Cisco NERV: Enabling IP-based Incident Management

Table of Contents

1 EXECUTIVE SUMMARY ... 2
2 RAPIDLY DEPLOYABLE AND RESILIENT .. 2
3 VEHICLE DESIGN .. 3
4 TECHNOLOGY SUITE ... 3
 4.1 Satellite-Based Connectivity ... 4
 4.2 Wired and Wireless Network Infrastructure 4
 4.3 Voice over IP (VoIP) ... 4
 4.4 Cisco TelePresence ... 4
 4.5 Radio and Voice Interoperability With Cisco IPICS 5
 4.6 Network-based Video Surveillance .. 5
5 CUSTOMER RESULTS .. 5
6 TRANSFORMING MOBILE COMMAND AND CONTROL 6
7 FOR MORE INFORMATION .. 6
8 Disclaimer .. 6
1 EXECUTIVE SUMMARY

Large-scale crises can rapidly overwhelm the communications infrastructure of emergency responders. Whether the event is a natural disaster, a man-made incident, or a ‘planned disaster’ such as a large sporting event, there is a critical need to ensure that the right people have the right information at the right time. The need for command and control is further complicated by the amount and disparate nature of the information that must be processed. Emergency communications is no longer the sole domain of radio, but today’s incident managers must be able to process additional voice, video and data feeds from Geographic Information Systems (GIS) maps such as Google Earth, streaming video, telephony, electronic mail, instant messaging and even Web 2.0 based real-time content, such as Twitter feeds and other “crowd-sourced” incident information.

Based on lessons learned from recent large-scale emergencies such as the 2004 Indian Ocean Tsunami and Hurricane Katrina, Cisco Systems has developed the Network Emergency Response Vehicle (NERV) platform to provide a mobile solution that can provide communications support across a variety of different media to Incident Commanders. These self-deployable vehicles are capable of providing Hastily Formed Networks (HFNs) or Incident Area Networks in minimal time, while assuring security and interoperability between agencies arriving on scene to provide mutual-aid.

The NERV enables a unique level of customer support to Cisco customers in the midst of crisis, and is an example of the network-based communications transformation now underway in Public Safety. Through numerous deployments since their introduction in 2007, the Cisco NERV fleet has demonstrated its value in real-world incidents to emergency responders and the communities that they serve.

2 RAPIDLY DEPLOYABLE AND RESILIENT

In any crisis situation, it is imperative that any field communications solution is highly mobile and rapidly deployable. The Cisco NERV fulfills these requirements by being a self-contained vehicle in which all technology travels together as a pre-configured package. Once the vehicle arrives on scene at an incident, it takes a crew of two no more than fifteen minutes from the moment the wheels stop to when an incident commander can place a phone call or send email.

If the situation requires the NERV to push further into the disaster zone to support additional units, the NERV can be shut down and ready to roll in another fifteen minutes. This can greatly simplify planning for the incident command staff, which has the ability to deploy and re-deploy the NERV as needed to support the needs of a dynamic incident.

Power is supplied to the on board systems either through the vehicle’s own generator, or through a shore power connection to an external power source. Multiple Uninterruptible Power Supply (UPS) systems ensure that any power disruption to the vehicle does not disrupt critical communications.
3 VEHICLE DESIGN

The Cisco NERV is a NIMS type II Mobile Communication Center\(^1\) designed to be a self-deployable command and communications resource for first responders, critical infrastructure, and other Cisco customers who may have been affected by a catastrophic event and require mission-critical networking in order to recover normal operations in the midst of an acute emergency situation.

When the vehicle deploys for disaster response missions, it arrives ready for up to 72-hours of continuous operations. This enables the NERV crew to immediately start operations once on scene without negatively impacting what is in all likelihood an already logistically challenged situation.

The Cisco NERV crew themselves are part of the program. In addition to their technical skills, all members of the Cisco NERV team are certified in the Incident Command System / National Incident Management System (ICS/NIMS) administered by the US Federal Emergency Management Agency (FEMA). This allows the Cisco NERV to operate as one team with Police, Fire, EMS, National Guard and other responders within an ICS Incident Command or Unified Command framework seamlessly.

The team and vehicles are supported by the Cisco Tactical Operations Center in Raleigh, NC which provides 24/7 proactive intelligence and logistical support to the deployed units and the customers with whom they are engaged.

4 TECHNOLOGY SUITE

Unlike many contemporary communications and command vehicles, the NERV is built around an IP-based network foundation. This reflects the fact that in recent large-scale disasters, responders took advantage of a breadth of interoperable communications beyond that provided by traditional Push-To-Talk (PTT) radio. The role for these “Hastily Formed Networks”\(^2\) in and around the incident will continue to grow as more applications are developed for incident managers and as emergency operations learn to adapt to the new technology. IP-based communications ensures that resources are available on-scene regardless of where those resources physically reside. If they are reachable on the network, geography does not matter.

