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Abstract

Scanning tunneling microscopy and spectroscopy are used to study InGaP/GaAs
heterojunctions with InGaAs-like interfaces. Band offsets are probed using conductance
spectra, with tip-induced band bending accounted for using 3-dimensional electrostatic
potential simulations together with a planar computation of the tunnel current. Curve
fitting of theory to experiment is performed. Using an InGaP band gap of 1.90 eV,
appropriate to the disordered InGaP alloy, a valence band offset of 0.38+0.01eV is

deduced along with the corresponding conduction band offset of 0.10+0.01eV (type I
band alignment).


randy
Text Box
Published in J. Appl. Phys. 103, 073704 (2008). 


I. INTRODUCTION

Heterojunction band offset engineering has been extensively utilized over the past decade
both for improved device design and to enable better understanding of the fundamental
properties of interfaces.' It is important to relate the fundamental properties, e.g. band
offsets, with the detailed microscopic nature of the interface. Scanning tunneling
microscopy (STM) and spectroscopy (STS) are useful tools for this purpose.” It has been
recently shown that possible complications in STS measurements due to tip-induced band
bending can be effectively addressed using 3-dimensional electrostatic simulations along
with a detailed computation of the tunneling current, thus enabling a quantitative
interpretation of the experimental spectroscopic results.**

InyGa; <P with x = 0.5 (hereafter referred to as InGaP) is known to be lattice matched
to GaAs. Its band gap is considerably larger than that of GaAs, so it has been proposed as
an alternative to AlGaAs as a barrier material for heterostructures.” InGaP is potentially
much better than AlGaAs for heterojunction bipolar transistors, since its much smaller
conduction band (CB) offset results in a smaller electron-blocking spike that inhibits
electron injection from the emitter into the base.” Depending on growth conditions,
InGaP can exist either an ordered arrangement of cations or a disordered one, with band
gaps of these forms differing by about 0.05 eV.* The InGaP studied in the present work is
of the disordered variety,” with room-temperature band gap of about 1.90 eV.'" The CB
offset between InGaP and GaAs is known to be relatively small, [i.e. most of the band
gap difference of 1.90-1.42 =0.48 eV is taken up in the valence band (VB)], although

some disagreement exists in the literature as to its precise value.”'*!!12131415.1617.18
Varying degrees of ordering in different samples could be one reason leading to these
discrepancies of CB offset values,”” with InGaP films grown by metal-organic chemical
vapor deposition exhibiting more ordering than films grown by gas-source molecular
beam epitaxy.”**' In addition, the heterointerface may also be InGaAs-like or GaP-like,
thus providing another possible source of variation in band offset results.

In this work, cross-sectional STM and STS are used to study InGaP/GaAs
heterojunctions grown by gas-source molecular beam epitaxy (GSMBE). Strain
relaxation at the cleaved (110) face reveals the presence of InGaAs-like interfaces,
consistent with the growth conditions employed. Band offsets of 0.10£0.01eV and

0.38+£0.01eV (type I) for the CB and VB, respectively, are deduced on the basis of

detailed curve fitting of the observed spectra with a theoretical model. This model
consists of a 3-dimensional treatment of tip-induced band bending effects in the
semiconductor, together with planar computation of tunnel current (using only the
potential variation along the central axis of the problem) employing the Bardeen
formalism. These band offset values are obtained assuming a value of 1.90 eV for the
band gap of the InGaP layer, as appropriate for the disordered InGaP alloy layers that are
observed in the STM images.” The result obtained here for the CB offset is somewhat
larger than our earlier reported value of 0.04+0.06 ¢V ,’ and we discuss in this work the

inadequacy of the earlier analysis.



This paper is organized as follows. Experimental details are provided in Section II,
with the data, both imaging and spectroscopic, presented in Section III. Our analysis is
presented in Section IV where we make detailed fits of spectra acquired across a
InGaP/GaAs heterojunction, using parameters of tip radius, tip-sample separation, tip-
sample contact potential (work function difference), and the VB offset between tip and
sample. Good fits are obtained between theory and experiment. In Section V we discuss
the shortcomings of our previous analysis method.” Finally, in Section VI we summarize
our results and we briefly discuss possible extensions to this work.

I1. EXPERIMENTAL

A multilayer structure p-GaAs/i-InGaP/p-GaAs was grown on a p-type GaAs(001)
substrate using gas-source molecular-beam epitaxy. The InyGa; <P was designed to be
lattice matched with GaAs, with x ~ 0.485 (growth temperature is 430°C). GaAs layers

are doped with Be at 1x10'8 cm™3 , while the 48-nm-thick InGaP is not intentionally

doped. The growth procedure was designed to produce InGaAs-like interfaces, as
discussed previously.” STM imaging clearly reveals the InGaP layer to be disordered.’
An atomically flat (110) surface was formed by cleaving a sample in the scanning
tunneling microscope (STM) chamber, under a background pressure of less than 5x10™"
Torr. Commercial Pt-Ir probe tips are used in STM/STS experiments. Topographic
imaging is performed at a constant current of 0.1 nA and at sample voltages specified
below.

Tunneling spectra were acquired at room temperature using a voltage modulation of
50 mV and employing a lock-in amplifier to obtain the differential conductance. The
output time constant of the lock-in amplifier (10 ms) produces a slight voltage shift in our
spectra, the magnitude of which is precisely known since we always acquire data in both
the up-sweep and down-sweep directions. We perform a correction to our theoretically
computed spectra, applying identically the same filter function to them as employed in
the experiment. The technique of continuously varying tip-sample separation was used to
obtain a large dynamic range in the measurements,” applying an offset to the tip-sample

separation of the form AS(V) = a| V| where V is the voltage applied to the sample relative

to the tip. Values of a are chosen to obtain conveniently measurable current and
conductance values, with a value of about 0.1 nm/V typically being used (separate values
of a are used for positive and negative voltages). For qualitative viewing of the spectra
the measured values of conductance are then normalized by forming the ratio
(dl / dV)/ (1/V), where some broadening is applied to (//V) to produce a suitable

normalization quantity;>** we use a broadening of AV =1.5V. For quantitative
comparison of theory and experiment we use the conductance normalized to constant-s,
formed by multiplying the measured conductance by exp(ZKAs) , where a constant value

of £ =10nm™" is used. Importantly, in our computations we use identically the same As

variation and normalization-to-constant-s procedure as in the experiment.



