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Abstract

The characteristics of tunnel junctions formed between n- and p-doped graphene are
investigated theoretically. The single-particle tunnel current that flows between the two-
dimensional electronic states of the graphene (2D-2D tunneling) is evaluated. At a
voltage bias such that the Dirac points of the two electrodes are aligned, a large resonant
current peak is produced. The magnitude and width of this peak are computed, and its use
for devices is discussed. The influences of both rotational alignment of the graphene
electrodes and structural perfection of the graphene are also discussed.

1. Introduction

Two-dimensional (2D) electron systems have played a very important role in the
development of electronic devices, including metal-oxide-semiconductor field-effect
transistors (MOSFETs) made from silicon and high electron mobility transistors
(HEMTs) made from 111-V semiconductor heterostructures.* One lesser-known device
utilizing 2D electron gases (2DEGS) is a tunnel junction between two such gases, i.e. 2D-
2D tunneling. Prior investigations of 2D-2D tunneling have been carried out on coupled
electron gas systems in closely placed quantum wells in AlGaAs/GaAs heterostructures.”
345678 Considering the case of unequal doping between the 2DEGs, it was demonstrated
experimentally that, at a voltage bias corresponding to aligned band structures of the 2D
systems, a large, sharp peak in the tunnel current occurs. We refer to this peak as a
resonant peak in the tunneling. It was argued in the prior work that the width of this peak
was temperature independent®** (except possibly from inelastic effects).

With the advent of a new 2D electronic system, graphene, it is worthwhile to consider
how 2D-2D tunneling could be employed in this system. In this work we theoretically
investigate that question, examining graphene-insulator-graphene (GIG) tunnel junctions.
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We focus in particular on the situation when the graphene sheets have unequal doping,
e.g. one is n-type (electron doped) and the other is p-type (hole doped). We derive
formulas for the voltage-dependence of the current, results that were not obtained, to our
knowledge, in any prior 2D-2D tunneling work (although Ref. [3] provided a step in this
direction). A large current peak occurs at the voltage when the band structures of the
graphene sheets are energetically aligned (and also the graphene sheets are rotationally
aligned in real space), and this peak is characterized in terms of its magnitude and width.
We consider finite-size areas for the graphene sheets, as might occur physically due to
the limited size of structurally perfect regions in the graphene, something that we denote
by a "structural coherence length" L. We find that the magnitude of the resonant current
peak is proportional to the electrode area times L and its width is proportional to 1/L.
Compared to other nonresonant aspects of the current, very high degrees of nonlinearity
in the current-voltage (I-V) relationship remain even for values of L as low as 100 nm or
less.

Clearly this sort of highly-nonlinear 1-V relationship has potential applications for
electronic devices. The sharp resonant current peak at small voltages presents a
compelling case for being integrated into a three-terminal device where the third terminal
(a capacitive gate) can move the effective bias on and off the resonance condition,
thereby enabling logic operations. In fact, precisely this sort of device, a BISFET utilizing
a graphene bilayer, has been recently proposed as a low-power building block for logic
operations.>® The operation of that device however is based on many-body excitonic
condensate effects, which will be observed only below a certain characteristic critical
temperature.>®* Our work is for single-particle tunneling, where the condensate is not
required and hence there is no critical temperature. On the other hand, devices utilizing a
single-particle tunneling resonance do require, at least for optimal performance, rotational
alignment of the graphene electrodes and a well-ordered insulating layer (to minimize
momentum scattering), things that are not needed for the excitonic mechanism of the
BIiSFET. Both types of devices are quite impervious to effect of thermal broadening, and
both devices are also intrinsically fast since they rely on tunneling.

In Section Il we present our general theoretical method using the Bardeen transfer
Hamiltonian approach, followed by applications of that to both undoped and doped GIG
junctions. The contributions to the current are described analytically, with finite-size
effects being considered in particular. Numerical results for the current are provided in
Section Ill, and in Section IV we discuss the results and briefly consider possible
fabrication of GIG junctions and extension to three-terminal devices. The paper is
summarized in Section V.

II. Theory
A. Qualitative considerations

The nonlinear I-V characteristic of a GIG junction with complementary doping in the
graphene electrodes is easily seen by considering the states available for tunneling, as
illustrated in Fig. 1. We assume that the left-hand electrode is n-doped and the right-hand



electrode is p-doped, with chemical potentials (Fermi levels) x =Ep_ +AE, and
Ur = Epr —AER for specific AE| and AEgr, where Ep and Epgr are the respective
Dirac points. For simplicity we assume AE| = AEr = AE > 0. For applied voltage bias V
between the electrodes we have x| —ug =€V . It is important to note that, for our
situation of graphene electrodes, the value of AE will depend not only on the doping of
the electrodes but also on the applied bias V and the geometric capacitance C of the GIG
junction (due to the quantum capacitances of the graphene electrodes).!! This dependence

of AE is described in Section II(E) below, and for the present discussion we take AE to
be a fixed quantity.