The NERV is designed to interoperate with the legacy communications systems of today, and provides a path to the emerging network-centric communications systems of the future.

\(^1\) The National Incident Management System (NIMS) is the incident management methodology used in the United States and has established standards for mutual aid resources. The NERV actually exceeds the NIMS type II MCC requirements in many areas. The current resource typing definitions are available at http://www.fema.gov/pdf/emergency/nims/incident_mgmt.pdf

\(^2\) The term “Hastily Formed Network” was coined at the US Naval Postgraduate School after Hurricane Katrina to describe ad-hoc networks that provide crisis communications. For more information, see http://www.nps.edu/Academics/Institutes/Cebrowski/Research/HFN.html
4.1 Satellite-Based Connectivity

The Cisco NERV uses a 1.8-meter satellite dish to provide up to five megabits of bandwidth for all voice, video, and data applications that need access to the Internet or other remote networks. Unlike older VSAT satellite systems, there is no need for operators to manually point the dish to the correct azimuth and elevation. Instead, the auto-acquire capability of the control unit means that the vehicle crew can continue to operate other systems while the satellite is deployed or stowed. The NERV needs only a clear shot of the southern sky, and the satellite control systems take care of the rest. The use of geosynchronous communications satellites can introduce significant delay in communications, so the NERV uses Cisco Wide Area Application Services (WAAS) technology to maximize network performance across the satellite WAN link.

4.2 Wired and Wireless Network Infrastructure

The core network of the Cisco NERV is provided by a number of Cisco Integrated Services Routers (ISRs). These routers are configured to provide a number of different services on the vehicle such as secure Virtual Private Network (VPN) tunneling services to back-end resources, firewall and other security services, telephony services using Cisco Unified Call Manager Express, and controllers for the wireless network infrastructure. The networks on the vehicle are segmented by a number of Layer-2 and Layer-3 techniques to ensure security and quality of service.

Wireless network services are provided by Cisco 1240 series Wireless Access Points within the interior of the vehicle, and by the Cisco 1510 series Wireless Mesh Access Point on the external mast of the vehicle. The mesh access points allow the NERV to provide a large 802.11-based wireless footprint around the vehicle up to several hundred feet away. Additionally, the NERV carries six additional mesh access points in storage. With the ability to daisy-chain access points together, the wireless mesh access points are able to provide network access to a large area with hundreds of hosts, such as an extremely large fireground command post or campus environment.

4.3 Voice over IP (VoIP)

The Cisco NERV provides a full suite of telephony services through Cisco Unified Call Manager Express (CUCME) software, which enables voice communications over both wired Cisco 7960 and 7970 phones, as well as the on-board cache of Cisco 7925 wireless IP phones. The Cisco NERV vehicles use VPNs to reach back to the Public Switched Telephone Network (PSTN) gateways located at the NERV support hubs of Raleigh, North Carolina and San Jose, California. Intelligent gatekeeper software ensures that if reachability to one hub is interrupted, telephony services will switch automatically to the other.

The flexible, satellite-based telephony capability ensures that the NERV is able to provide telephone services to first responders and other served agencies even if the local PSTN or mobile phone network is unavailable or otherwise destroyed by the emergency or its aftermath. The CUCME implementation on board the NERV supports up to 240 phones, which allows incident managers the flexibility to set up large phone banks, with the number of simultaneous calls dependent upon available satellite bandwidth.

4.4 Cisco TelePresence

The conference room on-board the NERV is equipped with a Cisco TelePresence 1000 high-definition video conferencing solution. TelePresence allows incident commanders and other on-scene leadership to have secure high-definition, high quality video conferencing and collaboration with remote personnel quickly and easily. The Cisco NERV fleet participates in the Cisco TelePresence Exchange network, which enables thousands of TelePresence units around the world to communicate via regional MPLS-based points of presence. This means that remote staff can participate in a meeting with a NERV either through their own Exchange-based TelePresence systems or can go to any number of convenient “public” TelePresence rooms around the world to collaborate with on-scene staff.
4.5 Radio and Voice Interoperability With Cisco IPICS

As has been made painfully obvious in recent large-scale emergencies, different agencies coming together to provide mutual aid and support are often hampered by the lack of radio interoperability that is inherent in today’s Public Safety environment. Responders often have to struggle with different bands (e.g., UHF, VHF, 800 Mhz, etc.), and different proprietary radio protocols. The Cisco IPICS solution leverages the Land Mobile Radio (LMR) feature set in Cisco IOS, and the numerous radio systems on board the NERV to enable radio interoperability across any legacy radio technology. The IPICS solution does not just enable radio-to-radio interoperability, but allows any voice device whether it is a Windows-based PC, a Cisco IP phone, a traditional POTS phone or mobile phone to participate in radio communications.

