Full Pose Estimation of Household Objects

Alvaro Collet-Romea, Edward Hsiao, Chris Atkeson and Martial Hebert

Goals
- Recognition and full pose estimation of all relevant objects to perform household tasks
- Pose accuracy to enable object manipulation by a robot arm
- Robust performance in unstructured environments
- Fully automatic system

3D Object Modeling
- Each relevant object is modeled from a few training images
- Structure from Motion algorithm creates sparse 3D models from natural features

Pose Estimation
- New image is matched against every object model in database
- Automatic pose initialization for non-linear optimization by estimating scale, rotation and translation of model
- Non-linear optimization on matched features to recover full pose

Robustness to Cluttered Environments
- Clustering of image features and randomized algorithm allows for efficient recognition of multiple instances of multiple objects in cluttered environments

Viewpoint Invariance
- Invariance to viewpoint is essential in overcoming barriers of object recognition in an uncontrolled environment
- Image features are extracted from affine transformed training images and incorporated into sparse 3D object models to simulate novel viewpoints

Applications
- System output is accurate enough for object manipulation
- Enhance human perception for tasks in daily life

Grasping using visual input

Wearable sensing

Quality of Life Technology Center

a National Science Foundation Engineering Research Center