Let us first consider the nonresonant case when the band structures are not aligned,
eV = 2AE , as in Figs. 1(a) and 1(b) for voltage ranges of eV < 2AE and eV > 2AE,
respectively. Then, given the requirement of momentum conservation (for large area,
rotationally aligned graphene electrodes, and neglecting scattering in the insulator), there
is only a single ring of k-points that can satisfy that, located at an energy midway
between the Dirac points as shown in Figs. 1(a) and 1(b). The circumference of these
rings varies linearly with voltage, producing a linear dependence of the current on voltage
as pictured in the 1-V curve of Fig. 1(d).

Now we turn to the resonant situation, with eV =2AE. As pictured in Fig. 1(c),
there are states existing over all energies that satisfy the requirement of k-conservation.
The resulting current is relatively large, scaling superlinearly with the area of the
electrodes (since the number of states involved increases with the area). This current is
pictured as the upwards pointing arrow in Fig. 1(d). As will be shown in the following
Sections, this resonant peak in the current has an amplitude that scales as the area of the

electrode times a "structural coherence length” L, with L being just +/A for a perfectly
crystalline graphene sheet with area A, or a typical length between defects in the sheet,
whichever is less. The width of the resonance peak scalesas 1/L .

B. Formalism

We compute tunnel currents using the Bardeen transfer Hamiltonian approach,*?*3
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where o and £ label states in the left- (L) and right-hand (R) electrodes with energies of

E, and Ej respectively, gs=2 is the spin degeneracy and gy is the valley
degeneracy, r;é and rﬁé are the tunneling rates for electrons going L—>R or R—> L
respectively, and f_ and fg are Fermi occupation factor for the left and right-hand

electrodes, f| (E) = {1+exp[(E - . )/kgT ]} F and fg(E) ={1+exp[(E - ug)/kgT ]} .
The tunneling rates are given by
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is the matrix element for the transition with m being the free electron mass and
W, (r,z)and W4 (r,z) being the wavefunctions of the left- and right-hand electrodes,

respectively. The surface integral in Eq. (3) is evaluated over a plane located midway

between the two electrodes. The current thus becomes
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We consider the situation for graphene, with two identical atoms, labeled 1 and 2, per
unit cell. The wavefunction for wavevector k can be written in terms of basis functions
@k (j=12) on each atom as W(r,z) = y1 (k) @i (r,2) + 2 (k) @2 (r,z) . The basis

functions themselves have Bloch form, CDjk(r,z):exp(ikor)ujk(r,z)/\/x where
Ujk(r,z) is a periodic function and A is the area of the electrode. These periodic

functions are of course localized around the basis atoms (i.e. as 2p, orbitals) of each
graphene electrode, but in the plane midway between the electrodes the functions are
spread out. Thus, as a function of the 2D radial coordinate r in this plane, the u j (r, 2)

functions will vary only weakly and that dependence will not largely affect the integral.
(Importantly, nodes in the wavefunction are included in the y;(k) and y,(k) factors,
specified below).

We therefore approximate the tunneling matrix element, incorporating the small
influence of the radial dependence of the ujy(r,z) into numerical constants, and

assuming for the z-dependence the usual tunneling form 2ce ¥4 /D where d is the
separation of the electrodes, « is the decay constant of the wavefunctions in the barrier,**
and D is a normalization constant for the z-part of the wavefunctions in the graphene, i.e.,
approximately equal to an interplanar separation in graphite.***® (For very thin barriers
this form for the z-dependence may not be so appropriate, but its order of magnitude
should still be correct). For example, for a term in Eq. (3) involving the Uik, (r,2) part

of ¥, (r,z) and the U1k g (r,z) partof W4 (r,z) we assume

. * du du* .
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where uq4 is a constant of order unity. This constant is also taken to have no dependence
on k; or kg, i.e., employing an effective-mass approximation in which the periodic



functions are evaluated at the band extrema. In the same sense, we replace the total
wavevector by kg +k where kg is the wavevector of the band extrema and k is the

component of the wavevector relative to that. The term involving u2kL(r,z) and
u2kR(r,z) is approximated in an identical way, yielding constant u,, but with

Upp =Uqq Since the atoms in the unit cell are identical. Cross terms yields constants
U12= Uy Which also have order unity (though with magnitude likely to be less than uyq).
For the y;(k) and y, (k) factors, they have the values well known for graphene in a
nearest-neighbor tight-binding approximation®®
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where & is the angle of the relative wavevector, the upper sign is for a band extremum at

the K point of the Brillouin zone and the lower for a K' point, and with s=+1 for the
conduction band (CB) or —1 for the valence band (VB).