I11. RESULTS
A. STM Imaging

Detailed STM images of our samples have been previously described,” and based on
those results together with expectations from the growth conditions we concluded that the
InGaP/GaP heterointerfaces were InGaAs-like (as opposed to GaP-like). That conclusion
is further explored here by large-scale STM imaging of the morphology of the cleavage
surface. Figure 1(A) shows an STM image of the heterostructure, with the InGaP layer
appearing as the mottled region in the middle of the image. The (001) growth direction
for the heterostructure, on this and all other STM images presented in this work, is
towards the left. Single constant-current line scans acquired at various sample voltages
are shown in Fig. 1(B), acquired from surface regions located within about 10 nm of the
image of Fig. 1(A). A notable aspect of these data is that, as one moves into the GaAs
layers from either side of the InGaP, the scans reveal a gradual downwards behavior in
the surface morphology. This type of behavior is characteristic of a strained
heterostructure,” revealing in this case a compressively-strained InGaP layer which
protrudes slightly out of the cleavage surface.**

To demonstrate the consistency between the data of Fig. 1(B) and that expected for
elastic relaxation of a strained heterostructure, we show by the dashed line in curve (d) of
Fig. 1(B) the expected profiles for an InGaP layer that has uniform, in-plane (biaxial)
compressive strain of 0.06% relative to the GaAs. This theoretical result is based on the
elastic strain relaxation theory of Davies et al.> For comparison, the solid line in curve
(d) [and also in curves (e) and (f)] shows the average of the experimental curves (a) — (c).
We see that in the GaAs layers the computed profile agrees very well with the
experiment, with the strain relaxation producing noticeable effects out to a distance of
more than 100 nm from the heterointerfaces. However, within the InGaP layer itself the
agreement between theory and experiment for curve (d) is rather poor. It is important to
note that electronic effects will be relatively small at these voltages,”® so that this
disagreement implies some other type of strain in the heterostructure.

An alternative computation can be made by assuming that all of the strain arises from
InGaAs-like interfaces, as expected from the growth conditions. The dashed line in curve
(e) of Fig. 1(B) shows this result, where we have placed a single bilayer of InGaAs, with
3.36% biaxial strain relative to GaAs, at each heterointerface. In this case the agreement
between experiment and theory within the InGaP and near the interfaces is quite good,
but far into the GaAs the slope of the morphology is too small in the theory. A better
match between experiment and theory is obtained by maintaining the InGaAs-like
interfaces and adding a small amount of strain in the InGaP layer of 0.02%. The resulting
theoretical curve is shown by the dashed line in curve (f) of Fig. 1(B).

B. Spatially-Resolved Spectroscopy
Detailed spectroscopic measurements have been performed near the heterointerfaces,

with the goal of deducing band offsets. Results for an InGaP-on-GaAs interface are
shown in Fig. 2. Eight white filled circles in the atomic-resolution image of Fig. 2(A)



shows the positions where the spectra in Fig. 2(B) were acquired. The location of the
heterointerface is indicated by a dashed line in Fig. 2(A), located as the boundary
between alloyed and nonalloyed regions as seen in STM images’ (this boundary thus
corresponds to the metallurgical interface, as discussed by Jager et al.)”’. Figure 2(A) as
well as other STM images of the junctions also generally display a bright row of atoms
right at the interface, consistent with the elastic strain relaxation of the InGaAs-like
interfaces.’

In the spectra of Fig. 2(B) the approximate locations of the VB and CB edges are
indicated using dashed lines. Examining the results, far into the InGaP layer we find a CB
edge about 1.25 V while the VB edge is near —1.0 V. The difference between these

results 1s 2.25 V, yielding an observed gap that is somewhat larger than known gap of
1.90 eV. At the GaAs layer, spectrum (a), the CB edge is again observed near 1.25 V and
the VB edge at —0.55 V. The observed band gap thus has a width of about 1.7 eV, again

somewhat larger than the known gap of 1.42 eV. We attribute these larger than expected
observed gaps to tip-induced band bending in the semiconductor. Closely examining the
spectra acquired between (a) and (h), we observe above the InGaP VB a tail of states
originating from the GaAs VB. This result is expected, arising from the tails of the GaAs
wavefunctions extending in the adjoining InGaP layer. For spectra (b) — (g) we thus see
the VB state-density gradually evolving from that of GaAs to InGaP.

Following our previous work, we qualitatively estimate a band offset in Fig. 2, by
overlaying at the bottom of the figure spectrum (a) from the GaAs layer on top of
spectrum (h) from the InGaP layer. It appears that nearly all of the band gap difference
between these materials is taken up in the valence band, with the difference in the CB
edges between these spectra being only about 0.03 V. In the following sections we
perform detailed fitting of the band onsets in order to more accurately determine this
difference, and we find that the qualitative method just described actually produces a
serious underestimate of the CB offset.

IV. ANALYSIS
A. Computation of Tunneling Spectra

To deduce values of the band offsets based on our spatially-resolved STS results, it is
necessary to account for the effects of tip-induced band bending in the semiconductor.
Our method for solving the 3-dimensional electrostatic problem has been previously
described;’ we use a finite-difference technique to obtain an exact solution for Poisson's
equation in the vacuum and the semiconductor. For the present problem of a
heterostructure an extension of the method is needed to describe the different materials,
as detailed in the Appendix. An example of the theoretical results for the electrostatic
potential is shown in Fig. 3 (we use the doping densities of the layers from Section II, and
we assume a VB band offset of 0.36 eV between InGaP and GaAs although the results
are very insensitive to this value since no charge transfer occurs between the layers).
Importantly, our method for obtaining the potential distribution has been rigorously
validated by taking the solution and using it as input to the inverse problem, as described
in Ref. [4].



