Nucleation and Stoichiometry Dependence of rutile-TiO$_2$(001)/GaN(0001) Thin Films Grown by Plasma-Assisted Molecular Beam Epitaxy

Costel Constantin1, Kai Sun2, R. M. Feenstra3
1Seton Hall University, 400 South Orange Ave, South Orange, NJ 07079, U.S.A.
2University of Michigan, Ann Arbor, Michigan 48109-2143
3Dept. Physics, Carnegie Mellon University, Pittsburgh, PA 15213

ABSTRACT
In this work we explore both the initial nucleation and the stoichiometry of rutile-TiO$_2$(001) grown on wurtzite GaN(0001) by radio-frequency O$_2$-plasma molecular beam epitaxy. Two studies are performed; in the first, the dependence of the growth on stoichiometry (Ti-rich and O-rich) is observed using reflection high energy electron diffraction and high resolution transmission electron microscopy. In the second study we examine the effect of different initial nucleation surfaces (i.e. Ga-terminated and excess Ga-terminated) and compare the interfaces and bulk crystallinity of the TiO$_2$(001) films grown on top of these surfaces. High-resolution transmission electron microscopy and x-ray diffraction measurements show a better interface for TiO$_2$(001)/Ga-terminated - GaN(0001) as compared to the TiO$_2$(001)/excess Ga-terminated - GaN(0001).

INTRODUCTION
Considerable interest has been shown of late in transition-metal oxides. One case is the titanium dioxide system, which can have applications as a high-k dielectric gate insulator for Si-based devices1. In this work we explore the growth of rutile-TiO$_2$(001) on wurtzite GaN(0001) by oxygen plasma-assisted molecular beam epitaxy. We study the dependence of the growth on both the stoichiometry of the TiO$_2$(001) film. From reflection high-energy electron diffraction (RHEED) we find 2-dimensional growth for the Ti-rich growth conditions and 3-dimensional for O-rich. We also examine the influence of the GaN termination on the growth, using GaN films that are terminated with a Ga-bilayer or that have additional Ga on the surface (Ga-terminated and excess Ga-terminated, respectively). For the latter case we find in x-ray diffraction (XRD) measurements the presence of additional peaks at 2$\theta = 52.95836^\circ \pm 0.00693$, which implies the existence of additional phases besides the rutile TiO$_2$(001). In addition, high-resolution transmission electron microscopy (HRTEM) performed on these samples show a higher degree of disorder for the films grown on top of excess Ga-terminated, as compared to the samples grown on top of the Ga-terminated surface.

EXPERIMENT
The growth experiments are performed in a hybrid oxide-nitride MBE system utilizing gallium effusion cell as a Ga source, and mini-Ti ball titanium sublimation pump as a titanium source. The O$_2$ and N$_2$ gases were delivered through a custom designed hybrid rf-plasma source; the O$_2$ and N$_2$ flow rates were in the range of 1.80 – 3.17, and 1.83 sccm, respectively. Throughout the entire growth, the rf-plasma power for both gases (O$_2$ and N$_2$) was maintained constant at 400 W. The substrates were commercially available wurtzite Ga-polar GaN(0001) grown by hydride vapor phase epitaxy (HVPE). After the substrates are ultrasonically cleaned with acetone and isopropanol, they are loaded into the MBE chamber and deoxidized by heating and nitridation at a temperature of 900 °C for 30 minutes, while keeping the N$_2$ flow rate to 1.83 sccm and rf-plasma power of 400 W. For both studies, the growth begins with a 45 nm thick
GaN buffer layer which is grown under a *Ga-rich* regime at a substrate temperature of $T_S = 650 \degree C$. For the first stoichiometric study, the surface prior to the deposition of TiO$_2$ is prepared as a *Ga-terminated* surface – annealing the films at a $T_S = 750 \degree C$ for 10 minutes, followed by a Ga deposition for 90 seconds (which produced a RHEED pattern with pseudo-1x1 streaks, known to corresponds to ~ 2 Ga monolayers on the surface). For the second study, we prepared two sets of samples with distinct initial nucleation surfaces: i) *Ga-terminated* (the procedure was described above), ii) *excess Ga-terminated*. The *excess Ga-terminated* surface was obtained by simultaneously closing the Ga shutter and shutting off the N$_2$ radio-frequency plasma. This process generally results in extra Ga atoms on the surface over and above the terminate 2 monolayers (since our growth of the GaN film is performed in the Ga-rich regime for which >2 monolayers of Ga are present on the surface, and this excess Ga persists even when the GaN growth is stopped). For both studies, the rutile-TiO$_2$(001) thin films were grown at $T_s \sim 600 \degree C$, and with a thickness of $\sim 40 - 50$ nm. The growth is monitored *in-situ* by RHEED using a 20 keV electron-beam, and the films are studied *ex-situ* by XRD with Cu K$_\alpha$ X-rays, HRTEM and selected area electron diffraction (SAED).

