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Abstract 
 
Scanning tunneling microscopy and spectroscopy are used to study InGaP/GaAs 
heterojunctions with InGaAs-like interfaces. Band offsets are probed using conductance 
spectra, with tip-induced band bending accounted for using 3-dimensional electrostatic 
potential simulations together with a planar computation of the tunnel current. Curve 
fitting of theory to experiment is performed. Using an InGaP band gap of 1.90 eV, 
appropriate to the disordered InGaP alloy, a valence band offset of eV01.038.0 ±  is 
deduced along with the corresponding conduction band offset of eV01.010.0 ±  (type I 
band alignment). 
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I. INTRODUCTION 
 
Heterojunction band offset engineering has been extensively utilized over the past decade 
both for improved device design and to enable better understanding of the fundamental 
properties of interfaces.1 It is important to relate the fundamental properties, e.g. band 
offsets, with the detailed microscopic nature of the interface. Scanning tunneling 
microscopy (STM) and spectroscopy (STS) are useful tools for this purpose.2 It has been 
recently shown that possible complications in STS measurements due to tip-induced band 
bending can be effectively addressed using 3-dimensional electrostatic simulations along 
with a detailed computation of the tunneling current, thus enabling a quantitative 
interpretation of the experimental spectroscopic results.3,4,5,6  
 
     InxGa1-xP with x ≈ 0.5 (hereafter referred to as InGaP) is known to be lattice matched 
to GaAs. Its band gap is considerably larger than that of GaAs, so it has been proposed as 
an alternative to AlGaAs as a barrier material for heterostructures.7 InGaP is potentially 
much better than AlGaAs for heterojunction bipolar transistors, since its much smaller 
conduction band (CB) offset results in a smaller electron-blocking spike that inhibits 
electron injection from the emitter into the base.7 Depending on growth conditions, 
InGaP can exist either an ordered arrangement of cations or a disordered one, with band 
gaps of these forms differing by about 0.05 eV.8 The InGaP studied in the present work is 
of the disordered variety,9 with room-temperature band gap of about 1.90 eV.10 The CB 
offset between InGaP and GaAs is known to be relatively small, [i.e. most of the band 
gap difference of eV48.042.190.1 =−  is taken up in the valence band (VB)], although 
some disagreement exists in the literature as to its precise value.9,10,11,12,13,14,15,16,17,18 
Varying degrees of ordering in different samples could be one reason leading to these 
discrepancies of CB offset values,19 with InGaP films grown by metal-organic chemical 
vapor deposition exhibiting more ordering than films grown by gas-source molecular 
beam epitaxy.20,21 In addition, the heterointerface may also be InGaAs-like or GaP-like, 
thus providing another possible source of variation in band offset results.  
 
     In this work, cross-sectional STM and STS are used to study InGaP/GaAs 
heterojunctions grown by gas-source molecular beam epitaxy (GSMBE). Strain 
relaxation at the cleaved (1 1 0) face reveals the presence of InGaAs-like interfaces, 
consistent with the growth conditions employed.  Band offsets of eV01.010.0 ±  and 

eV01.038.0 ±  (type I) for the CB and VB, respectively, are deduced on the basis of 
detailed curve fitting of the observed spectra with a theoretical model. This model 
consists of a 3-dimensional treatment of tip-induced band bending effects in the 
semiconductor, together with planar computation of tunnel current (using only the 
potential variation along the central axis of the problem) employing the Bardeen 
formalism. These band offset values are obtained assuming a value of 1.90 eV for the 
band gap of the InGaP layer, as appropriate for the disordered InGaP alloy layers that are 
observed in the STM images.9 The result obtained here for the CB offset is somewhat 
larger than our earlier reported value of eV06.004.0 ± ,9 and we discuss in this work the 
inadequacy of the earlier analysis.  
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     This paper is organized as follows. Experimental details are provided in Section II, 
with the data, both imaging and spectroscopic, presented in Section III. Our analysis is 
presented in Section IV where we make detailed fits of spectra acquired across a 
InGaP/GaAs heterojunction, using parameters of tip radius, tip-sample separation, tip-
sample contact potential (work function difference), and the VB offset between tip and 
sample. Good fits are obtained between theory and experiment. In Section V we discuss 
the shortcomings of our previous analysis method.9 Finally, in Section VI we summarize 
our results and we briefly discuss possible extensions to this work. 
  
II. EXPERIMENTAL 
 
A multilayer structure p-GaAs/i-InGaP/p-GaAs was grown on a p-type GaAs(001) 
substrate using gas-source molecular-beam epitaxy. The InxGa1-xP was designed to be 
lattice matched with GaAs, with x ≈ 0.485 (growth temperature is 430°C). GaAs layers 
are doped with Be at 318 cm101 −× , while the 48-nm-thick InGaP is not intentionally 
doped. The growth procedure was designed to produce InGaAs-like interfaces, as 
discussed previously.9 STM imaging clearly reveals the InGaP layer to be disordered.9 
An atomically flat (1 1 0) surface was formed by cleaving a sample in the scanning 
tunneling microscope (STM) chamber, under a background pressure of less than 5×10-11 
Torr. Commercial Pt–Ir probe tips are used in STM/STS experiments. Topographic 
imaging is performed at a constant current of 0.1 nA and at sample voltages specified 
below.  
 
     Tunneling spectra were acquired at room temperature using a voltage modulation of 
50 mV and employing a lock-in amplifier to obtain the differential conductance. The 
output time constant of the lock-in amplifier (10 ms) produces a slight voltage shift in our 
spectra, the magnitude of which is precisely known since we always acquire data in both 
the up-sweep and down-sweep directions. We perform a correction to our theoretically 
computed spectra, applying identically the same filter function to them as employed in 
the experiment. The technique of continuously varying tip-sample separation was used to 
obtain a large dynamic range in the measurements,22 applying an offset to the tip-sample 
separation of the form ( ) VaVs =Δ  where V is the voltage applied to the sample relative 
to the tip. Values of a are chosen to obtain conveniently measurable current and 
conductance values, with a value of about 0.1 nm/V typically being used (separate values 
of a are used for positive and negative voltages).  For qualitative viewing of the spectra 
the measured values of conductance are then normalized by forming the ratio 
( ) ( )V/I/dV/dI , where some broadening is applied to )/( VI  to produce a suitable 
normalization quantity;5,22 we use a broadening of V5.1=ΔV . For quantitative 
comparison of theory and experiment we use the conductance normalized to constant-s, 
formed by multiplying the measured conductance by ( )sκΔ2exp , where a constant value 

of -1nm10=κ  is used. Importantly, in our computations we use identically the same sΔ  
variation and normalization-to-constant-s procedure as in the experiment. 
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III. RESULTS 
A. STM Imaging 
 