4.6 Network-based Video Surveillance

Video surveillance increases the situational awareness of field personnel and commanders by enabling them to observe nearby activities, and to record or retransmit that video for the benefit of others. The Cisco Video Surveillance solution encompasses a suite of products that can incorporate both analog legacy CCTV cameras, as well as newer IP-based cameras into a unified monitoring and recording environment. Clients, whether using a web browser or the Cisco Video Surveillance client software can monitor the feeds from anywhere on the network or from the public Internet with appropriate access controls in place.

Additionally, the NERV also has a Cisco Digital Media Encoder 2000 on board. The DME is a video encoding and streaming device that is configured to take in any of the vehicle’s eight video feeds and then record or stream the video in any number of formats, such as Windows Media Player and MPEG-4. With the DME 2000, the crew can encode and stream realtime television news or weather information to the desktops of first responders, providing exactly the right information to them while minimizing satellite bandwidth usage, as clients are going to a local resource, not a remote one, for live news.

5 CUSTOMER RESULTS

The first emergency deployment of a Cisco NERV was in late 2007, during the Harris Fires in San Diego County, California. Since then, Cisco NERV vehicles have been sent to a number of major incidents where they enabled critical communications in the most challenging of circumstances.

<table>
<thead>
<tr>
<th>Event</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Harris Fire, San Diego CA</td>
<td>2007</td>
</tr>
<tr>
<td>Cedar Rapids, IA flooding</td>
<td>2008</td>
</tr>
<tr>
<td>Evans Road Fire, Pocosin Lakes NWR, NC</td>
<td>2008</td>
</tr>
<tr>
<td>Hurricane Gustav, LA</td>
<td>2008</td>
</tr>
<tr>
<td>Hurricane Ike, TX</td>
<td>2008</td>
</tr>
<tr>
<td>Fiber-Optic Sabotage, Morgan Hill CA</td>
<td>2009</td>
</tr>
</tbody>
</table>

Table 1: Cisco NERV emergency deployments as of September 2009.

Customer response to the NERV has been uniformly enthusiastic. While praising the obvious restoration of communications where previously there was none, customers have also reported that once they adjusted their
operations to a network-centric model, they would look to adopt some or all of the technology on board the NERV for their post-emergency day-to-day operations.

The Cisco Tactical Operations team has continued to make refinements to the technology and operational processes based on extensive customer feedback and debriefings from incidents.

6 TRANSFORMING MOBILE COMMAND AND CONTROL

It was not all that long ago that Public Safety communications centered solely on radio communications. Today, however, this is no longer the case. Responders need access to more than just radio to effectively manage an incident. The operational history of the NERV vehicles shows the enhanced command and control that can be realized when IP-based communications systems are at nexus of crisis communications. The ability to interoperate with legacy systems, as well as enabling new forms of communication and collaboration means that agencies can continue to use what they know works, while enabling a seamless path to future network-based communications and applications. The Cisco NERV provides a forward-thinking example implementation for the future of emergency communications, and remains a critical resource for those who need it today.

7 FOR MORE INFORMATION

Cisco NERV vehicles are available for emergency response throughout the Continental United States during the acute phase of an emergency. Customers can engage a Cisco NERV or any of the other services Cisco Tactical Operations provides by contacting their Cisco account team. For further questions, please contact nerv-info@cisco.com

8 Disclaimer

THE SPECIFICATIONS AND INFORMATION IN THIS DOCUMENT ARE SUBJECT TO CHANGE WITHOUT NOTICE. ALL STATEMENTS, INFORMATION, AND RECOMMENDATIONS IN THIS DOCUMENT ARE BELIEVED TO BE ACCURATE BUT ARE PRESENTED WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. USERS MUST TAKE FULL RESPONSIBILITY FOR THEIR APPLICATION OF ANY PRODUCTS.

IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING, WITHOUT LIMITATION, LOST PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF CISCO OR ITS SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

THE TRADEMARKS, LOGOS AND SERVICE MARKS (“MARKS”) DISPLAYED IN THIS DOCUMENT ARE THE PROPERTY OF CISCO OR OTHER THIRD PARTIES. USERS ARE NOT PERMITTED TO USE THESE MARKS WITHOUT THE PRIOR WRITTEN CONSENT OF CISCO OR SUCH THIRD PARTY WHICH MAY OWN THE MARK. “CISCO” IS A REGISTERED TRADEMARK OF CISCO SYSTEMS, Inc. MENTION OF NON-CISCO PRODUCTS OR SERVICES IS FOR INFORMATION PURPOSES ONLY AND CONSTITUTES NEITHER AN EndORSEMENT NOR A RECOMMENDATION.