Problem
Given a particular graph, what is the best way to visually represent it visually?

Key Features
- Four different stochastic algorithms:
 - Simple Genetic Algorithm
 - Simulated Annealing
 - Hill Climber
 - ALPS
- Human-in-the-loop
- Algorithms have no knowledge of graph topography
- Adjustable fitness weights
- Convergence Detection
- Metaheuristic for Complete Graphs

How we measure Graph Fitness?
1. Minimizing Edge Crossings
2. Optimize Node Separation
3. Optimize Angular Resolution
4. Optimize Edge Length
5. Reduce Edge Tunneling

Metaheuristic for Complete Graphs
- Place the first three nodes on the edges of the canvas as corners of an equilateral triangle. These are called the Anchor Points.
- Every subsequent node is placed somewhere near the bisector of each Anchor Point with an angular deviation of α (a random Gaussian Variable) and a distance d.
- The variable d is initialized as the ratio of the point’s current layer divided by the total number of layers multiplied by D, the distance from the Anchor Point to the center of the triangle.