RESULTS & DISCUSSION

Figure 1(a) and (b) show RHEED patterns of the *Titanium-rich* and *Oxygen-rich* regimes of growth of the TiO$_2$(001) taken along $\langle 11\overline{2}0\rangle$ the orientation of the GaN(0001) substrate. The respective growth regime is obtained in a given growth run simply by varying the ratio of the Ti flux (current to Ti-ball) to oxygen pressure (for fixed plasma power). We find a streaky RHEED pattern in the *Titanium-rich* regime, indicative of smooth (2-dimensional) growth, whereas the pattern is spotty for the *Oxygen-rich* regime, indicative of rough (3-dimensional) growth.

For growth runs that performed in the Ti-rich regime, starting with a streaky RHEED pattern, we generally find that the pattern coverts to a spotty one after some time. The amount of time that the streaky pattern is maintained depends on the Ti flux, with longer times for a higher flux (i.e. for fixed oxygen pressure). We interpret this phenomenon as reflecting a drop in the actual Ti flux with time, since just after the Ti shutter is opened the Ti-ball will have a higher temperature compared to that achieved in steady-state some minutes later. Figure 1(c) shows a HRTEM image of one such TiO$_2$(001) film grown on top of GaN(0001), where we see the *Titanium-rich*, and *Oxygen-rich* regimes of growth separated by a *Transition* regime. For this sample, once the Ti shutter was opened the RHEED pattern appeared as in Fig. 1(a) and it stayed for ~ 10 minutes (2 nm-thickness worth of TiO$_2$(001) growth layer), after which a transition period of ~ 9 minutes followed [marked *Transition* in Fig. 1(c)]. During this transition period, another pair of streaks, as positions indicated by the white arrows in Fig. 1(b), started to appear. After another 5 – 10 minutes of TiO$_2$(001) growth the RHEED pattern transformed into a very spotty RHEED pattern as in Fig. 1(b). (We should also mention that the O$_2$ rf-plasma MBE source does not have a shutter, therefore the oxygen plasma was turned on 3-4 minutes before the sample was exposed to both O$_2$ and Ti fluxes; this simultaneous exposure was achieved by blocking the sample from the direct line-of-sight of the O$_2$ plasma using a 180° rotation of the sample manipulator.) As can be seen in Fig. 1(c), the Ti atoms outnumbered O atoms for about 12 minutes of growth, after which the O takes over and creates the *Oxygen-rich* regime of growth. To our knowledge, this is the first *Oxygen-rich* MBE regime growth for rutile-TiO$_2$(001) reported in the literature.
Data for our nucleation study of the dependence of the TiO$_2$(001) growth on the starting GaN(0001) surface structure is shown in Figs. 2 – 5. Figure 2 shows the RHEED patterns recorded during the growth of Ga-terminated and excess Ga-terminated films, recorded along the $\langle 11\overline{2}0 \rangle$ GaN(0001) crystal orientation. Figures 2(a) and (d) show the RHEED patterns of HVPE-grown GaN(0001) substrate after introduction into the MBE system followed by 30 minutes of heating at $T_S = 900 \degree C$ and a nitridation step [N$_2$ flow rate set at 1.83 sccm, and rf-plasma power set at 400 W]. Figures 2(b) and (e) show the RHEED patterns after 30 min of GaN growth (~ 50 nm thickness) and preparation of the nucleation surface on that buffer layer as described in the Experiment section. Both of the Ga-terminated and excess Ga-terminated surfaces show very similar RHEED patterns as seen in Figs. 2(b) and (e). Qualitatively, the fact that the RHEED patterns look dim and streaky is indicative of a very smooth surface (as directly revealed in scanning tunneling microscopy studies of films prepared in the same MBE system under very similar conditions3). Figures 2(c) and (f) show the RHEED patterns after ~ 50 nm TiO$_2$(001) thin films growth on the Ga-terminated and excess Ga-terminated surfaces, respectively. Both types of films exhibit Oxygen-rich growth conditions. Since the TiO$_2$(001) layers are grown under the same conditions, the RHEED patterns for both Ga-terminated and excess Ga-terminated surfaces look undistinguishable as seen in Figs. 2(c) and (f).
Figure 2. RHEED patterns during substrate preparation and TiO$_2$(001) growth on Ga-terminated (left hand side) and excess Ga-terminated (right hand side) GaN. Panels (a) and (d) shows the patterns after cleaning of the HVPE-grown substrate, (b) and (e) show the patterns after growth of the GaN and preparation of the surface, and (c) and (f) show the patterns after the final growth of the TiO$_2$(001) layer. All images were acquired along the [1120] direction of the GaN substrate.