For rotationally misaligned graphene electrodes, we consider tunneling between bands
in the respective electrodes with extrema that differ by a vector Q, i.e. ko gr =kg | +Q
with a Q vector such that ‘kO,L‘z‘kO,R‘z‘kO,L +Q‘=47r/3a (the magnitude of the
wavevector at the K and K' points) where a =0.2464 nm is the graphene lattice constant.
The matrix element is then found to be
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with the upper sign used for tunneling between like valleys (i.e. K to K, or K' to K') and
the lower sign for unlike valleys (K to K', or K' to K), where g =0 +® with @ =

25in_1(3aQ/87z) being the misalignment angle between the electrodes, and where we
have defined 6 =6y and 6g =06y, . For the case of nonzero Q (nonzero w), the
values of the ujj constants will change, but as argued above these constants have little
effect on the resulting current (at least for moderately thick barriers) so we do not
explicitly consider that change. We note that the g, factor of Eq. (8) has only a

relatively small influence on the final results for the tunnel current, but it is nevertheless
included in our analysis for completeness.

For rotationally aligned electrodes we have Q =0, so that the integral on the right-
hand side of Eq. (7) approaches the delta-function d(kg —k ) for A— oo. Of particular
interest in our discussion below is the situation for finite-area tunnel junctions, in which



case we will want to evaluate this integral for moderate-sized values of A. It is convenient
to work in terms of the square of the integral from the right-hand side of Eq (7),

2
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with Ak =kg -k, and where for large A, A(Ak) > & =0k kg - IN Section

L.KR
I1(D) we consider other formulas and/or approximations to A(AKk) as appropriate to the
case when A is not so large. Incorporating Egs. (7) and (8) into (4), and with gy, =2 for

graphene, we arrive at the expression for the current (with states labeled by k| or kg)

2
|:87Z'e hZKe_Kd Z Z|g (9 0 )|2
nloemd | 55 0L "R (10)

«[fL (B, )~ Tr(Biy )] 5Bk, —Ex,) A(AK)
where g (6, ,0g) is defined by Eq. (8) with @ =0.

The sum over B in Eqg. (10) indicates the different regimes of relative band alignments
between the electrodes, labeled I, II, or Il in Fig. 2, that must be considered in evaluating
the current. For example, in region | we have Ey =Ep +avek, and

Ex, =Epr +7Vpkg where vg is the Fermi velocity (~¢/300), so that the argument of
the energy 3-function in Eq. (10) becomes Ey —Ey =Ep_ —Epr + vk, —vekg
=eV —2AE + avg (k| —kg). In evaluating Eq. (10) this energy d-function can be used to
eliminate the sum over the kg magnitude, with kg = k_+eV'/ivg where we have
introduced eV'=eV —2AE (for V'<0, the constraint that kg >0 must explicitly be

applied). The current from region I11 is identical to that from region I. In region Il we find
kR = e|V'|/hV|: — k|_ with 0 < k|_ < e|V'|/hV|: .

Considering Eqg. (10) in the limit of large A, we have k| =kg =k since
A(AK) = S| kg » SO that the equation becomes

[ = 87ze(h2xe"(d

h 2mD

where we have added indices L and R to the energies to make it clear which electrode
they are associated with. We note that for tunneling between like valleys and unlike

2
J Z‘go(ekﬂk)‘z[fL(EL,k)—fR(ER,k)]5(EL,k—ER,k) (11)
Bk

bands, ‘g(@k,ek)‘ = 2u122 sin(@y ), with the term involving u121 having been eliminated.

This cancellation occurs because of orthogonality between the lateral portions of the VB
and CB wavefunctions, but nevertheless nonzero tunnel current is still produced by the
Upp Cross-term.



In the following Section we evaluate Eq. (10) for large-area rotationally aligned
electrodes, and in the Section after that we consider finite-area rotationally aligned
electrodes. The case of rotational misalignment is considered in the numerical results of
Section 1.

C. Tunneling current for large-area graphene sheets

In this Section we focus our discussion to large electrode areas with no misorientation
between the electrodes (Q =0). We first consider an undoped GIG junction,'’” the band
structure for which is pictured in Fig. 3. Given the requirement of k-conservation as
enforced by Eq. (9) for large A, there is only a single ring of k-points that satisfy that,
located at an energy midway between the Dirac points as shown in Fig. 3. Thus for V >0

we need only consider VB states for the left electrode, E| y = Ep —7vpk, and CB
states for the right electrode, Egy =Epg +7vpk (or vice versa for V <0). Thus,
ELxk —Erk =EpL —Epr —2iivp k =€V —2avg k . Substituting into the 5-function of
Eqg. (11), and evaluating the sum over k as an integral in the usual way, yields the current
for tunneling between like valleys,