Detailed STM images of our samples have been previously described,9 and based on 
those results together with expectations from the growth conditions we concluded that the 
InGaP/GaP heterointerfaces were InGaAs-like (as opposed to GaP-like). That conclusion 
is further explored here by large-scale STM imaging of the morphology of the cleavage 
surface. Figure 1(A) shows an STM image of the heterostructure, with the InGaP layer 
appearing as the mottled region in the middle of the image. The (001) growth direction 
for the heterostructure, on this and all other STM images presented in this work, is 
towards the left. Single constant-current line scans acquired at various sample voltages 
are shown in Fig. 1(B), acquired from surface regions located within about 10 nm of the 
image of Fig. 1(A). A notable aspect of these data is that, as one moves into the GaAs 
layers from either side of the InGaP, the scans reveal a gradual downwards behavior in 
the surface morphology. This type of behavior is characteristic of a strained 
heterostructure,23 revealing in this case a compressively-strained InGaP layer which 
protrudes slightly out of the cleavage surface.24 
 
     To demonstrate the consistency between the data of Fig. 1(B) and that expected for 
elastic relaxation of a strained heterostructure, we show by the dashed line in curve (d) of 
Fig. 1(B) the expected profiles for an InGaP layer that has uniform, in-plane (biaxial) 
compressive strain of 0.06% relative to the GaAs. This theoretical result is based on the 
elastic strain relaxation theory of Davies et al.25 For comparison, the solid line in curve 
(d) [and also in curves (e) and (f)] shows the average of the experimental curves (a) – (c). 
We see that in the GaAs layers the computed profile agrees very well with the 
experiment, with the strain relaxation producing noticeable effects out to a distance of 
more than 100 nm from the heterointerfaces. However, within the InGaP layer itself the 
agreement between theory and experiment for curve (d) is rather poor. It is important to 
note that electronic effects will be relatively small at these voltages,26 so that this 
disagreement implies some other type of strain in the heterostructure.  
 
     An alternative computation can be made by assuming that all of the strain arises from 
InGaAs-like interfaces, as expected from the growth conditions. The dashed line in curve 
(e) of Fig. 1(B) shows this result, where we have placed a single bilayer of InGaAs, with 
3.36% biaxial strain relative to GaAs, at each heterointerface. In this case the agreement 
between experiment and theory within the InGaP and near the interfaces is quite good, 
but far into the GaAs the slope of the morphology is too small in the theory. A better 
match between experiment and theory is obtained by maintaining the InGaAs-like 
interfaces and adding a small amount of strain in the InGaP layer of 0.02%. The resulting 
theoretical curve is shown by the dashed line in curve (f) of Fig. 1(B). 
 
B. Spatially-Resolved Spectroscopy 
 
Detailed spectroscopic measurements have been performed near the heterointerfaces, 
with the goal of deducing band offsets. Results for an InGaP-on-GaAs interface are 
shown in Fig. 2. Eight white filled circles in the atomic-resolution image of Fig. 2(A) 
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shows the positions where the spectra in Fig. 2(B) were acquired. The location of the 
heterointerface is indicated by a dashed line in Fig. 2(A), located as the boundary 
between alloyed and nonalloyed regions as seen in STM images9 (this boundary thus 
corresponds to the metallurgical interface, as discussed by Jäger et al.)27. Figure 2(A) as 
well as other STM images of the junctions also generally display a bright row of atoms 
right at the interface, consistent with the elastic strain relaxation of the InGaAs-like 
interfaces.9 
  
     In the spectra of Fig. 2(B) the approximate locations of the VB and CB edges are 
indicated using dashed lines. Examining the results, far into the InGaP layer we find a CB 
edge about 1.25 V while the VB edge is near V0.1− . The difference between these 
results is 2.25 V, yielding an observed gap that is somewhat larger than known gap of 
1.90 eV. At the GaAs layer, spectrum (a), the CB edge is again observed near 1.25 V and 
the VB edge at V55.0− . The observed band gap thus has a width of about 1.7 eV, again 
somewhat larger than the known gap of 1.42 eV. We attribute these larger than expected 
observed gaps to tip-induced band bending in the semiconductor. Closely examining the 
spectra acquired between (a) and (h), we observe above the InGaP VB a tail of states 
originating from the GaAs VB. This result is expected, arising from the tails of the GaAs 
wavefunctions extending in the adjoining InGaP layer. For spectra (b) − (g) we thus see 
the VB state-density gradually evolving from that of GaAs to InGaP.  
 
     Following our previous work, we qualitatively estimate a band offset in Fig. 2, by 
overlaying at the bottom of the figure spectrum (a) from the GaAs layer on top of 
spectrum (h) from the InGaP layer. It appears that nearly all of the band gap difference 
between these materials is taken up in the valence band, with the difference in the CB 
edges between these spectra being only about 0.03 V. In the following sections we 
perform detailed fitting of the band onsets in order to more accurately determine this 
difference, and we find that the qualitative method just described actually produces a 
serious underestimate of the CB offset. 
 
