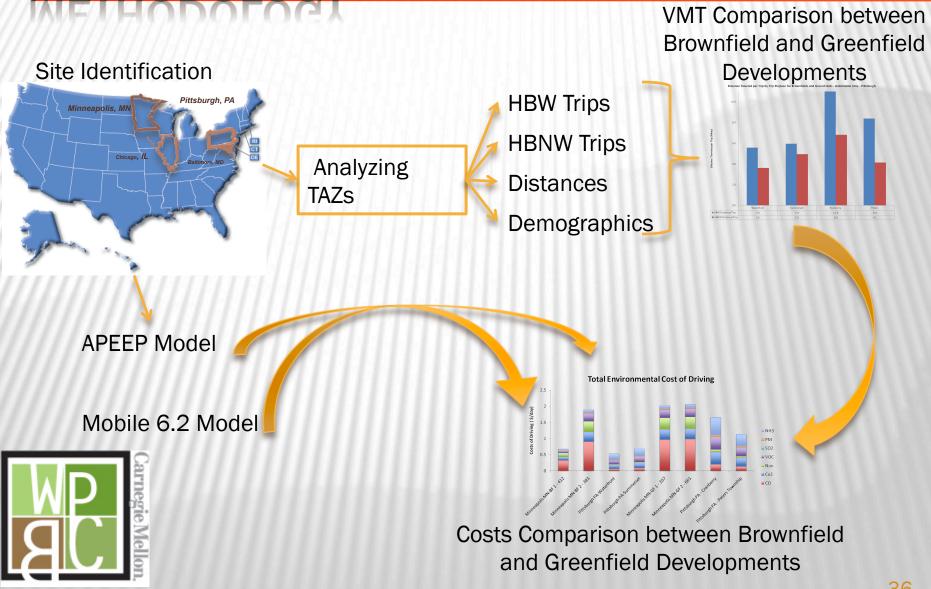

ANNUAL TRANSIT AGENCY ENERGY TYPE CONSUMPTION DISTRIBUTION

	Diesel	Gasoline	CNG	Electricity
Chicago	52%	0%	0%	48%
Baltimore	70%	0%	0%	30%
Minneapolis	100%	0%	0%	0%
St. Louis	84%	0%	<1%	16%
Pittsburgh	90%	0%	0%	10%
Milwaukee	100%	0.3%	0%	0%