87ze(h21ce_’(d Jz A max

b | amp | 20 2% gkdk[fL(EL,k)_fR(ER,k)]5(e|V|—27lV|: K). (12)

where Kmax :e|V|/hv,:. For tunneling between unlike valleys the term u122 IS replaced

by u121. The integral is easily evaluated using the &-function, yielding for zero
temperature

2
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Now let us turn to a doped GIG junction. We first consider the nonresonant case when
the band structures are not aligned, i.e. eV = 2AE , as in Figs. 1(a) or 1(b). The situation
then is similar to the undoped junction, with a single ring of k-values satisfying
wavevector conservation for each particular voltage. The derivation of the tunnel current
is very similar to the undoped case. For example, for the situation pictured in Fig. 1(a) we
have for the relevant states that E|  =Ep| +7vpk and Egy = Epr —7vgk so that

EL,k - ER,k = EDL - EDR + 2hV|: k= eV -2AE + ZhVF K. ThUS, in Eq (11) we have,
O(ELx —Erk)= 0(eV—-2AE+2nvpk). Therefore the current at zero temperature is
given by
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for 0<eV <2AE , and by the negative of that for V <0 (since the sign of f —fg
changes). Similarly, for voltages of eV >2AE we have for the relevant states
EL,k = EDL —hVFk and ER,k = EDR +7lV|:k SO that EL,k — ER,k =

EL,k _ER,k = EDL—EDR—ZhVFk=eV—2AE—2hVFk and 5(EL,k_ER,k):
0(eV —2AE —2avg k) . Therefore the current is
2
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Both Egs. (14) and (15) apply to tunneling between like valleys; for unlike valleys, the
term uq, is replaced by uqq.

Now we turn to the resonant situation, with eV =2AE in the doped GIG junction. As
pictured in Fig. 1(c), there are states existing over all energies that satisfy the requirement
of k-conservation. We have E| y —Egx =Ep —Epr =€V —2AE for each pair of
states, leading to 5(E_ x —Egr k) =45(0) in Eq. (11) which is not well defined. In the

following Section we demonstrate how this current can be evaluated, first by performing
the sums for finite-area graphene sheets using Eq. (10) together with Eq. (9), and then
taking the limit of large area. We find an approximate (but fairly accurate) expression for
the current as

2 2
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This equation applies to tunneling between like valleys; for unlike valleys, the uy; and
Upo terms are interchanged.

The occurrence of L in Eqg. (16) is worth examining. As derived in the following
Section, the value of L is simply the lateral extent of a graphene sheet (i.e. area of

A= Lz). However, it is also of interest to consider the effect of structural imperfections
in the graphene. Let us say that the graphene can be decomposed into small structurally

perfect areas, each with area a=¢?, and say that there are M such areas in the entire
sheet so that A=M Q. The tunnel current from a single perfect section of the film would

be given by Eq. (16), but with A=@a and L =/¢. The current from the entire sheet would
then be given by M times that, yielding a result identical to Eq. (16) but with L =/. Thus,
we can take Eq. (16) to apply to the general case, but with L in that equation interpreted
as the lateral extent of perfect areas (i.e. grains) in the graphene. We refer to this lateral
extent as a structural coherence length in the graphene. For a small, perfect graphene
flake, L would be the total lateral extent of the flake, but in a larger defective sheet of
graphene, L is the lateral extent of structurally perfect grains in the sheet.



D. Finite-size effects

We consider the situation for finite-sized areas of graphene, extending over
—L/2<x<L/2 and —L/2<y<L/2. The factor A(Ak) introduced in Eq. (9) is easily
1 Idx J'd gi Aker
A y

evaluated to be
LAk
sinc( LAsz J sinc(TyJ
—L/2 -L/2

where sinc(x) =sin(x)/x . This expression for A(AK) is of course peaked when
k| =kpg. Substituting this form into Eq. (10), and converting the sums over k. and kg to

integrals, permits numerical evaluation of the tunneling current (both resonant and
nonresonant). It is this method that we use for all of the numerical results presented
below.

L/2 L/2 2

A(AK) =

(17)

However, with the goal of obtaining analytical formulas for the tunnel current, use of
Eqg. (17) for A(AK) is inconvenient since it does not permit explicit evaluation of the

integrals. To achieve this goal, we replace A(Ak) by another function that is also peaked
when k| =kg,

2 2 2
~ A|Ak AAK
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T T
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The factor of 1/ in the exponents here is chosen such that the area under /~\(Ak) when
integrated over Ak, or Ak, is identical to that under A(Ak). Using K(Ak) rather than
A(AK) now allows us to explicitly evaluate the sums (integrals) over k| and kg in Eq.