IV. ANALYSIS 
A. Computation of Tunneling Spectra 
 
To deduce values of the band offsets based on our spatially-resolved STS results, it is 
necessary to account for the effects of tip-induced band bending in the semiconductor. 
Our method for solving the 3-dimensional electrostatic problem has been previously 
described;3 we use a finite-difference technique to obtain an exact solution for Poisson's 
equation in the vacuum and the semiconductor. For the present problem of a 
heterostructure an extension of the method is needed to describe the different materials, 
as detailed in the Appendix. An example of the theoretical results for the electrostatic 
potential is shown in Fig. 3 (we use the doping densities of the layers from Section II, and 
we assume a VB band offset of 0.36 eV between InGaP and GaAs although the results 
are very insensitive to this value since no charge transfer occurs between the layers). 
Importantly, our method for obtaining the potential distribution has been rigorously 
validated by taking the solution and using it as input to the inverse problem, as described 
in Ref. [4]. 
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     From our electrostatic computations we obtain the electrostatic potential energy at all 
points in the semiconductor and vacuum. We denote this quantity along the central axis 
of our problem as )(zφ , and of particular interest is the potential energy at the point on 
the semiconductor surface directly opposite the tip apex, )0(0 φφ ≡ . This surface band 
bending is measured relative to the potential energy at a point far inside the 
semiconductor. With 00 ≡φ  we would have the usual relationship between energy of a 

state E and the sample voltage V, eVEE F =− . With nonzero band bending this 
equation must be modified by shifting the energies by the surface band bending, as 
illustrated in Fig. 4(a), so that  
 

0φ−=− eVEE F   .      (1) 
This semiclassical formula assumes that the states shift rigidly in accordance with the 
band bending, i.e. as appropriate for surface states. But, for bulk states, additional 
quantum effect can occur as illustrated in Figs. 4(b) and (c). In particular, wavefunction 
tailing through a barrier region in the semiconductor, Fig. 4(b), can lead to substantial 
errors in the use of Eq. (1) to relate experiment and theory, particularly if the acquired 
spectra do not extend sufficiently far (>1 eV) from the band edge. For the present work 
such effects turn out to be relatively large, and an analysis based solely on Eq. (1) turns 
out to be inaccurate. In this case we must employ a complete computation of the 
conductance vs. voltage characteristics, comparing those results with experiment in order 
to deduce the values of parameters in the theory. 
 
     Band bending in the semiconductor depends on its intrinsic properties such as doping 
concentration and electron affinity, and additionally depends on three parameters of the 
tunnel junction: the tip-sample separation s , the tip radius-of-curvature R , and the work 
function of the metallic tip mφ . To explain how the latter enters the computations we 
define a quantity φΔ  as 
 

( )FCm EE −−−=Δ χφφ     (2) 
 
where χ  is the electron affinity of the semiconducting sample and FC EE −  is the 
difference between the CB minimum and the Fermi level deep inside the sample. The 
quantity φΔ  defined in this way equals the contact potential between tip and sample in 
the absence of any extrinsic states on the sample surface.28 Also, φΔ+eV  is the 
difference between the electrostatic potential energies inside the tip compared to deep 
inside the semiconductor. In other words, with the zero in electrostatic potential energy 
taken to be deep inside the semiconductor, the electrostatic potential energy of the tip is 
given by φΔ+eV . For GaAs its electron affinity is 4.13 eV,29 and for 318 cm101 −×  Be-
doping meV78−=− GFC EEE  at 300 K with the gap being eV42.1=GE . Therefore, 
values of φΔ  and mφ  in this work are related by φφ Δ+= eV47.5m . 
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     Defects and/or disorder on the cleaved surface may produce extrinsic states, which can 
act to produce surface charge and thereby affect the band bending in the semiconductor. 
As discussed in Ref. [4] such effects are small when the number of extrinsic states is less 
than about -1-2eVnm01.0 , or about 0.003 monolayers spread over an energy range of 1 
eV. For the present experiments the STM images generally indicate a lower number of 
residual defects than this (<0.002 monolayers as seen in large scale STM images), 
although we nevertheless include the possibility of extrinsic states in our analysis. 
 
     Using the full 3-dimensional solution for the electrostatic potential, we compute the 
tunnel current between tip and sample. We make one approximation for this purpose, 
assuming that the current can be obtained using only the potential along the central axis 
of our problem, )(zφ , and then performing a planar tunneling computation with this 
potential. This approximation essentially amounts to a semiclassical treatment of the 
lateral (radial) part of the wavefunctions,30 thus neglecting any quantization of the states 
arising from lateral variation of the potential. Those energy splittings have typical 
magnitude of 10 meV,4,31 but any errors in band offsets due to this approximation should 
be much less than that since our work focuses on the difference in energies of states 
between GaAs and InGaP.  
 
     For a planar computation we have, in a series of prior papers,3,4,5,6 developed a 
computation technique based on the Bardeen formalism32 that permit computation of the 
tunnel current for a homogeneous semiconductor. For the present problem of a 
heterojunction between two different semiconductors a generalization of this method is 
required, as described in the Appendix. For the lateral (parallel) component of the 
wavefunction in the semiconductor we use, rather than simple plane waves, linear 
combination of incoming and outgoing states from the interface together with 
exponentially decaying evanescent states in the heterojunction barrier region. 
Combinations of such states are constructed to satisfy the boundary conditions for the 
wavefunctions at the heterointerface. In the computation of tunnel current we employ the 
Tersoff and Hamann approximation33 by taking the tunnel current to be proportional to 
the local state-density at the apex of the probe tip.  
 
     Our computations include light, heavy, and split-off valence bands, together with a 
single conduction band. The results are not particularly sensitive to the effective masses, 
except for the light-hole mass of the VB which is quite important in determining the 
transmission of these states through the barrier region that occurs in the semiconductor. 
In this respect we use the VB mass in the [110] direction34 in all our computations; this 
mass is fairly close to the spatially-averaged value so that we find it unnecessary to 
include any spatial anisotropy of the VB in the computations. For GaAs we use the 
known effective masses (in units of the free electron mass) of 0.0635 for the CB (at 300 
K) and 0.081, 0.643, and 0.172 for the light, heavy, and split-off VBs, and a spin-orbit 
splitting of 0.341 eV.34 For the InGaP CB effective mass we use 0.084, with values of 
0.137, 0.701, and 0.23 for the light, heavy, and split-off VBs, and a spin-orbit splitting of 
0.094 eV.34 We use dielectric constants of 12.9 and 11.8 for GaAs and InGaP (the latter 
being an average of the InP and GaP values),35 respectively, and all of our computations 
are for a temperature of 300 K. 
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B. Spectra far from the Heterojunction 
 
To introduce our analysis method we consider spectra acquired sufficiently far from the 
heterojunction so that the influence of the neighboring layer is negligible. Figure 5 shows 
a spectrum obtained from a point in the GaAs layer located 4 nm from the junction, and 
Fig. 6 shows a spectrum acquired from a point in the InGaP layer located 12 nm from the 
junction. In both figures, experimental spectra are shown by solid lines, and theoretical 
spectra are shown by the various symbols. All spectra are plotted as conductance at 
constant tip-sample separation (computed as described at the end of Section II) on a 
logarithmic scale. The apparent VB onset of the measured spectra in all our experiments 
is situated far below 0 V, necessitating negative contact potentials with rather large 
magnitude. (Making the contact potential more negative produces a shift in the computed 
spectra to more negative voltages, with this shift being some fraction [about 0.3, for the 
present situation] of the change in contact potential). The tip radius is also quite 
important in determining the tip-induced band bending, with larger values producing 
more band bending.  
 