Data Source: National Transit Database for 2001

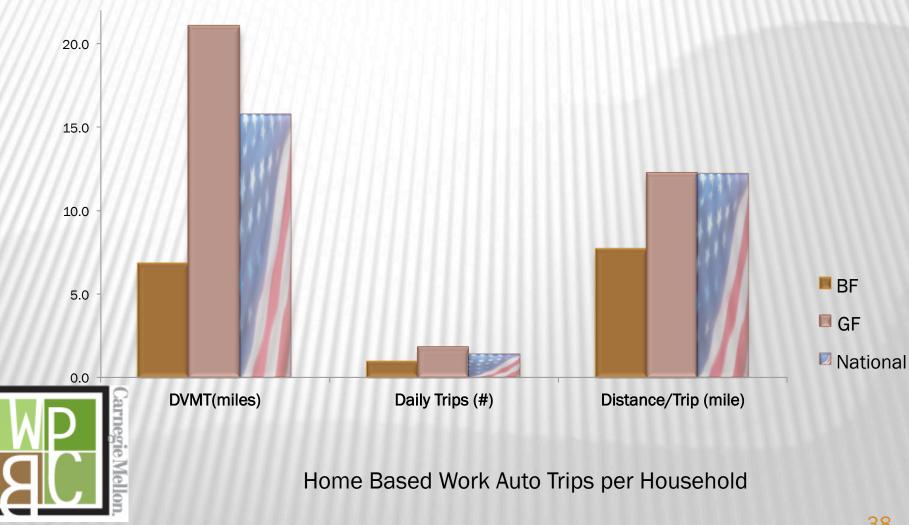
ES ANNUAL Α IMPACT PER PASSENGER ERGY



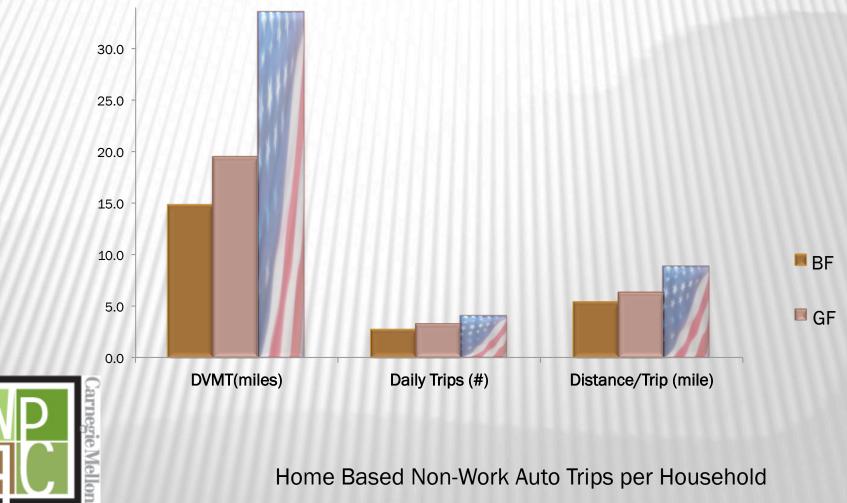
TOTAL ENERGY IMPACTS FROM COMMUTING

VEHICLE USAGE - TAZ BASED DATA

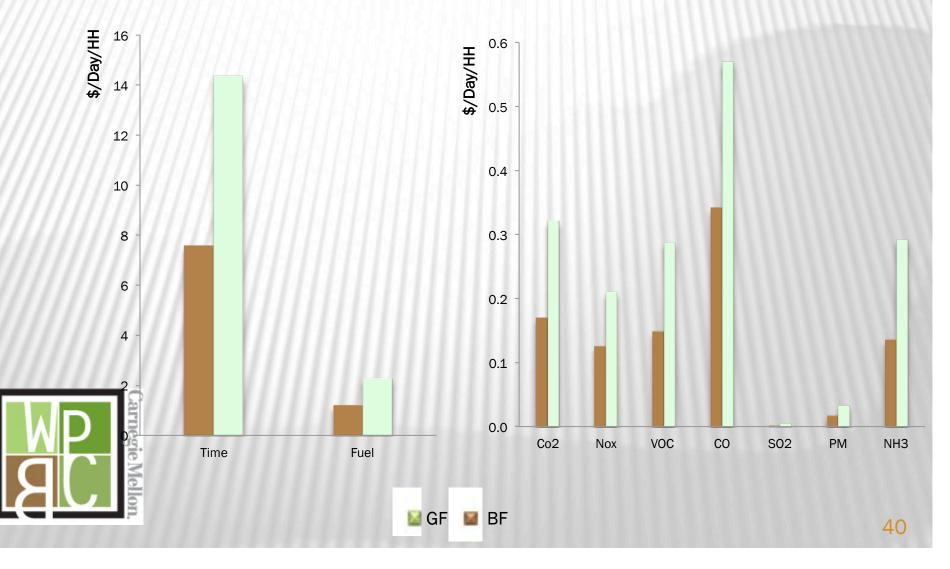
METHODOLOGY



COMPONENTS


- **×** Site Identification Criteria:
 - + Metropolitan Areas (Pittsburgh, Chicago, Baltimore, Minneapolis)
 - + Relatively Large Developments
 - + Developed in the past 20 years
 - + At least 100 housing units
- This project only focuses on residential developments.
- **x** TAZs analyzed are based on 2010 Travel Demand Models.
- × Only automobile trips are included in this analysis.

PRELIMINARY RESULTS **BROWNFIELD VS GREENFIELD DEVELOPMENTS' TRAVEL**


PRELIMINARY RESULTS BROWNFIELD VS GREENFIELD DEVELOPMENT TRAVEL

PRELIMINARY RESULTS BROWNFIELD VS GREENFIELD DEVELOPMENT COSTS

Direct Costs

External Environmental Costs

PRELIMINARY RESULTS ANNUAL REDUCTIONS PER HOUSEHOLD

	Brownfield Developments	Greenfield Developments	% Reduction	
Vehicle Miles Traveled (miles)	5,600	10,500	47	
Number of Trips	920	1,300	28	
Direct Cost of Driving (\$)	2,300	4,300	47	
Environmental Cost of Driving (\$)	250	450	45	

Average Remediation Cost of Brownfield Developments: \$57,000/Acre* Brownfield Unit Density: 100 Units/Acre