(10). Expressing |Ak|2 =k{ +k3 — 2k kg cos@ where @ =6 — 6 is the angle between
k| and kg, the angular part of the integrals is given by
2r 27 5 ~
[doL [dor|a(6L.6r)" A(AK) =
0 0

2z (19)
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For tunneling between like valleys, the double integral over 6, and &g on the right-hand

side equals 872[(ufy +uih) 1o(Ak Kr/27) £ Uiy 1,(Ak kg /27)] where 1, is a
modified Bessel function of the first kind of order n and the upper (lower) sign holds for
tunneling between like (unlike) bands. For tunneling between unlike valleys the result is
the same but with uy; and uq» interchanged. Substituting into Eq. (10) we have
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Let us initially consider the resonant case, so that the region Il of the band alignment
has zero size. The current from regions | and I11 are equal so that we need only evaluate
only one of them, and we use the CBs. The band structures are aligned, so that
6(Ex, —Exg)=06(vek, —Avekg)=6(k. —kg)/Ave and the current reduces to

(including a factor of 2 to account for both regions I and I11)
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For zero temperature the integrals involving the Bessel functions can be explicitly

(20)

(21)

evaluated. Introducing the integration variable x = Ak? /27 , we note that

X _ 2 13 3
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With  Xmax = Ak2ay /27 = A(AE /v )2 /27 and  where ,F, is a generalized

hypergeometric function. By numerical inspection, we find that the quantities on the
right-hand side of the equals sign for both Egs. (22) and (23) approach, for large Xmax

(0.399...) Xmax » Which we express simply as 0.4 Xjax - We thus obtain a formula for the
peak resonant current ( V = 2AE /e) at zero temperature of

2
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This expression applies to tunneling between like valleys; for unlike valleys, u;1 and uq»

are interchanged. In the following Section we compare this result to the numerical
evaluation of the current from Eqgs. (10) and (17), and we find that they agree fairly well.

Finally, for the current away from the resonant peak, we return to Eq. (20) and
evaluate it in the various energy regions of band alignment shown in Fig. 2. In region |
we have kg =k +eV'/Avg with eV'=eV —2AE <0. In the integrand of Eq. (20) there

10



is the term exp[-A(k? +k3)/4x], which, with kg =k_ +eV'/ive , will be sharply

peaked at kE = kF% :(eV'/2hv,:)2. For these k| and kgr values the argument of the I
Bessel function will be >1 for V'> (3 V nm)/L, which corresponds to 0.03 V for L=100
nm or 0.003 V for L=1000 nm. For these cases we can replace the Bessel function by its
asymptotic limit, exp(Ak kg /27) 1 Ak kg . Combining  with  the

exp[—A(kE+kF%)/47z] term, and expressing the exponent as kE+kF23—2k|_kR:

(k. — kR)2 =(eV'/hvg )2 , we are left with a term exp[-A(eV'/Aavg )2 /4] which gives
the dependence of the current on V'. The same term arises when we consider the energy
region I11, and similar arguments can be made for the 1, Bessel function (albeit for larger
V'). In both these regions the tunneling occurs between like bands, so the term

2uf1+u142 in Eq. (24) is appropriate. Therefore, to provide an approximate analytic
expression for the entire (broadened) resonant peak of the current, we simply take the

peak value from Eq. (24) and multiply that by exp[—A(eV’/th)2/47z]. The final
expression is then listed above in Eqg. (16). As shown in the following Section, this
approximate expression for the current actually provides quite good results even for V'
values that are nearer to zero than by the bounds just stated. For the off-resonance
contribution from region Il we maintain our usage of Egs. (14) and (15), with the term

u142 = (ufl +uf2) —ufl being appropriate for the unlike bands. It should however be noted

that, close to 0 V, Eq. (14) does not properly describe the linear current-voltage
relationship that occurs for finite electrode area, as illustrated in the following Section.

E. Charging of the Graphene Electrodes

In the derivations of the previous Sections we treated AE (the separation of the Fermi
level and Dirac point) as if it were a fixed quantity. However, for any physical GIG
junction AE will actually vary with the voltage V between the electrodes due to
charging of the graphene electrodes. To illustrate this effect, we consider initially the
situation for nominally undoped electrodes as pictured in Fig. 4. If the electrodes were
metallic, then a surface charge would form on each electrode in response to the electric
field across the junction. For the case of graphene electrodes, this "surface charge™
becomes a 2D charge within each electrode. The GIG junction has associated with it a
geometric capacitance per unit area, C =creg/d, where g is the relative dielectric

constant and d is the thickness of the insulating layer.** For a voltage across the insulator
of Vj, the charge density in the electrodes is given by

o=CVj=e(n_—pL)=e(pr —NR) (25)
where n and p are the 2D carrier densities in the respective electrodes. Here, V; is the

same as V' defined above; we use this new symbol to signify that it is the voltage across
the insulator with the graphene electrode quantum capacitance considered.'* The applied
voltage V between the electrodes is given by eV = i — ug.'® Thus, referring to Fig. 4,

we have

11



eV =eVj +(uL —EpL) +(Epr — 4R) (26)
where for the undoped electrodes (x —Ep ) =(Epr — #r) = AE . A general expression
for the carrier densities is

np- 2 )] (E-Ep)cE _EID (E-Ep) dE
x(ive)? |2 1+expl(E—-u)/kgT] ° L1+exp[(u—E)/kgT]
Fo . @27)
2 7 E dE E dE
z(hve)? £1+exp[(EAE)/kBT]J;O1+exp[(AEE)/kBT]}

which depends only on AE = 4 —Ep. Thus, substituting the expression for V; from Eq.