     As shown in Fig. 5(b), for GaAs, a contact potential of eV4.1−  together with a tip 
radius of 30 nm produce a good fit of the computed spectra to the experiment. Tip radii of 
10 or 50 nm, with appropriate changes to the contact potential, also produce reasonable 
fits. The 0φ  vs. voltage characteristics are similar for all the data sets that produce good 
fits to the data, as pictured in Fig. 5(a). These results for GaAs are quite insensitive to the 
VB offset between GaAs and InGaP [although for points closer to the heterointerface this 
dependence increases, through Eqs. (A10) and (A11)]. For the case of InGaP, Fig. 6, the 
dependence on VB offset is much greater, with the computed spectra shifting to the left 
as the offset is increased. Again, we find reasonable fits between experiment and theory 
for tip radii of 30 – 50 nm, and with appropriate choice of the other parameters. For 
smaller tip radii near 10 nm, localized states at the CB edge start to appear and contribute 
to the conductance there, as seen in Fig. 6(b) and discussed in detail in Ref. [6]. 
  
     The most important parameter in our theory is the contact potential, with values near 

eV4.1−  found in Figs. 5 and 6 to produce best fits to the data. Our probe tips are 
composed of Pt-Ir, for which a clean surface is expected to have a work function close to 
that of bare Pt or Ir of about 5.8 eV.36,37 But, importantly, a Pt surface which has been 
oxidized and subsequently heated (as done during our tip preparation) is known to have a 
significantly lower work function of about 4.6 eV.38 From the discussion following Eq. 
(2) this value of tip work function implies a contact potential of about eV9.0− . This 
value is somewhat lower in magnitude than the eV4.1−  found from the fits, although we 
do not consider this discrepancy to be serious since the actual structure of the tip apex is 
unknown. 
  
     In typical STM experiments the tip radii are usually larger than 10 nm,4 consistent 
with the values found in Figs. 5 and 6. The opening angle of the tip shank can also be 
specified in the theory, but we keep this fixed at 90° for all our computations. The results 
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in Figs. 5 and 6 are for tip-sample separations of 0.9 and 0.8 nm, respectively.39 Smaller 
values of tip-sample separation produce larger amounts of band bending, although this 
dependence is relatively weak for the physically reasonable range of separations, about 

nm2.09.0 ±  on the basis of prior studies.4  
 
     An additional parameter in the theory concerns the magnitude of the computed 
current; in our theory we compute a current density, and multiplying by a tip area 
produces a current that can be compared with experiment. As discussed in Ref. [6], 
computations of the type shown in Figs. 5 and 6 for tip-sample separations in the range 
0.7 – 0.9 nm lead to deduced tip areas in the range 0.01 – 1 nm2; these values are 
physically reasonable, corresponding to current through a single atom or an area of a few 
atomic-distances on a side. 
 
C. Spectra across the Heterojunction 
 
We now turn to the spectra of Fig. 2, acquired across the InGaP/GaAs heterojunction. 
This data is shown by the lines in Fig. 7, plotted as conductance at constant tip-sample 
separation. We generate sets of theoretical spectra and fit those to the experiment. We use 
a model containing four nonlinear parameters: the tip-sample separation s , the tip radius 
R , the contact potential between tip and sample φΔ , and the VB offset VEΔ  between 
GaAs and InGaP. In addition, a single amplitude parameter for the entire set of spectra is 
employed, with the relative amplitudes between spectra determined by the requirement of 
a constant value (0.1 nA) for the computed current at a sample voltage of V2− . This 
constraint is used to determine the relative tip-sample separations for the various 
computed spectra, with our reported value of s  being the separation for spectrum (a) of 
the series.  
 
     Our best fit between experiment and theory is shown in Fig. 7. We find that the theory 
does indeed provide a good description of the experimental spectra, with the best-fit 
value for the VB offset being meV7382 ± . We note that the wavefunction tails 
extending from the GaAs into the InGaP are reasonably well described by the theory 
(even though the dispersion of these states in the vacuum is neglected, as discussed in the 
Appendix); the inset of Fig. 7 shows the negative voltage side of spectrum (d), with and 
without these evanescent states included. 
 
     Fitting between experiment and theory is accomplished using a simplex algorithm to 
search for the minimum in the sum of squared residuals (SSR). The fits are performed 
using the natural logarithm of the conductance, at the set of 111 voltage values shown in 
Fig. 7. Values of the SSR are fit to a quadratic form in order to determine the second 
derivatives, from which error values on the parameters are deduced using the standard 
methods of least-squares fitting. Specifically, the errors reflect the amount by which a 
parameter must change, with all other parameters varied optimally, to produce a 
fractional change in the minimum SSR value of )/(1 pN −  where 111=N  is the number 
of data points and 5=p  is the number of parameters.40 By this criterion a 1% change in 
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the SSR is statistically significant in the present case (at a level of one standard 
deviation), assuming that our theory truly describes the data.  
 
     The relative amplitudes of the theoretical spectra in Fig. 7 are determined by the 
requirement of constant current at the starting point of each spectrum. To further explore 
the fit between experiment and theory we compare the computed constant-current 
contour with the experimental one. The observed tip height contour is shown by curve (a) 
in Fig. 8, taken from a cut of the same data set of Fig. 2(A).41 The theoretical contour, 
computed with the parameters of Fig. 7, is shown by Fig. 8(b). A correction to the theory 
has been included here due to elastic strain effects, as shown by Fig. 8(c) taken from 
theoretical curve (f) of Fig. 1(B). We find reasonably good agreement between Figs. 8(a) 
and (b), particularly in terms of the overall tip displacement between the GaAs and InGaP 
layers. The detailed shape of the transition region between the GaAs and the InGaP is 
somewhat different between experiment and theory; this could involve additional effects 
of the elastic deformation of the surface and/or a small amount of tip convolution, neither 
of which we further investigate here.  
 