From our electrostatic computations we obtain the electrostatic potential energy at all
points in the semiconductor and vacuum. We denote this quantity along the central axis
of our problem as ¢(z), and of particular interest is the potential energy at the point on

the semiconductor surface directly opposite the tip apex, ¢, = #(0). This surface band

bending 1is measured relative to the potential energy at a point far inside the
semiconductor. With ¢, =0 we would have the usual relationship between energy of a

state £ and the sample voltage V, E—Ep =el . With nonzero band bending this

equation must be modified by shifting the energies by the surface band bending, as
illustrated in Fig. 4(a), so that

E-Ep=eV—g¢gy . )

This semiclassical formula assumes that the states shift rigidly in accordance with the
band bending, i.e. as appropriate for surface states. But, for bulk states, additional
quantum effect can occur as illustrated in Figs. 4(b) and (c). In particular, wavefunction
tailing through a barrier region in the semiconductor, Fig. 4(b), can lead to substantial
errors in the use of Eq. (1) to relate experiment and theory, particularly if the acquired
spectra do not extend sufficiently far (>1 eV) from the band edge. For the present work
such effects turn out to be relatively large, and an analysis based solely on Eq. (1) turns
out to be inaccurate. In this case we must employ a complete computation of the
conductance vs. voltage characteristics, comparing those results with experiment in order
to deduce the values of parameters in the theory.

Band bending in the semiconductor depends on its intrinsic properties such as doping
concentration and electron affinity, and additionally depends on three parameters of the
tunnel junction: the tip-sample separation s, the tip radius-of-curvature R, and the work
function of the metallic tip ¢,,. To explain how the latter enters the computations we

define a quantity A¢ as
Ap=y -z ~(Ec-EF) )

where y is the electron affinity of the semiconducting sample and E. — Ep is the

difference between the CB minimum and the Fermi level deep inside the sample. The
quantity A¢ defined in this way equals the contact potential between tip and sample in
the absence of any extrinsic states on the sample surface.” Also, eV +Ag is the

difference between the electrostatic potential energies inside the tip compared to deep
inside the semiconductor. In other words, with the zero in electrostatic potential energy
taken to be deep inside the semiconductor, the electrostatic potential energy of the tip is

given by eV + A¢. For GaAs its electron affinity is 4.13 eV,” and for 1x 10'® cm™ Be-
doping E- —Ep = Eg —78 meV at 300 K with the gap being E; =1.42 eV . Therefore,
values of A¢ and ¢, in this work are related by ¢, =5.47 eV +Ag.



Defects and/or disorder on the cleaved surface may produce extrinsic states, which can
act to produce surface charge and thereby affect the band bending in the semiconductor.
As discussed in Ref. [4] such effects are small when the number of extrinsic states is less

than about 0.01 nm2eV ™!, or about 0.003 monolayers spread over an energy range of 1

eV. For the present experiments the STM images generally indicate a lower number of
residual defects than this (<0.002 monolayers as seen in large scale STM images),
although we nevertheless include the possibility of extrinsic states in our analysis.

Using the full 3-dimensional solution for the electrostatic potential, we compute the
tunnel current between tip and sample. We make one approximation for this purpose,
assuming that the current can be obtained using only the potential along the central axis
of our problem, ¢(z), and then performing a planar tunneling computation with this

potential. This approximation essentially amounts to a semiclassical treatment of the
lateral (radial) part of the wavefunctions,”® thus neglecting any quantization of the states
arising from lateral variation of the potential. Those energy splittings have typical
magnitude of 10 meV,*! but any errors in band offsets due to this approximation should
be much less than that since our work focuses on the difference in energies of states
between GaAs and InGaP.

For a planar computation we have, in a series of prior papers,™*° developed a
computation technique based on the Bardeen formalism® that permit computation of the
tunnel current for a homogeneous semiconductor. For the present problem of a
heterojunction between two different semiconductors a generalization of this method is
required, as described in the Appendix. For the lateral (parallel) component of the
wavefunction in the semiconductor we use, rather than simple plane waves, linear
combination of incoming and outgoing states from the interface together with
exponentially decaying evanescent states in the heterojunction barrier region.
Combinations of such states are constructed to satisfy the boundary conditions for the
wavefunctions at the heterointerface. In the computation of tunnel current we employ the
Tersoff and Hamann approximation™ by taking the tunnel current to be proportional to
the local state-density at the apex of the probe tip.

Our computations include light, heavy, and split-off valence bands, together with a
single conduction band. The results are not particularly sensitive to the effective masses,
except for the light-hole mass of the VB which is quite important in determining the
transmission of these states through the barrier region that occurs in the semiconductor.
In this respect we use the VB mass in the [110] direction®® in all our computations; this
mass is fairly close to the spatially-averaged value so that we find it unnecessary to
include any spatial anisotropy of the VB in the computations. For GaAs we use the
known effective masses (in units of the free electron mass) of 0.0635 for the CB (at 300
K) and 0.081, 0.643, and 0.172 for the light, heavy, and split-off VBs, and a spin-orbit
splitting of 0.341 eV.>* For the InGaP CB effective mass we use 0.084, with values of
0.137, 0.701, and 0.23 for the light, heavy, and split-off VBs, and a spin-orbit splitting of
0.094 ¢V.** We use dielectric constants of 12.9 and 11.8 for GaAs and InGaP (the latter
being an average of the InP and GaP values),” respectively, and all of our computations
are for a temperature of 300 K.



B. Spectra far from the Heterojunction

To introduce our analysis method we consider spectra acquired sufficiently far from the
heterojunction so that the influence of the neighboring layer is negligible. Figure 5 shows
a spectrum obtained from a point in the GaAs layer located 4 nm from the junction, and
Fig. 6 shows a spectrum acquired from a point in the InGaP layer located 12 nm from the
junction. In both figures, experimental spectra are shown by solid lines, and theoretical
spectra are shown by the various symbols. All spectra are plotted as conductance at
constant tip-sample separation (computed as described at the end of Section II) on a
logarithmic scale. The apparent VB onset of the measured spectra in all our experiments
is situated far below 0 V, necessitating negative contact potentials with rather large
magnitude. (Making the contact potential more negative produces a shift in the computed
spectra to more negative voltages, with this shift being some fraction [about 0.3, for the
present situation] of the change in contact potential). The tip radius is also quite
important in determining the tip-induced band bending, with larger values producing
more band bending.