(25) into Eq. (26), we are left with a single equation for AE that can easily be solved
numerically.

Moving to the case of doped electrodes, Eq. (25) becomes generalized to read
o=CVj=e[(n.—pL)-Npl=e[(pr —Nr)—Nal (28)
where 2D substitutional doping concentrations of N (n-type) in the left-hand electrode
and Np (p-type) in the right-hand electrode are assumed. We consider equal
concentrations in both electrodes, Np =N =N, so that (n_. — p_)=(pr —ngr) and
(#. —EpL) =(Epr —u«r) =AE . Equation (26) still applies, and substituting Eq. (28)

into that we arrive at the single equation
2
eV:%[(nL—pL)—N]+2AE (29)

where (n_ — pL) is given by Eqg. (27). Given V, C, and N, this equation can be solved
numerically for AE . For zero temperature this solution is easily expressed, with
(n_—-pL) :iAEzl[ﬂ(hv,:)Z] where the upper sign if used for n| > p. (AE >0) and
the lower sign for n| < p;. (AE <0). Equation (29) then forms a quadratic equation for
AE , with the solution

1|-2Cx(hvg)?

st [ o

5 2
w} J_r47r(hV|:)2(N+Tj . (30)

2 e

e

This solution is valid for all values of V , with AE >0 for V >—eN/C (upper sign),
AE =0 forV=-eN/C,and AE <0 for V <—-eN/C (lower sign).

Using the value of AE deduced from the above procedure, the tunneling current in the
GIG junction can be computed using the formulas of the previous Sections.!® As an
example of the influence of the electrode charging, we consider the variation in AE as a
function of V for two situations: one for a thin insulating layer, taking g =4 and

d =0.5nm which gives a capacitance of C=7.1 yF/cmZ, and another for a relatively

thick insulator with ten times smaller capacitance. Figure 5 shows the resulting AE

2

values, assuming a doping concentration of 0.74x10'2 cm™ corresponding to a value of

12



AE =0.1eV for C =0. As can be seen from the plot, the variation in AE for the thick

insulator is not particularly large, and as will be seen in the following Section it produces
only a modest broadening of the resonant peak in the current. For the thin insulator the
variation of AE is much greater, leading to a substantial broadening of the resonant peak
in the tunnel current.

III1. Results

In this Section to consider numerical results for the single-particle tunnel current in doped
GIG junctions, assuming initially a fixed value of AE for the electrodes (i.e. zero
capacitance of the junction). Figure 6 shows results for AE =0.1eV, as given by Eg. (10)

for the exact (numerical) solution, at temperatures of T =0K and 300 K. Also shown are
the predictions of our approximate (analytic) formulas for the current, at 0 K, as given by
the sum of Eq. (16) with Eq. (14) or (15). These formulas provide a reasonably good
description of the current, although they do not capture the asymmetry of the resonance
peak (this asymmetry arises from regions | and Ill of the band alignment, Fig. 2, the
current from which has different magnitude for V >2AE/e or V <2AE/e). There is
little temperature dependence in the width of the resonant peak, as already noted in prior
work,>* although the height of the peak increases somewhat with temperature since
greater numbers of states are accessed at the higher T (temperature dependence of the 1-V
curve is also apparent close to 0 V, with the slope of the I-V curve there being affected
both by T and L). As discussed in Section 11(B), the height of the resonant peak is
proportional to the structural coherence length L, with the width being proportional to
1/L. The nonlinearity of the I-V curve is large in Fig. 6, and for larger coherence lengths
(and/or larger AE) it becomes larger still.