D. Additional Parameters 
 
We have investigated the influence on the fits of extrinsic surface states. Parameters are 
introduced for describing the density and the energy distribution of the states. It is also 
necessary to specify a particular energy, known as the charge neutrality level, above 
which the states are charged negative when occupied by an electron and neutral when 
empty (i.e. acceptor states) and below which they are neutral when occupied and positive 
when empty (i.e. donor states). We first consider a model in which the spectrum of 
extrinsic states is distributed uniformly across the band gap, with charge neutrality level 
at the midgap energy of GaAs (i.e. as used in Refs. [4] and [5]). For densities below 

12eVnm01.0 −−  the fits are slightly worse than in the absence of extrinsic states, and for 
higher densities the fits become much worse. We have also varied the charge neutrality 
level throughout the gap, and found no improvement in the resulting fits. We have 
furthermore considered other models for the energy spectrum of the states, in particular 
considering a localized distribution of states and moving that distribution through the 
band gap. Donor-like states were found to give better fits than acceptor-like ones, but 
again all fits were worse than those in the absence of extrinsic states. 
 
     Another possible source of parameter variation in the model concerns the contact 
potential between the tip and the sample. Thus far we have assumed identical contact 
potentials for the tip-GaAs and the tip-InGaP junctions. In other words, we have assumed 
that the vacuum levels of the GaAs and InGaP surfaces are coincident. Their vacuum 
levels could be slightly different, however, due to either a microscopic interface dipole at 
the InGaP/GaAs heterojunction42 or a difference between the surface dipoles of the two 
materials.43 For these (110) surfaces the surface dipoles involve the buckling relaxation 
of the surface;44 presumably a difference between surface dipoles of III-V (110) surfaces 
could be computed from first-principles theory, although we are not aware of any such 
results in the literature. Nevertheless, considering the buckling using effective charges of 
the surface Ga and As atoms,45 we estimate that a difference of around 0.1 eV or less 
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between the surface dipoles is entirely possible. Concerning an interface dipole, first-
principles theory indicates that any such dipole at the InGaP/GaAs heterojunction is quite 
small,18,19 but in any case distinguishing between an interface dipole or a difference 
between surface dipoles is not possible in our experiment.  
 
     We have investigated fits that include an additional parameter, δφ , defined as the tip-
InGaP contact potential minus the tip-GaAs contact potential [i.e. equal to the vacuum 
level energy of the InGaP(110) surface relative to that of the GaAs(110) surface]. We 
find that the best-fit VB offset values are rather sensitive to the value of δφ . Essentially, 
nonzero δφ  values produce a lateral field across the heterojunction, which then shifts the 
value of the VB offset. For δφ  values near 0.1 eV we find a small improvement in the fit 
(SSR value of 14.1) for a VB offset value of 362 meV. However, for such fits we also 
find that the constant-current contours (of the type shown in Fig. 8) change significantly. 
We define by zΔ  the height of the contour over the GaAs compared to the InGaP, 
considering a point located 2 nm into the GaAs layer compared to one located 6 nm into 
the InGaP layer, and we find that zΔ  depends sensitively on δφ . The experimental zΔ  
value from Fig. 8(a) is nm003.0095.0 ± , which agrees well with the theoretical value 
(assuming 0=δφ ) of 0.094 nm from Fig. 8(b). For eV1.0=δφ  (and a VB offset of 362 
meV) the theoretical zΔ  value increases to 0.118 nm, which is far outside the 
experimental range. Thus, we can further constrain the fits by matching the zΔ  values 
between experiment and theory. Using this method, we find that the lateral field across 
the heterointerface is very close to zero, and the best-fit value for the VB offset is 
essentially unchanged from the meV7382 ±  of Fig. 7. This then is our final result for the 
VB offset, which we express in round numbers as eV01.038.0 ± .  
 
V. DISCUSSION 
 
The results of the prior section are for an InGaP-on-GaAs interface. We have also applied 
our analysis method to the data set of our prior work, Ref. [9], acquired on a GaAs-on-
InGaP interface. Those spectra have band edges are shifted to lower (more negative) 
voltages by about 0.1 V compared to the InGaP-on-GaAs spectra of Fig. 7. Also, several 
of the spectra in Ref. [9] [spectra (c) and (d) of Fig. 3] display some exceptionally large 
additional conductance near the CB edge (in the range 1.0 – 1.2 V ) compared to the 
other spectra, indicative of extrinsic states producing local band bending. Indeed, we find 
that it is impossible to fit those prior spectra without assuming a relatively high density of 
extrinsic states in the vicinity of spectra (c) and (d). For example, assuming -2nm2.0  of 
donor-like states spread over a circular area of 2nm4  (corresponding to about 1 
fundamental unit of charge) produces a relatively good fit, with a VB offset of about 370 
meV. However, assumptions concerning the magnitude and placement of this charge 
produce significant uncertainty in this band offset, of at least meV30± . We find, in 
general, that precise evaluation of the band offset can only be obtained from data sets that 
display no evidence of spatially inhomogeneous extrinsic states. 
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     Finally, we return to re-examine the analysis method used in our previous work, and 
also shown in Fig. 2 of the present work, in which we overlaid the normalized 
conductance spectra acquired in the GaAs and InGaP regions and deduced a very small 
CB offset (about 0.03 eV in Fig. 2, and 0.00 eV in our previous work9). These values are 
clearly incorrect, indicating a failure of this type of analysis method. The normalized 
conductance used here is meant to provide a spectral measurement that is roughly 
independent of tip-sample separation, but importantly, that independence only occurs if 
the spectra are measured over a sufficient range ( V1.0≈ ) beyond a band onset. This 
limitation in the analysis method was not fully appreciated in our previous work, but it 
can be deduced by an extension of our subsequent analysis in Ref. [5]. Our spectra 
acquired on the InGaP/GaAs heterojunctions have a rather limited voltage range; the 
band bending is quite large at negative voltages [as seen in Fig. 5(a) or Fig. 6(a)], with 
tunneling through the depletion region in the semiconductor [as in Fig. 4(b)] producing a 
large effect on the current over the entire voltage range.  For this reason, the normalized 
conductance cannot be used as a reliable means of determining band onsets.  
 