Although the RHEED results for the two nucleation conditions are practically indistinguishable, we find greater difference between the TiO$_2$(001) films in XRD. Shown in Figure 3 are typical XRD spectra over the range $0^\circ < 2\theta < 100^\circ$ for both types of films. The pure rutile phase of TiO$_2$(001) films is indicated in both films by the presence of 200 and 400 reflections which have $2\theta = 39.34052^\circ \pm 0.00224$ and $84.62234^\circ \pm 0.00432$ (Ga-terminated), and $2\theta = 39.41434^\circ \pm 0.00381$ and $84.72686^\circ \pm 0.00716$ (excess Ga-terminated) respectively. All other Al$_2$O$_3$ [0006 & 00012] and GaN [0002 & 0004] expected reflections are also seen in the spectra. The measured FWHM of the 200 TiO$_2$(001) peaks in 2θ (Ga-terminated) is $0.26522^\circ \pm 0.00884$, and $0.21368^\circ \pm 0.01399$ (excess Ga-terminated), which are slightly better than the previously reported value of 0.31° by Hansen (et al.)[2]. Assuming an average value of $\lambda = 0.1542$ nm for the incident x-ray wavelength, we determined a lattice constant for Ga-terminated films of $a = 0.4581 \pm 0.00002$ nm, and $a = 0.45728 \pm 0.00005$ for excess Ga-terminated films. Comparing the bulk lattice constant for rutile, $a_{\text{rutile}} = 0.459365$ nm[2], we conclude that we have a slight out-of-plane compression for both Ga-terminated and excess Ga-terminated films. In addition for excess Ga-terminated films (red, upper spectrum in Fig. 3) the XRD results show all the peaks present in Ga-terminated films plus an extra peak present at $2\theta = 52.95836^\circ \pm 0.00693$ (black arrow in Figure 3). This extra peak indicates the existence of another crystalline phase present at the TiO$_2$/GaN interface.
Figure 3. XRD spectra for TiO$_2$(001) films grown on top of GaN(0001) substrates prepared with Ga-terminated (black, bottom) and excess Ga-terminated (red, top) initial nucleation surfaces. Both films Ga-terminated, and excess Ga-terminated have two sapphire peaks [0006 & 0012], two GaN peaks [0002 & 0004], and two TiO$_2$(001) peaks [002 & 004]. The excess Ga-terminated films show the presence of an extra peak [2θ = 52.95836$^\circ$ ± 0.00693] (black arrow), which implies the existence of an additional interface phase.

We have studied the GaN/TiO$_2$ interface by HRTEM, with the results shown in Figs. 4(a), and (b). The interface between TiO$_2$(001) and GaN is shown by the black arrows in images. We find that the interface between TiO$_2$ and GaN in the Ga-terminated [Fig. 4(a)] film is of somewhat higher quality than that for the excess Ga-terminated [Fig. 4(b)] film. This observation is based not only on these two HRTEM images shown here, but also on many others obtained at different regions of the same films (not shown).

Figure 4. (a) HRTEM of TiO$_2$(001)/GaN(0001) for: (a) Ga-terminated initial nucleation surface, and (b) excess Ga-terminated initial nucleation surface. The black arrows in (a) and (b) show the interface between TiO$_2$(001) and GaN(0001).

Figure 5 shows SAED patterns for GaN buffer layer [Fig. 5(a)], TiO$_2$(001) grown on top of Ga-terminated initial nucleation surface [Fig. 5(b)], and TiO$_2$(001) grown on top of excess Ga-terminated initial nucleation surface [Fig. 5(c)]. The higher intensity diffraction spots
obtained from the *excess Ga-terminated* [Fig. 5(c)] film indicates a better bulk crystallinity as compared to the *Ga-terminated* film [Fig. 5(b)].

Figure 5. SAED for: (a) GaN buffer layer, (b) TiO$_2$(001) grown on top of GaN(0001) *Ga-terminated* initial nucleation surface, and (c) TiO$_2$(001) grown on top of GaN(0001) *excess Ga-terminated* initial nucleation surface.

The results presented in Figures 3, 4, and 5 suggest that although the interface TiO$_2$(001)/ *excess Ga-terminated*-GaN(0001) does not look as good as the TiO$_2$(001)/ *Ga-terminated*-GaN(0001) one, still the bulk crystallinity is better than the TiO$_2$(001)/ *Ga-terminated*-GaN(0001) one. This, actually, agrees very well with our presumption that the extra peak observed in the XRD of *excess Ga-terminated* film is coming from the interface. We believe that the extra Ga atoms present on the interface, for *excess Ga-terminated* films, confer a better chance for the TiO$_2$ film to have a better crystal lattice relaxation as compared to the *Ga-terminated* films.

CONCLUSIONS

In conclusion, we have grown rutile-TiO$_2$(001) on GaN(0001) by plasma-assisted MBE, and we have studied the dependence of the growth on both the Titanium to Oxygen stoichiometry during the TiO$_2$(001) growth as well as on the Ga stoichiometry of the starting GaN surface. We find that the TiO$_2$(001) film grows with a much smoother morphology when grown under Ti-rich conditions. Additionally, we find that the presence of excess Ga on the GaN surface when the TiO$_2$(001) growth is initiated leads to improved crystallinity of the TiO$_2$(001), although we also observe in this case the presence of a small amount of interface phase other than rutile TiO$_2$(001).

ACKNOWLEDGMENTS

This work has been supported by the Office of Naval Research, Grant No. N00014-02-1-0933 monitored by C. Wood.

REFERENCES