As shown in Fig. 5(b), for GaAs, a contact potential of —1.4 eV together with a tip

radius of 30 nm produce a good fit of the computed spectra to the experiment. Tip radii of
10 or 50 nm, with appropriate changes to the contact potential, also produce reasonable
fits. The ¢ vs. voltage characteristics are similar for all the data sets that produce good

fits to the data, as pictured in Fig. 5(a). These results for GaAs are quite insensitive to the
VB offset between GaAs and InGaP [although for points closer to the heterointerface this
dependence increases, through Egs. (A10) and (A11)]. For the case of InGaP, Fig. 6, the
dependence on VB offset is much greater, with the computed spectra shifting to the left
as the offset is increased. Again, we find reasonable fits between experiment and theory
for tip radii of 30 — 50 nm, and with appropriate choice of the other parameters. For
smaller tip radii near 10 nm, localized states at the CB edge start to appear and contribute
to the conductance there, as seen in Fig. 6(b) and discussed in detail in Ref. [6].

The most important parameter in our theory is the contact potential, with values near
—1.4eV found in Figs. 5 and 6 to produce best fits to the data. Our probe tips are
composed of Pt-Ir, for which a clean surface is expected to have a work function close to
that of bare Pt or Ir of about 5.8 ¢V.***” But, importantly, a Pt surface which has been
oxidized and subsequently heated (as done during our tip preparation) is known to have a
significantly lower work function of about 4.6 ¢V.*® From the discussion following Eq.
(2) this value of tip work function implies a contact potential of about —0.9 eV . This

value is somewhat lower in magnitude than the —1.4 eV found from the fits, although we

do not consider this discrepancy to be serious since the actual structure of the tip apex is
unknown.

In typical STM experiments the tip radii are usually larger than 10 nm,* consistent
with the values found in Figs. 5 and 6. The opening angle of the tip shank can also be
specified in the theory, but we keep this fixed at 90° for all our computations. The results



in Figs. 5 and 6 are for tip-sample separations of 0.9 and 0.8 nm, respectively.’* Smaller
values of tip-sample separation produce larger amounts of band bending, although this
dependence is relatively weak for the physically reasonable range of separations, about
0.9+0.2 nm on the basis of prior studies.”

An additional parameter in the theory concerns the magnitude of the computed
current; in our theory we compute a current density, and multiplying by a tip area
produces a current that can be compared with experiment. As discussed in Ref. [6],
computations of the type shown in Figs. 5 and 6 for tip-sample separations in the range
0.7 — 0.9 nm lead to deduced tip areas in the range 0.01 — 1 nm? these values are
physically reasonable, corresponding to current through a single atom or an area of a few
atomic-distances on a side.

C. Spectra across the Heterojunction

We now turn to the spectra of Fig. 2, acquired across the InGaP/GaAs heterojunction.
This data is shown by the lines in Fig. 7, plotted as conductance at constant tip-sample
separation. We generate sets of theoretical spectra and fit those to the experiment. We use
a model containing four nonlinear parameters: the tip-sample separation s, the tip radius
R, the contact potential between tip and sample A¢, and the VB offset AEj, between

GaAs and InGaP. In addition, a single amplitude parameter for the entire set of spectra is
employed, with the relative amplitudes between spectra determined by the requirement of
a constant value (0.1 nA) for the computed current at a sample voltage of —2 V. This

constraint is used to determine the relative tip-sample separations for the various
computed spectra, with our reported value of s being the separation for spectrum (a) of
the series.

Our best fit between experiment and theory is shown in Fig. 7. We find that the theory
does indeed provide a good description of the experimental spectra, with the best-fit
value for the VB offset being 382+7 meV. We note that the wavefunction tails

extending from the GaAs into the InGaP are reasonably well described by the theory
(even though the dispersion of these states in the vacuum is neglected, as discussed in the
Appendix); the inset of Fig. 7 shows the negative voltage side of spectrum (d), with and
without these evanescent states included.

Fitting between experiment and theory is accomplished using a simplex algorithm to
search for the minimum in the sum of squared residuals (SSR). The fits are performed
using the natural logarithm of the conductance, at the set of 111 voltage values shown in
Fig. 7. Values of the SSR are fit to a quadratic form in order to determine the second
derivatives, from which error values on the parameters are deduced using the standard
methods of least-squares fitting. Specifically, the errors reflect the amount by which a
parameter must change, with all other parameters varied optimally, to produce a
fractional change in the minimum SSR value of 1/(N — p) where N =111 is the number

of data points and p =5 is the number of parameters.*’ By this criterion a 1% change in



the SSR is statistically significant in the present case (at a level of one standard
deviation), assuming that our theory truly describes the data.

The relative amplitudes of the theoretical spectra in Fig. 7 are determined by the
requirement of constant current at the starting point of each spectrum. To further explore
the fit between experiment and theory we compare the computed constant-current
contour with the experimental one. The observed tip height contour is shown by curve (a)
in Fig. 8, taken from a cut of the same data set of Fig. 2(A).*' The theoretical contour,
computed with the parameters of Fig. 7, is shown by Fig. 8(b). A correction to the theory
has been included here due to elastic strain effects, as shown by Fig. 8(c) taken from
theoretical curve (f) of Fig. 1(B). We find reasonably good agreement between Figs. 8(a)
and (b), particularly in terms of the overall tip displacement between the GaAs and InGaP
layers. The detailed shape of the transition region between the GaAs and the InGaP is
somewhat different between experiment and theory; this could involve additional effects
of the elastic deformation of the surface and/or a small amount of tip convolution, neither
of which we further investigate here.