VI. CONCLUSION 
 
In conclusion, scanning tunneling spectroscopy has been used to study the electronic 
properties of InGaAs-like InGaP/GaAs interfaces. The observed spectra are fit to 
computational results, assuming an InGaP band gap of 1.90 eV as appropriate for the 
disordered alloys observed here. We deduce a VB offset of eV01.038.0 ± , which, with 
our assumed value of 1.90 eV for the InGaP band gap and using 1.42 eV for the GaAs 
gap, yields a value for the CB offset of eV01.010.0 ± . These values were obtained from 
an InGaP-on-GaAs interface. Results for a GaAs-on-InGaP interface are consistent with 
these values, although much greater uncertainty occurs in that case due to the presence of 
extrinsic (charged) surface states. Comparing our result to prior measurements of the 
band offsets,10-17 we note that some spread exists in those values but our result is near the 
middle of that range. It is also notable that our values are in fairly good agreement with 
the theoretical results of Froyen et al.19 of 0.37 and 0.12 eV for the VB and CB, 
respectively.  
 
     Regarding possible extensions to the present work, two approximations that could be 
improved upon is the neglect of the dispersion across the vacuum gap of the states near 
the interface, and the neglect of any image potential effects.46 Beyond that, we note that 
our use of the effective mass approximation could be replaced by a more sophisticated 
multi-band complex-k  band structure,47 as commonly used in semiconductor 
heterostructure problems. That change would yield an improved description of the spectra 
for energies far from the band edges. The other major approximation employed in this 
work is our solution for the tunnel current using a planar approximation, i.e. using only 
the potential along the central axis of the system, an approximation that is equivalent to a 
semiclassical treatment of the lateral (radial) part of the electronic states. An improved 
description would require a fully 3D quantum treatment of the electronic states. We note 
that any of these potential improvements would be quite computationally intensive; the 
results of the present work required, for a single fit with 4 nonlinear parameters, about 2 
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months of computation time using a 2.8-GHz processor, and to accomplish all the fits 
described herein we utilized seven such processors over a period of one year.  
 
     Despite the approximations in the theory, we feel that the error range assigned to the 
band offsets, eV01.0± , is realistic. This range was deduced primarily from statistical 
uncertainty in the fitting procedure. However, we find a similar error range when we have 
applied the curve fitting procedure with other computational schemes that produce 
slightly different shapes for the conductance vs. voltage curves, e.g. with different 
boundaries conditions for the wavefunctions, as was done during the development of the 
theory. Such changes in shape can significantly influence the values of parameters such 
as the tip radius or tip-sample separation, since they are dependent on the detailed shape 
of the spectra. But the band offset is largely determined by the difference in position of 
the band edges between spectra acquired on the GaAs and InGaP surfaces, i.e. it just 
produces an offset between these respective spectra, and hence is relatively independent 
of the theoretical details that affect the shape of the spectra. In other words, so long as a 
good fit can be obtained to the spectra using some values for tip radius, tip-sample 
separation, and tip-sample contact potential – and these might be effective values, 
dependent on the approximations in the theory – then extracting a band offset is 
something that we believe can be reliably achieved even within the approximate theory. 
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Appendix: Tunnel current near a semiconductor heterointerface 
 
For the present problem of computing tunnel currents near an interface between two 
different semiconductors, our prior theory for a homogeneous semiconductor3,4,5,6 must 
be generalized. For the electrostatic potential we remove the previous assumption of 
circular symmetry and include an explicit dependence on the azimuthal angle θ . We 
follow in detail the notation and definitions in Ref. [3]. Laplace's equation for the 
electrostatic potential energy φ  in the vacuum, using prolate spheroidal coordinates, is 
given by 
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On a discrete grid of points ),,( kji θηξ , i = 1, 2,... m;  j = 1, 2,... n;  k = 1, 2,... p, we put 
this equation into finite-difference form according to 
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We use a uniform grid spacing for η , and we match the ξ  values at the surface to the r  
values in the semiconductor as specified below. For the θ  values we use a uniform 
spacing with θθ Δ−= )5.0(kk  and p/2πθ =Δ  for a general problem or p/πθ =Δ  for 
a problem with mirror symmetry on the surface. Potential values are repeated periodically 
in θ  appropriately for either case. To put Eq. (A2) into a form suitable for iterative 
solution we assign the value of ijkφ  on the left-hand side to be its value on the st)1( +l  
iteration, with all the φ  values on the right-hand side of the equation being those on the 

thl  iteration.  
 
     In the semiconductor we use variable grid spacing for r and z, as defined in Appendix 
B of Ref. [4], and we use the same θ  values as in the vacuum. Poisson's equation in 
discrete form, using cylindrical coordinates, is rearranged to yield  



15 

.

)(
)(

1)(
)2(

1

)(
)(

1)(
)(

1

)(
2

)(
2

)(
2

0

1,,1,,22,,1,,1

,1,,1,2,,1,,12

2222

jki
ijk

kjikji
ki

kjikji
ii

kjikji
j

kjikji
i

jki
kiji

e
rrr

zr

rzr

ρ
εε

φφ
θ

φφ

φφφφ

φ
θ

−

+
Δ

+−
Δ

+

+
Δ

++
Δ

=
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

Δ
+

Δ
+

Δ

−+−+

−+−+
             (A3) 

where ijkρ  is the charge density and ijkε  the dielectric constant at each point in the 
semiconductor. In a semi-classical approximation for a uniform material, the charge 
density is given by )( ijkFijk E φρρ −≡  with FE  being the Fermi-level. For the present 
problem of a heterostructure an additional index, r, is required to distinguish between the 
two materials, )( ijkFrijk E φρρ −≡  with r taking on an appropriate value depending on 
which material the spatial point is located in. The dielectric constant is similarly 
determined, rijk εε = . We consider a problem of a slab of material (quantum well or 
barrier) which we denote by r = 2, surrounded on either side by cladding material, 
denoted by r = 1. The Fermi-level for the system is determined by charge neutrality in the 
cladding material, 0)(1 =FEρ , with the charge densities determined by the doping and 
band gap of the material precisely as specified in Ref. [3]. With specification of a valence 
band offset, 1,2, VVV EEE −≡Δ , the band extrema in the slab are then determined 
relative to FE , and the charge densities in the slab (as a function of ijkFE φ− ) can be 

computed. At each iteration of our finite-difference solution, Eq. (A3) is solved for ijkφ  
by using a 1-dimensional search to solve the relevant nonlinear equation, as described in 
Ref. [3] (see also footnote [36] of Ref. [4]). With differing dielectric constants between 
the materials, we must also include the condition that the normal component of the 
electric displacement is continuous across the heterointerface. This condition leads to an 
additional equation connecting the potential values on either side of the interface, which 
we solve simultaneously with Eq. (A3). 
 