The results in Fig. 6 are applicable to graphene electrodes that have perfectly aligned
crystal orientations. For the case of rotational misalignment between the electrodes, we
still evaluate the current using Eq. (10), but we now include the exp(iQ er) term in the

definition of A(AK) [i.e. as in the integral of Eq. (7)]. Results of that type of computation
are shown in Fig. 7. As the misalignment angle increases, the intensity of the resonant
peak at V = 2AE /e rapidly decreases; the peak shifts to higher voltages and a related
peak appears at lower (negative voltages). For the situation of L=100nm being
considered, it is apparent from Fig. 7 that only the graphene grains in the opposing
electrodes that are misoriented by less than about +0.15° will contribute significantly to
the resonant peak. Compared to a total angular range of —30° to +30° (beyond which a
resonance between the next-nearest valleys, i.e. K and K', must be considered), it is
apparent that only 0.5% of the area if each electrode contributes to the resonant peak (i.e.
for randomly oriented grains in the electrodes). The other, surrounding graphene grains
do nevertheless play an important role of laterally transporting the current. For the larger
grain size of L =1000 nm, only areas of the opposing electrodes that are misoriented by

less than about +0.015° contribute significantly to the resonant peak, corresponding to
0.05% of the electrode areas.
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For the I-V characteristics of misaligned electrodes (@ >0.15°) displayed in Fig. 7, it
is apparent that they also have peak currents, but ones that are smaller and at a different

voltages than for the aligned case (@ =0°). These peaks for the misaligned situation arise
due to a locus of points in k-space where both the wavevectors and the energies of states
in the two electrodes are matched, as illustrated in Fig. 8 for V'>0 where
V'=V —2AE/e. By inspection, it can be seen that the voltages at which these peaks
occur are given by V' =+avpQ/e. The peak currents for the misaligned case become

smaller, relative to the peak aligned current, as the structural coherence length L increases.
However, the range of o that contributes to the peak current for aligned electrodes also
falls with L. The net result is that the peak-to-valley ratio of the angle-averaged current
increases sublinearly with L, being 1.9 for the L=100 nm case of Fig. 7, and 3.7 for
L=1000 nm. Of course, as L increases the total electrode area required such that well-
aligned portions of the opposing electrodes will occur also increases, being ~L*/(1 nm)
with the assumption of randomly oriented grains in one or both electrodes.

Considering now the effect of the nonzero capacitance of the GIG junction, Fig. 9
displays the resonant peak at zero temperature for the values of capacitance already
defined in regard to Fig. 5. The C =0 case pictured there is the same as for Fig. 6 (exact

computation). The situation with a relatively thick barrier, having C=O.71,uF/cm2,
differs only slightly from the C=0 case. However, for the thin barrier with

C :7.1yF/cm2, the resonant peak is now substantially broadened and also shifted to
higher voltages. Nevertheless, a large nonlinearity in the 1-V characteristic remains, and
qualitatively the behavior is the same as for the cases with lower capacitance.
Approximate solutions for the tunnel current as given by Egs. (14) — (16) together with
Eq. (30) are not shown in Fig. 9, but they do follow the exact curves quite closely for all
values of C.

IV. Discussion

The nonlinear 1-V curves predicted in this work for GIG junctions occur only when the
graphene electrodes have differing chemical potentials, arising from different doping
concentrations (i.e. in the same manner as for prior work on 2D-2D tunneling).?® Doping
of graphene can be accomplished by a variety of means,?*?*?2? and chemical potentials
shifted by 0.1 eV or more from the Dirac point, both n-type and p-type, are not
uncommon. In this respect the simulations presented here appear to be applicable to
physically realizable situations.

It is apparent by comparing Figs. 6 and 7 that a much greater nonlinearity of the I-V
curve for a doped GIG junction occurs when the electrodes are perfectly rotationally
aligned (or with misalignment angle of 60°). This rotational alignment imposes a
significant constraint on the devices (one that is not present for the BiSFET devices, as
discussed in Section 1).° The manner in which a rotationally aligned GIG junction will be
achieved is not clear at present, since it seems to be incompatible with the exfoliation and
transfer type of techniques commonly used in handling graphene flakes.** A method
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more consistent with the requirement of rotational alignment would be direct epitaxy of
the graphene electrodes and the insulator. Recent works with BN (an insulator with band
gap of 6.0 eV),®> which can be grown epitaxially,? provide key steps in this direction but
much work on the epitaxy of 2D materials remains to be done.

Even in the absence of perfect rotational-alignment of the electrodes, a moderate

degree of nonlinearity of the I-V curve (peak-to-valley ratio =2) can still be achieved so
long as one or both electrodes consist of small, randomly oriented graphene domains with

domain size 2100 nm. The resonant portion of the current will flow through the small

portions of the opposing electrodes that are rotationally aligned, with the remainder of the
electrodes serving to connect these "hot spots” and also contributing their own
background (non-resonant) current. Graphene grown epitaxially on metal substrates
consists typically of micrometer-size constant-thickness domains, >"?%% with grain size
>50 nm and considerable rotational disorder of the grains,?” although further quantitative
evaluation of that is needed. Graphene grown in vacuum on the C-face of SiC{0001} has
~50 nm size domains also with considerable rotational disorder, although this disorder
only extends over about 10% of the total possible range of rotational angles (judging
from the width of the diffraction streaks that extend over ~3° of a 30° sector). ¥3!