D. Additional Parameters

We have investigated the influence on the fits of extrinsic surface states. Parameters are
introduced for describing the density and the energy distribution of the states. It is also
necessary to specify a particular energy, known as the charge neutrality level, above
which the states are charged negative when occupied by an electron and neutral when
empty (i.e. acceptor states) and below which they are neutral when occupied and positive
when empty (i.e. donor states). We first consider a model in which the spectrum of
extrinsic states is distributed uniformly across the band gap, with charge neutrality level
at the midgap energy of GaAs (i.e. as used in Refs. [4] and [5]). For densities below

0.01nm eV ™! the fits are slightly worse than in the absence of extrinsic states, and for

higher densities the fits become much worse. We have also varied the charge neutrality
level throughout the gap, and found no improvement in the resulting fits. We have
furthermore considered other models for the energy spectrum of the states, in particular
considering a localized distribution of states and moving that distribution through the
band gap. Donor-like states were found to give better fits than acceptor-like ones, but
again all fits were worse than those in the absence of extrinsic states.

Another possible source of parameter variation in the model concerns the contact
potential between the tip and the sample. Thus far we have assumed identical contact
potentials for the tip-GaAs and the tip-InGaP junctions. In other words, we have assumed
that the vacuum levels of the GaAs and InGaP surfaces are coincident. Their vacuum
levels could be slightly different, however, due to either a microscopic interface dipole at
the InGaP/GaAs heterojunction*” or a difference between the surface dipoles of the two
materials.* For these (110) surfaces the surface dipoles involve the buckling relaxation
of the surface;** presumably a difference between surface dipoles of III-V (110) surfaces
could be computed from first-principles theory, although we are not aware of any such
results in the literature. Nevertheless, considering the buckling using effective charges of
the surface Ga and As atoms,* we estimate that a difference of around 0.1 eV or less

10



between the surface dipoles is entirely possible. Concerning an interface dipole, first-
principles theory indicates that any such dipole at the InGaP/GaAs heterojunction is quite
small,'" but in any case distinguishing between an interface dipole or a difference
between surface dipoles is not possible in our experiment.

We have investigated fits that include an additional parameter, o¢, defined as the tip-
InGaP contact potential minus the tip-GaAs contact potential [i.e. equal to the vacuum
level energy of the InGaP(110) surface relative to that of the GaAs(110) surface]. We
find that the best-fit VB offset values are rather sensitive to the value of 0¢. Essentially,
nonzero o¢ values produce a lateral field across the heterojunction, which then shifts the
value of the VB offset. For d¢ values near 0.1 eV we find a small improvement in the fit
(SSR value of 14.1) for a VB offset value of 362 meV. However, for such fits we also
find that the constant-current contours (of the type shown in Fig. 8) change significantly.
We define by Az the height of the contour over the GaAs compared to the InGaP,
considering a point located 2 nm into the GaAs layer compared to one located 6 nm into
the InGaP layer, and we find that Az depends sensitively on d¢. The experimental Az
value from Fig. 8(a) is 0.095+0.003 nm, which agrees well with the theoretical value
(assuming d¢ = 0) of 0.094 nm from Fig. 8(b). For 6¢ =0.1eV (and a VB offset of 362
meV) the theoretical Az value increases to 0.118 nm, which is far outside the
experimental range. Thus, we can further constrain the fits by matching the Az values
between experiment and theory. Using this method, we find that the lateral field across
the heterointerface is very close to zero, and the best-fit value for the VB offset is
essentially unchanged from the 382 +7 meV of Fig. 7. This then is our final result for the

VB offset, which we express in round numbers as 0.38+0.01¢V .

V. DISCUSSION

The results of the prior section are for an InGaP-on-GaAs interface. We have also applied
our analysis method to the data set of our prior work, Ref. [9], acquired on a GaAs-on-
InGaP interface. Those spectra have band edges are shifted to lower (more negative)
voltages by about 0.1 V compared to the InGaP-on-GaAs spectra of Fig. 7. Also, several
of the spectra in Ref. [9] [spectra (c¢) and (d) of Fig. 3] display some exceptionally large
additional conductance near the CB edge (in the range 1.0 — 1.2 V ) compared to the
other spectra, indicative of extrinsic states producing local band bending. Indeed, we find
that it is impossible to fit those prior spectra without assuming a relatively high density of

extrinsic states in the vicinity of spectra (c) and (d). For example, assuming 0.2 nm™ of

donor-like states spread over a circular area of 4nm?” (corresponding to about 1

fundamental unit of charge) produces a relatively good fit, with a VB offset of about 370
meV. However, assumptions concerning the magnitude and placement of this charge
produce significant uncertainty in this band offset, of at least £30 meV. We find, in
general, that precise evaluation of the band offset can only be obtained from data sets that
display no evidence of spatially inhomogeneous extrinsic states.

11



Finally, we return to re-examine the analysis method used in our previous work, and
also shown in Fig. 2 of the present work, in which we overlaid the normalized
conductance spectra acquired in the GaAs and InGaP regions and deduced a very small
CB offset (about 0.03 eV in Fig. 2, and 0.00 eV in our previous work’). These values are
clearly incorrect, indicating a failure of this type of analysis method. The normalized
conductance used here is meant to provide a spectral measurement that is roughly
independent of tip-sample separation, but importantly, that independence only occurs if
the spectra are measured over a sufficient range (~ 1.0V ) beyond a band onset. This

limitation in the analysis method was not fully appreciated in our previous work, but it
can be deduced by an extension of our subsequent analysis in Ref. [5]. Our spectra
acquired on the InGaP/GaAs heterojunctions have a rather limited voltage range; the
band bending is quite large at negative voltages [as seen in Fig. 5(a) or Fig. 6(a)], with
tunneling through the depletion region in the semiconductor [as in Fig. 4(b)] producing a
large effect on the current over the entire voltage range. For this reason, the normalized
conductance cannot be used as a reliable means of determining band onsets.