     For reasons of computational efficiency we find it necessary to make one additional 
modification to the coordinate system in the vacuum, in which we generalize the prolate 
spheroidal coordinates into a new coordinate system that exactly matches the hyperbolic 
shape of the probe tip. The tip shape is specified by its radius of curvature R, the slope of 
the tip shank b, and the tip-sample separation s. The reason that new coordinates are 
needed is that, within the prolate spheroidal system, only two of these tip parameters can 
be exactly matched to the coordinate system, so that for an arbitrary tip shape it is 
necessary for the tip itself to fill some of the grid points in the vacuum.3 As the tip-
sample separation changes then the grid points occupied by the tip will change, leading to 
small discontinuities in the computed potentials. The size of these discontinuities 
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decreases as the density of grid points increases, but for the large number of finite-
difference computations needed in our curve fitting the use of such dense grids is 
prohibitive. With our new coordinate system these discontinuities in the potential are 
eliminated. The new coordinates ξ~  and η~  in the vacuum are related to the cylindrical 
coordinates r  and z  by 
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where )~(/0 Tazc η≡  with Tη
~  being the η~  value defining the hyperbola that 

corresponds to the boundary of the probe tip and 0z  being the center point of this 
hyperbola. For 00 =z  these equations reduce to the standard definition of prolate 

spheroidal coordinates. With specified values for R , b , and s we have 21/1~ bT +=η , 

TbRa η~/2= , and Tasz η~0 −= . From Eqs. (A4a) and (A4b), Laplace's equation in the 
new coordinates can be deduced in a straightforward, though lengthy, manner. This 
equation is then cast into finite-difference form in a manner analogous to Eq. (A2). 
 
     With the electrostatic potential determined in the above manner, tunnel currents are 
computed in the effective mass approximation by adding this potential onto the vacuum 
level or onto the relevant band edge energy in the tip or semiconductor. We extend our 
previous theory for a homogeneous semiconductor6 to handle a heterojunction. We 
maintain the z-coordinate to be perpendicular to the surface and we take x-coordinate to 
be perpendicular to the junction. For definiteness we consider a type-I junction, with VB 
and CB edges of the smaller-gap quantum well located within the band gap of the larger-
gap barrier layer, although the formalism below can be easily modified for other 
situations. For computation of the tunnel current we maintain our planar approximation, 
so we do not consider any lateral variation in the potential in computing the current. In 
this case, we need only consider the wavefunction tails, or evanescent states, extending 
into the barrier from the quantum well. We make a further approximation for this 
situation, assuming that the effective masses in the barrier and well are identical, so that 
any given state in the barrier (well) is analytically connected to a single state in the well 
(barrier) without having to consider linear combinations of such states.  
 
     To handle a situation of spatially resolved STS across a heterojunction we must 
modify our prior expressions for the tunnel current, Eqs. (9) and (11) of Ref. [6], so that 
they explicitly contains some dependence on the lateral, (x,y), position of the probe tip. It 
is also convenient, though not essential, to also remove as much as possible from these 
equations their dependence on the tip electronic states. Following in detail the notation 
and definitions of Ref. [6] we consider a probe tip with a very low-lying minimum energy 
of its metallic band, −∞→0E , so that Fkk →⊥ R,  the Fermi-wavevector of the metallic 
band. The matrix element for the tunnel current is evaluated at a position 1z  at the 
surface of the probe tip; both the tip and sample wavefunctions decay exponentially into 
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the vacuum with decay constant 2/12}/])([2{ h⊥−= EsUmκ  using the potential energy 
in the vacuum from Eq. (4) of Ref. [6], so that their derivatives can be evaluated as 
simply κ±  times the wavefunction value. All dependence on the tip wavefunctions other 
than a factor of Fk  is thereby eliminated from the formulas, and we find that the tunnel 
current for a homogeneous semiconductor can be written in the form 
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where )(sk⊥ψ  is perpendicular part of the sample wavefunction evaluated at the tip 
surface, and where the perpendicular density of states is given for extended (writing the 
result for a CB) or localized states by 
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with L  being a normalization length in the perpendicular direction and where the 
formulas for ⊥k  and ⊥E  are given following Eq. (7) of Ref. [6] (the appropriate 
formulas for a VB are also given there). For the situations of interest described in the 
present work we have numerically tested the above approximation of −∞→0E  
compared to a typical value of 0E  being 8 eV below the tip Fermi-level, and we find it 
leads to only a few percent error in the voltage-dependence of the current.  
 
     To include in our equations an explicit dependence on lateral position from the 
heterointerface, we first make the trivial substitution for the integral over k , 
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Next we rework the derivation of Eq. (A5), but using the approximation of Tersoff and 
Hamann for a sharp tip.33 Considering the matrix element for the tunneling process, Eq. 
(6) of Ref. [6], in the derivation by Duke48 for a planar geometry this surface integral 
reduces to simply integrating the plane waves that form the parallel parts the tip and 
sample wavefunction, hence leading to the δ -function in k . However, considering a 
very sharp tip, this surface integral yields the parallel part of the sample wavefunction 
evaluated at the position of the tip, times a factor of A  where A  is a normalization 
area. Thus, in this approximation, the result for the current density obtained with a sharp 
tip can be obtained from Eq. (A5) by the substitution 

22
),,()( syxAs kkkk yx ⊥⊥ Ψ→ψ    (A8) 
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where ),,( syxkkk yx ⊥
Ψ  is the total wavefunction of the sample evaluated at the position 

of the tip apex.  
 
