An Evolved Rectenna for Wireless Sensor Networks
Irina Brinster, Jason Lohn

Overview
What if you could charge your smartphone's batteries wirelessly by collecting ambient energy in the air? That's the promise of the rectenna. A rectenna is a device that collects incident electromagnetic radiation and converts it to DC power. In this work, we design and optimize a rectenna for RF energy harvesting at 2.45 GHz. The rectenna is used to power a sensor system from the wirelessly transmitted energy.

Antenna Rectifying circuit

Sensor System

![Diagram of Antenna Rectifying circuit and Sensor System]

Antenna
Optimized by a genetic-algorithm based tool
Optimization objectives:
- omnidirectional radiation pattern
- 50 Ohm impedance at 2.45 GHz
- suppression of harmonics at 4.9 and 7.35 GHz
- 50 MHz bandwidth
Best found design: planar inverted F antenna (PIFA)

Rectifying Circuit
Optimized in the Agilent Circuit Simulator
Optimization objectives:
- Maximize RF to DC power conversion efficiency for the RF input power of 10mW
- Minimize cost by using standard technology
PCB
Best found design: 40% rectification efficiency

![Graph of S11 at the input terminals of the evolved PIFA]

![Graph of Output voltage at the load of the rectifier as a function of the RF input power]

Results/Conclusion
- We optimized a rectenna and validated its performance in RF energy harvesting by powering a sensor system
- With 4dBm RF input, it takes 30s to charge the battery to 2.2V and power up the sensors
- After the power-up, the sensor system stays on with as low as 0dBm RF input

Acknowledgement
This work was supported by NASA grant NNX11AN23H.