V1. CONCLUSION

In conclusion, scanning tunneling spectroscopy has been used to study the electronic
properties of InGaAs-like InGaP/GaAs interfaces. The observed spectra are fit to
computational results, assuming an InGaP band gap of 1.90 eV as appropriate for the
disordered alloys observed here. We deduce a VB offset of 0.38+0.01 eV, which, with

our assumed value of 1.90 eV for the InGaP band gap and using 1.42 eV for the GaAs
gap, yields a value for the CB offset of 0.10+0.01 eV . These values were obtained from

an InGaP-on-GaAs interface. Results for a GaAs-on-InGaP interface are consistent with
these values, although much greater uncertainty occurs in that case due to the presence of
extrinsic (charged) surface states. Comparing our result to prior measurements of the
band offsets,'”"” we note that some spread exists in those values but our result is near the
middle of that range. It is also notable that our values are in fairly good agreement with
the theoretical results of Froyen e al.'” of 0.37 and 0.12 eV for the VB and CB,
respectively.

Regarding possible extensions to the present work, two approximations that could be
improved upon is the neglect of the dispersion across the vacuum gap of the states near
the interface, and the neglect of any image potential effects.*® Beyond that, we note that
our use of the effective mass approximation could be replaced by a more sophisticated
multi-band complex-k band structure,’’ as commonly used in semiconductor
heterostructure problems. That change would yield an improved description of the spectra
for energies far from the band edges. The other major approximation employed in this
work is our solution for the tunnel current using a planar approximation, i.e. using only
the potential along the central axis of the system, an approximation that is equivalent to a
semiclassical treatment of the lateral (radial) part of the electronic states. An improved
description would require a fully 3D quantum treatment of the electronic states. We note
that any of these potential improvements would be quite computationally intensive; the
results of the present work required, for a single fit with 4 nonlinear parameters, about 2
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months of computation time using a 2.8-GHz processor, and to accomplish all the fits
described herein we utilized seven such processors over a period of one year.

Despite the approximations in the theory, we feel that the error range assigned to the
band offsets, +£0.01eV, is realistic. This range was deduced primarily from statistical

uncertainty in the fitting procedure. However, we find a similar error range when we have
applied the curve fitting procedure with other computational schemes that produce
slightly different shapes for the conductance vs. voltage curves, e.g. with different
boundaries conditions for the wavefunctions, as was done during the development of the
theory. Such changes in shape can significantly influence the values of parameters such
as the tip radius or tip-sample separation, since they are dependent on the detailed shape
of the spectra. But the band offset is largely determined by the difference in position of
the band edges between spectra acquired on the GaAs and InGaP surfaces, i.e. it just
produces an offset between these respective spectra, and hence is relatively independent
of the theoretical details that affect the shape of the spectra. In other words, so long as a
good fit can be obtained to the spectra using some values for tip radius, tip-sample
separation, and tip-sample contact potential — and these might be effective values,
dependent on the approximations in the theory — then extracting a band offset is
something that we believe can be reliably achieved even within the approximate theory.
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Appendix: Tunnel current near a semiconductor heterointerface

For the present problem of computing tunnel currents near an interface between two
different semiconductors, our prior theory for a homogeneous semiconductor’*”° must
be generalized. For the electrostatic potential we remove the previous assumption of
circular symmetry and include an explicit dependence on the azimuthal angle 6. We
follow in detail the notation and definitions in Ref. [3]. Laplace's equation for the
electrostatic potential energy ¢ in the vacuum, using prolate spheroidal coordinates, is

given by
2 2 2
B o Fre e e B
g 05| on onl (&*-1D(1-n*) o6
On a discrete grid of points (éjl-,nj,Hk), i=1,2,..m; j=1,2,...n; k=1,2,... p, we put

this equation into finite-difference form according to

2(&2 —1) 2(1- 77,)+ 2&7 -n7)

(Afz) (Anj)2 (51.2 _1)(1_7712')(A9k)2 ik —
-1 (- )
(ézz )(¢z+1]k +¢; -1/, )+ j (¢l ,j+Lk ¢l] lk) (A2)
(&)’ (An])
Aé:é (¢z+l]k ¢l ljk)_ (¢lj+1k ¢lj lk)
& -n7)
’ T (i), k1 + B0 jk-1)

(& -DA-n})A6)°
We use a uniform grid spacing for 77, and we match the £ values at the surface to the »
values in the semiconductor as specified below. For the € values we use a uniform
spacing with 8, =(k—0.5)A0 and A@ =2/ p for a general problem or A6 =7/ p for

a problem with mirror symmetry on the surface. Potential values are repeated periodically
in @ appropriately for either case. To put Eq. (A2) into a form suitable for iterative

solution we assign the value of ¢, on the left-hand side to be its value on the (£ + )
iteration, with all the ¢ values on the right-hand side of the equation being those on the
¢! teration.

In the semiconductor we use variable grid spacing for » and z, as defined in Appendix

B of Ref. [4], and we use the same & values as in the vacuum. Poisson's equation in
discrete form, using cylindrical coordinates, is rearranged to yield
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where p;j. is the charge density and ¢ the dielectric constant at each point in the

semiconductor. In a semi-classical approximation for a uniform material, the charge
density is given by p; = p(Ep — ¢ ) with Ep being the Fermi-level. For the present

problem of a heterostructure an additional index, 7, is required to distinguish between the
two materials, p; = p,.(Ep — @) with r taking on an appropriate value depending on

which material the spatial point is located in. The dielectric constant is similarly
determined, ¢&;;=¢,. We consider a problem of a slab of material (quantum well or

barrier) which we denote by » = 2, surrounded on either side by cladding material,
denoted by » = 1. The Fermi-level for the system is determined by charge neutrality in the
cladding material, p{(Efr) =0, with the charge densities determined by the doping and

band gap of the material precisely as specified in Ref. [3]. With specification of a valence
band offset, AEy =Ey ,—Ep |, the band extrema in the slab are then determined

relative to Ef, and the charge densities in the slab (as a function of Ep — g, ) can be
computed. At each iteration of our finite-difference solution, Eq. (A3) is solved for ¢

by using a 1-dimensional search to solve the relevant nonlinear equation, as described in
Ref. [3] (see also footnote [36] of Ref. [4]). With differing dielectric constants between
the materials, we must also include the condition that the normal component of the
electric displacement is continuous across the heterointerface. This condition leads to an
additional equation connecting the potential values on either side of the interface, which
we solve simultaneously with Eq. (A3).

