Hyperwall Airmouse
Real-time multi screen collaboration using smart phones
Faisal Luqman, Gaurav Sinha, Martin Griss

Motivation

Real-time collaboration on large displays
- Collaboration and coordination is difficult on large screen displays
- Communication and coordination with remote colleagues viewing the same screen is challenging
- Interacting, modifying and annotating data from multiple collaborators on a single large display using a single input device is time consuming

Effects
- Inefficient collaboration and coordination between local and remote participants

Approach

Specialized proxy + smart phones
- Receives input data from smart phones such as Android
- Broadcasts and synchronizes information to all connected clients

System Overview

Hyperwall large multi screen display
Hyperwall web client
Hyperwall proxy
Hyperwall airmouse
Hyperwall airmouse

Components and technologies
- Hyperwall client
 Browsers running HTML5 + JavaScript establishes connection to proxy
- Hyperwall proxy
 Processes input and sensor data from smart phones such as Android devices
 Tracks mouse coordinates and state variables
 Broadcasts and synchronizes information to all connected clients in real time
- Hyperwall airmouse
 Capture raw accelerometer values and intuitive UI design for user input

Results

Enhanced real-time collaboration
- Synchronized view
 Local participants (Hyperwall) and remote collaborators (Hyperwall web client) are able to collaborate in real-time
- Accessible
 Hyperwall web client can be viewed from ANY web browser
- Simultaneous interaction
 Collaborators are able to interact (e.g. add, annotate and modify data) at the same time

Future work

Adaptable + Portable displays
- Current implementation uses fixed multi-screen display
- Envision reconfigurable and portable displays using Android tablets such as Samsung Galaxy Tab and Apple iPads