To fully exploit the nonlinear 1-V curve found for the doped GIG tunnel junction, it is
desirable to fashion it into some sort of three-terminal device. This can be accomplished
simply by putting the GIG junction between two additional gate electrodes, in a geometry
identical to that used in the BiSFET® (or, with chemical doping of the GIG electrodes as
described above, then just a single gate electrode above or below the GIG junction would
likely suffice). With the voltage bias in the GIG junction set to the resonance, then a
voltage difference across the gate electrode(s) will swing the current off resonance and
thus achieve amplification of the signal to the gate.

Further comparing the BISFET operation with the single-particle tunneling effects
considered here, we note that the BISFET, in addition to having a critical temperature
below which it must be operated, also relies upon a critical current for its nonlinear
response.” This critical current would presumably require rather tight tolerances on the
insulating layer separating the electrodes in order to achieve good device-to-device
reproducibility in the operating voltage. The single-particle tunneling does not have that
sort of requirement; the tunnel currents will of course scale with the thickness and barrier
height of the tunneling layer, but the operating voltage is only weakly dependent on that,
being determined primarily by the relative doping of the two GIG electrodes for low
capacitance of the junction and varying slightly (Fig. 9) for high values of the capacitance.
It is important to also note that the BISFET type mechanism is relevant to thin tunneling
barriers (e.g. single atomic layer), whereas the single-particle effects computed here
apply to weak tunneling, i.e. relatively thick barriers.

V. Summary
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In summary, we have computed the single-particle tunneling characteristic for a
graphene-insulator-graphene junction with complementary doping in the graphene
electrodes. A highly nonlinear |-V characteristic is found, with a resonant peak whose
width is independent of temperature. The dependence of the tunneling current on both the
lateral graphene size of the graphene and the relative rotational orientation of the
electrodes is considered. The greatest amount of nonlinearity in the 1-V characteristic is
achieved with nearly perfect rotational orientation of electrodes, which presents a
significant challenge in fabrication of such devices. A three-terminal device can be
fashioned using additional gate electrode(s) above and/or below the GIG junction, in the
same geometry as for the recently proposed BiSFET device.’
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FIG 1. (Color online) (a) — (c) Band diagrams for a doped GIG junction, at voltages of (a)
V <2AE/e, (b) V >2AE/e, and (c) V =2AE/e. In (a) and (b), states satisfying k-
conservation (i.e. in limit of large electrode area) are shown by the rings located at an
energy midway between the Dirac points for the two electrodes. In (c), states at all
energies satisfy k-conservation. (d) Qualitative current-voltage (I-V) characteristic.
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FIG 2. (Color online) Various energy ranges I, 11, and Il in a doped GIG junction that

must be considered when computing the tunnel current.

17



FIG 3. (Color online) (a) Band diagram for an undoped GIG junction, with states
satisfying k-conservation (i.e. in limit of large electrode area) shown by the rings located
at an energy midway between the Dirac points for the two electrodes. (b) Qualitative 1-V

curve.
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N

FIG 4. (Color online) Band diagram for GIG junction with undoped electrodes, including
consideration of the capacitance of the insulator layer. Charging of the electrodes results,
so that the voltage drop across the insulator V; is different than the applied voltage V

between the electrodes.
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FIG 5. (Color online) Dependence of AE (the separation of the Fermi level and the
Dirac point) on the capacitance of the junction C and the applied voltage V between the
graphene electrodes, for a doping concentration corresponding to AE =0.1eV at zero

capacitance.
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FIG 6. (Color online) Current vs. voltage in a doped GIG junction, for an energy
difference AE between the Fermi-level and the Dirac point in each electrode of 0.1 eV
(zero capacitance of junction), and for a structural coherence length of L=100nm .

Values of uj;=1 and u;p, =1 are assumed, and the graphene lattices in the two
electrodes are rotationally aligned.
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FIG 7. (Color online) Current vs. voltage in a doped GIG junction with rotationally
misaligned electrodes. Individual curves with misalignment angles @ spaced by 0.15°
are shown, with the angular average shown by the thick curve. Results are for an exact
computation at 0 K, with other parameters being the same as in Fig. 6.

FIG 8. (Color online) Schematic energy vs. wavevector band structures, illustrating the
source of the main component of the tunnel current for rotationally misaligned electrodes.
The bands of the right-hand electrode are shifted by a wavevector Q (assumed to be in the
x-direction) compared to those of the left-hand electrode. The points indicated by solid
dots on the respective band structures have matching wavevector and energy, hence
making a relatively large contribution to the current.
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FIG 9. (Color online) Current vs. voltage in a doped GIG junction, for an exact
computation at zero temperature with rotationally aligned electrodes and using a doping
concentration that corresponds to AE =0.1eV at zero capacitance. Various values of the
capacitance are considered, with the AE values at each voltage computed as shown in
Fig. 5.
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