For reasons of computational efficiency we find it necessary to make one additional
modification to the coordinate system in the vacuum, in which we generalize the prolate
spheroidal coordinates into a new coordinate system that exactly matches the hyperbolic
shape of the probe tip. The tip shape is specified by its radius of curvature R, the slope of
the tip shank b, and the tip-sample separation s. The reason that new coordinates are
needed is that, within the prolate spheroidal system, only two of these tip parameters can
be exactly matched to the coordinate system, so that for an arbitrary tip shape it is
necessary for the tip itself to fill some of the grid points in the vacuum.’ As the tip-
sample separation changes then the grid points occupied by the tip will change, leading to
small discontinuities in the computed potentials. The size of these discontinuities
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decreases as the density of grid points increases, but for the large number of finite-
difference computations needed in our curve fitting the use of such dense grids is
prohibitive. With our new coordinate system these discontinuities in the potential are

eliminated. The new coordinates E and 77 in the vacuum are related to the cylindrical
coordinates » and z by

2 ~\2
_ pEzmaen)” _ 2 (Ada)
¢ -1 4

2 a2
o 2+(Z a;") _ g2 (A4b)
1-7 17

where c¢=zy/(any) with 7y being the 7 value defining the hyperbola that
corresponds to the boundary of the probe tip and z, being the center point of this

hyperbola. For z, =0 these equations reduce to the standard definition of prolate

spheroidal coordinates. With specified values for R, b, and s we have 1y =1/V1+ b? ,

a=Rb%/ nr,and zy =s—any. From Eqs. (A4a) and (A4b), Laplace's equation in the
new coordinates can be deduced in a straightforward, though lengthy, manner. This
equation is then cast into finite-difference form in a manner analogous to Eq. (A2).

With the electrostatic potential determined in the above manner, tunnel currents are
computed in the effective mass approximation by adding this potential onto the vacuum
level or onto the relevant band edge energy in the tip or semiconductor. We extend our
previous theory for a homogeneous semiconductor’ to handle a heterojunction. We
maintain the z-coordinate to be perpendicular to the surface and we take x-coordinate to
be perpendicular to the junction. For definiteness we consider a type-I junction, with VB
and CB edges of the smaller-gap quantum well located within the band gap of the larger-
gap barrier layer, although the formalism below can be easily modified for other
situations. For computation of the tunnel current we maintain our planar approximation,
so we do not consider any lateral variation in the potential in computing the current. In
this case, we need only consider the wavefunction tails, or evanescent states, extending
into the barrier from the quantum well. We make a further approximation for this
situation, assuming that the effective masses in the barrier and well are identical, so that
any given state in the barrier (well) is analytically connected to a single state in the well
(barrier) without having to consider linear combinations of such states.

To handle a situation of spatially resolved STS across a heterojunction we must
modify our prior expressions for the tunnel current, Egs. (9) and (11) of Ref. [6], so that
they explicitly contains some dependence on the lateral, (x,y), position of the probe tip. It
is also convenient, though not essential, to also remove as much as possible from these
equations their dependence on the tip electronic states. Following in detail the notation
and definitions of Ref. [6] we consider a probe tip with a very low-lying minimum energy
of its metallic band, E(y — —o0, so that k| g — kr the Fermi-wavevector of the metallic

band. The matrix element for the tunnel current is evaluated at a position z; at the
surface of the probe tip; both the tip and sample wavefunctions decay exponentially into
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the vacuum with decay constant x = {2m[U(s)—E | ]/ hz}l/ 2 using the potential energy

in the vacuum from Eq. (4) of Ref. [6], so that their derivatives can be evaluated as
simply + x times the wavefunction value. All dependence on the tip wavefunctions other
than a factor of kp is thereby eliminated from the formulas, and we find that the tunnel

current for a homogeneous semiconductor can be written in the form
4k’
N

J_—jdE[f FE-eV) jk dk, E v, )| (a5)

F

where L) is perpendicular part of the sample wavefunction evaluated at the tip

surface, and where the perpendicular density of states is given for extended (writing the
result for a CB) or localized states by

*
" 3 L O(E, —E¢) extended
h kJ_
Ni(Ey)= (A0)
Z o (E 1—E, ) localized
y7,

with L being a normalization length in the perpendicular direction and where the
formulas for k£, and E, are given following Eq. (7) of Ref. [6] (the appropriate
formulas for a VB are also given there). For the situations of interest described in the
present work we have numerically tested the above approximation of Ey — —o©
compared to a typical value of E(, being 8 eV below the tip Fermi-level, and we find it
leads to only a few percent error in the voltage-dependence of the current.

To include in our equations an explicit dependence on lateral position from the
heterointerface, we first make the trivial substitution for the integral over kH ,

T k, dk, =i?dkx Tdky. (A7)
0 -0 0

Next we rework the derivation of Eq. (AS), but using the approximation of Tersoff and
Hamann for a sharp tip.** Considering the matrix element for the tunneling process, Eq.
(6) of Ref. [6], in the derivation by Duke® for a planar geometry this surface integral
reduces to simply integrating the plane waves that form the parallel parts the tip and
sample wavefunction, hence leading to the o -function in kH . However, considering a

very sharp tip, this surface integral yields the parallel part of the sample wavefunction

evaluated at the position of the tip, times a factor of JA where 4 is a normalization
area. Thus, in this approximation, the result for the current density obtained with a sharp
tip can be obtained from Eq. (AS5) by the substitution

2
Vi ok ky (6055) (A8)

‘WkL(S)‘Z—)A
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where ¥y kyky (x,,s) is the total wavefunction of the sample evaluated at the position

of the tip apex.