Initial Cost: \$570 per Household Benefit: \$2,200 per Household per Year

COMPARISON WITH CENSUS

	Metric	TAZ Based	Census Based*	Survey Based* *
Brownfield Development	Distance/Trip (mile)	8.0	14.0	11.0
	Travel Time (min)	12.0	20.0	15.0
Greenfield	Distance/Trip (mile)	12.0	18.0	13.0
	Travel Time (min)	16.0	24.0	17.0

*Commuting from US Brownfield and Greenfield Residential Development Neighborhoods, Amy Nagengast, Chris Hendrickson and Deborah Lange

**A Life Cycle Assessment Case Study of a Brownfield and a Greenfield Development: Cranberry Heights and Summerset Pennsylvania, Ronell Auld, Chris Hendrickson, and Deborah Lange

TRANSPORTATION CONCLUSION

- Series Brownfield Developments generate less VMT compare to conventional developments:
 - + This is mainly attributed to shorter distances to city centers resulting in shorter distance per trip especially for commuters.
 - + It is also the result of less number of trips, possibly due to better accessibility to transit.
- Total cost of driving for Brownfield developments is not only less than Greenfield developments but also less than the initial remediation cost.

RESEARCH: CHALLENGES & UNCERTAINTIES

- Data reliability and quality
- **x** Models based on assumptions
- Problem boundaries
- × Spatial and temporal issues
- Comparisons between studies difficult without pushing into details
- Cost and time of conducting life cycle assessment study is considerable.

Uncertainty is everywhere!

TECHNICAL ASSISTANCE MULTI-ATTRIBUTE DECISION MAKING

- Response to local government's need for transparent and rational tool
- Multi-attribute decision method
- Allows stakeholder to weight criteria according to their interests
- Intended to guide allocation of funds

GOAL

- Goal: develop transparent, rationale tool for site selection given limited EPA site assessment funds
- Developed tool based on multi-attribute decision-making method

CREATING THE TOOL

- **×** Developed Indicator categories and assessment criteria
- Created site census and tool based on these categories/criteria
- Surveyed local environmental/development leaders for feedback
- Staged beta test with Allegheny County municipal officials and the Redevelopment Authority of the County of Washington
- KCS has distributed Site Census to Main Street and Elm Street Managers
- 79 property profiles were returned and 30 have been selected to complete the Site Attribute Survey
- × 3 sites will be selected for further support

WEIGHTING PROCESS

- × 4 Indicators
 - + Sum of 4 indicator weights must equal 1
- × Sub-Indicators under each Main Indicator
 - + Sum of sub-indicators within each main indicator category must equal 1

FOUR MAIN CATEGORIES

- 1. Development Driver/Champion Indicator
- 2. Development Potential Indicator
- 3. Environmental Indicator
- 4. Market Information

4 INDICATORS DEFINED

- Development Driver/Champion Indicator
 - + Is there a developer or municipality driving development
- Development Potential Indicator
 - + The degree of developmental progress on a particular site and the expected ease of redevelopment
- × Environmental Indicator
 - + The likelihood and degree of environmental contamination of a site, either real or suspected; including the degree of infrastructure in and surrounding a site
- Market Information
 - + What other factors influence and drive property demand

SUB-INDICATORS

Development Driver Indicator

- + Developer Champion
- + Municipal or NGO interest
- Development Potential Indicator
 - + End Use
 - + Funding
 - + Time
 - + Property Ownership
 - + Community Support
 - + Quality of Life

× Environmental Indicator

- + Contamination
- + Previous Use of Site
- + Public Utilities

Market Information

- + Labor Market
- + Property and Wage Values
- + Environmental Justice
- + Location
- + Infrastructure Indicator

NEXT STEPS

- Determine weights of Indicators and Subindicators and create Excel spreadsheet
- Collect completed Site Censuses
- × Score Site Censuses
- Input scores into weighted excel spreadsheet
- × Run tool rank sites
- × Meet to discuss results

COLLABORATION

- × Research
 - + BF/GF Pairs
 - × Survey based
 - × Publicly available data
 - + Water and electricity usage
- **x** Technical Assistance
 - + MADM distribution opportunities

CONTACT INFORMATION

- × Deborah Lange, dlange@cmu.edu
- Chris Hendrickson, cth@cmu.edu
- Amy Nagengast, anagenga@andrew.cmu.edu
- × Yeganeh Mashayekh, yeganeh@cmu.edu