We write the total wavefunction as
1 i y

Vi (6:258) = X, (X)We Ty, (9) (A9)
with ¢ =4 being a normalization length. This equation defines the x-component of the
wavefunction Xk, (x). In assuming this separable form we are neglecting the dispersion
(i.e. change in shape) of the x-component of the wavefunction across the vacuum gap,
which is expected to be relatively small for the 1-nm-wide gap. Thus, the problem has
been reduced to the well-known situation of scattering over or tunneling into a barrier.*
We consider for definiteness a CB barrier of AE. extending over x>0. For an x-

component of the energy below the barrier the states have the form

‘ ‘2 { %cosz(kxx—%j x<0 (Al0a)
Xi, (X)) =
%cosz(%j e 2% x>0 (A10b)

where B =[2m*AEc/h*)—k21"? and .a =-2cos [k, /(k2 + %)!/?]. For an x-
component of the energy above the barrier we construct standing wave solutions for a

barrier layer with thickness d in the center of a slab of thickness /. We consider solutions
for ¢ — oo and for large values of d, in which case we find that™

, {%[ 1+ rcos(2k,x)] x<0 (Alla)
Xk, (X)) =
‘ ‘ ky [1-rcos(2k..x)] x>0 (Al1b)
(k'

where 7 =(k, —k\)/(k, +k.) with k. =[kZ—Q2m*AEc/h*)]"? being the x-
component of the wavevector in the barrier layer. Results for the VB can be obtained
simply by substituting AEy, for AE.. Using Egs. (A6) — (All) in Eq. (AS) enables
computation of the tunnel current at any point relative to the heterointerface.

The above theory is valid for identical effective masses across the heterointerface,
although for the actual problem the masses for the quantum well and barrier material are
different. In our computations for extended states, for a tip location above a given
material, we use the effective masses appropriate to that material. The change in
computed tunnel spectra as we move across the heterointerface is relatively small, i.e.
smaller than the deviation between experimental and theoretical spectra for either tip
position, so that this procedure seems reasonable. For the case of evanescent states in the
barrier we have the choice between using the effective masses of the well material (which
determine the number of states) or the barrier (which determines the decay of the states);
numerically the difference between these two situations is not large, and we use the
former method here.
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FIG 1. (A) STM image of the heterostructure at sample voltage of +2.5 V. The image
is displayed with a gray scale of 0.11 nm. (B) (a) — (¢c) STM topography line scans,
acquired at the sample voltages indicated. (d) — (f) Solid lines show the average of the
experimental curves from (a) — (c), respectively. Dashed lines show theoretical
predictions, assuming (d) 0.06% compressive strain only in the InGaP layer, (e) strain
only at InGaAs-like interfaces with a single bilayer of 3.36% compressive strain, and ()
strain both in the InGaP layer (0.02% compressive) and at InGaAs-like interfaces [same
condition as curve (e)].
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FIG 2. (A) Atomic resolution STM image of InGaP-on-GaAs interface. The image was
acquired with sample voltage of —2.0 V and is displayed with a gray scale of 0.05 nm.
White circles represent positions where spectra are taken. The dashed line in the image
labels the interface, with the InGaP layer being on the left side of the interface and the
GaAs layer on the right. (B) Tunneling spectra across the interface. For comparison
purposes, spectrum (a) is overlaid as a dashed line on spectrum (h).
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FIG 3. Example of a potential distribution obtained from the theoretical computations,
for a tip-sample separation of 1 nm, tip radius of 10 nm, and tip position 1 nm inside the
InGaP layer. The tip potential energy is —1eV relative to a point far inside the
semiconductor (achieved in this case with a contact potential of —1eV between tip and
sample and zero applied voltage between them). Contours of constant potential energy, as
labeled, are shown in (a). The variation in the potential energy along the surface is shown
in (b).
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FIG 4. (a) Semiclassical variation (band bending) of energy levels in a semiconductor
dues to a varying electrostatic potential, showing the VB maximum atE} , the CB

minimum at £, and some representative state at energy E. The sample Fermi-level is
denoted by Ey with the tip Fermi-level at Ex +el where V' is the sample voltage. The
band bending at the surface is denoted by ¢, with /' and @, both being negative in this

diagram. Quantum effects within the semiconductor are illustrated in (b) and (c) for
wavefunction tailing through a depletion region and for localized state formation,
respectively.
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FIG 5. Comparison of theory and experiment for tunneling spectra acquired at a point in
the GaAs located 4 nm from the heterointerface. (a) Computed band bending as a
function of sample voltage, for various parameters sets. (b) Computed conductance
(symbols), compared with a measured spectrum (solid line). The same experimental
curve is shown three times, and compared with various theoretical curves for different
values of tip radius-of-curvature R and contact potential A¢, as listed. A tip-sample

spacing of 0.9 nm is used, together with a VB offset of 0.35 eV.
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FIG 6. Comparison of theory and experiment for tunneling spectra acquired at a point in
the InGaP located 12 nm from the heterointerface. (a) Computed band bending as a
function of sample voltage, for various parameters sets. (b) Computed conductance
(symbols), compared with a measured spectrum (solid line). The same experimental
curve is shown three times, and compared with various theoretical curves for different
values of tip radius-of-curvature R and contact potential A¢, as listed. A tip-sample

spacing of 0.8 nm is used, together with a VB offset of 0.35 eV except for the theory
shown by x-marks that has a VB offset of 0.38 eV.
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FIG 7. Tunneling spectra acquired across an InGaP-on-GaAs interface, showing the
same data as Fig. 2 but plotted as conductance at constant tip-sample separation.
Experiment is shown by solid lines and theory by circles. Consecutive pairs of
experimental and theoretical curves are displaced by an order-of-magnitude, for ease of
viewing. Parameter values for the theory are listed, with s being the tip-sample
separation, R the tip radius, A¢ the tip-sample contact potential, and AE) the VB

offset. A single amplitude parameter is used for the entire set of spectra. The inset shows
the negative voltage side of spectrum (d), with the x-marks showing a theoretical result in
which the current from evanescent states is neglected.
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FIG 8. (a) Measured constant-current contour across the InGaP-on-GaAs interface
pictured in Fig. 2(A). (b) Computed constant-current contour across the heterointerface,
for the parameters listed in Fig. 7. (c) Computed elastic strain of the surface, from curve
(f) of Fig. 1(B). The zero of tip height for each curve is arbitrary (some curves have been
shifted in height, for ease of viewing). The arrows at the top of the plot indicate the
locations at which the spectra of Figs. 2 and 7 were measured.
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