    We write the total wavefunction as 
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with A=l  being a normalization length. This equation defines the x-component of the 
wavefunction )(xxkχ . In assuming this separable form we are neglecting the dispersion 
(i.e. change in shape) of the x-component of the wavefunction across the vacuum gap, 
which is expected to be relatively small for the 1-nm-wide gap. Thus, the problem has 
been reduced to the well-known situation of scattering over or tunneling into a barrier.49 
We consider for definiteness a CB barrier of CEΔ  extending over 0>x . For an x-
component of the energy below the barrier the states have the form  
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xx kk . For an x-

component of the energy above the barrier we construct standing wave solutions for a 
barrier layer with thickness d in the center of a slab of thickness l . We consider solutions 
for ∞→l  and for large values of d, in which case we find that50 
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where )/()( xxxx kkkkr ′+′−=  with 2/122 )]/*2([ hCxx Emkk Δ−=′  being the x-
component of the wavevector in the barrier layer. Results for the VB can be obtained 
simply by substituting VEΔ  for CEΔ . Using Eqs. (A6) – (A11) in Eq. (A5) enables 
computation of the tunnel current at any point relative to the heterointerface. 
 
     The above theory is valid for identical effective masses across the heterointerface, 
although for the actual problem the masses for the quantum well and barrier material are 
different. In our computations for extended states, for a tip location above a given 
material, we use the effective masses appropriate to that material. The change in 
computed tunnel spectra as we move across the heterointerface is relatively small, i.e. 
smaller than the deviation between experimental and theoretical spectra for either tip 
position, so that this procedure seems reasonable. For the case of evanescent states in the 
barrier we have the choice between using the effective masses of the well material (which 
determine the number of states) or the barrier (which determines the decay of the states); 
numerically the difference between these two situations is not large, and we use the 
former method here. 
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FIG 1.  (A) STM image of the heterostructure at sample voltage of V5.2+ . The image 
is displayed with a gray scale of 0.11 nm. (B) (a) – (c) STM topography line scans, 
acquired at the sample voltages indicated. (d) – (f) Solid lines show the average of the 
experimental curves from (a) – (c), respectively. Dashed lines show theoretical 
predictions, assuming (d) 0.06% compressive strain only in the InGaP layer, (e) strain 
only at InGaAs-like interfaces with a single bilayer of 3.36% compressive strain, and (f) 
strain both in the InGaP layer (0.02% compressive) and at InGaAs-like interfaces [same 
condition as curve (e)]. 
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FIG 2.  (A) Atomic resolution STM image of InGaP-on-GaAs interface. The image was 
acquired with sample voltage of –2.0 V and is displayed with a gray scale of 0.05 nm. 
White circles represent positions where spectra are taken. The dashed line in the image 
labels the interface, with the InGaP layer being on the left side of the interface and the 
GaAs layer on the right. (B) Tunneling spectra across the interface. For comparison 
purposes, spectrum (a) is overlaid as a dashed line on spectrum (h).  
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FIG 3.  Example of a potential distribution obtained from the theoretical computations, 
for a tip-sample separation of 1 nm, tip radius of 10 nm, and tip position 1 nm inside the 
InGaP layer. The tip potential energy is eV1−  relative to a point far inside the 
semiconductor (achieved in this case with a contact potential of eV1−  between tip and 
sample and zero applied voltage between them). Contours of constant potential energy, as 
labeled, are shown in (a). The variation in the potential energy along the surface is shown 
in (b). 
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FIG 4.  (a) Semiclassical variation (band bending) of energy levels in a semiconductor 
dues to a varying electrostatic potential, showing the VB maximum at VE , the CB 
minimum at CE , and some representative state at energy E. The sample Fermi-level is 
denoted by FE  with the tip Fermi-level at eVEF +  where V  is the sample voltage. The 
band bending at the surface is denoted by 0φ , with V  and 0φ  both being negative in this 
diagram. Quantum effects within the semiconductor are illustrated in (b) and (c) for 
wavefunction tailing through a depletion region and for localized state formation, 
respectively. 
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FIG 5.  Comparison of theory and experiment for tunneling spectra acquired at a point in 
the GaAs located 4 nm from the heterointerface. (a) Computed band bending as a 
function of sample voltage, for various parameters sets. (b) Computed conductance 
(symbols), compared with a measured spectrum (solid line). The same experimental 
curve is shown three times, and compared with various theoretical curves for different 
values of tip radius-of-curvature R  and contact potential φΔ , as listed. A tip-sample 
spacing of 0.9 nm is used, together with a VB offset of 0.35 eV. 
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FIG 6.  Comparison of theory and experiment for tunneling spectra acquired at a point in 
the InGaP located 12 nm from the heterointerface. (a) Computed band bending as a 
function of sample voltage, for various parameters sets. (b) Computed conductance 
(symbols), compared with a measured spectrum (solid line). The same experimental 
curve is shown three times, and compared with various theoretical curves for different 
values of tip radius-of-curvature R  and contact potential φΔ , as listed. A tip-sample 
spacing of 0.8 nm is used, together with a VB offset of 0.35 eV except for the theory 
shown by ×-marks that has a VB offset of 0.38 eV. 
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FIG 7.  Tunneling spectra acquired across an InGaP-on-GaAs interface, showing the 
same data as Fig. 2 but plotted as conductance at constant tip-sample separation. 
Experiment is shown by solid lines and theory by circles. Consecutive pairs of 
experimental and theoretical curves are displaced by an order-of-magnitude, for ease of 
viewing. Parameter values for the theory are listed, with s  being the tip-sample 
separation, R  the tip radius, φΔ  the tip-sample contact potential, and VEΔ  the VB 
offset. A single amplitude parameter is used for the entire set of spectra. The inset shows 
the negative voltage side of spectrum (d), with the ×-marks showing a theoretical result in 
which the current from evanescent states is neglected.  
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FIG 8. (a) Measured constant-current contour across the InGaP-on-GaAs interface 
pictured in Fig. 2(A). (b) Computed constant-current contour across the heterointerface, 
for the parameters listed in Fig. 7. (c) Computed elastic strain of the surface, from curve 
(f) of Fig. 1(B). The zero of tip height for each curve is arbitrary (some curves have been 
shifted in height, for ease of viewing). The arrows at the top of the plot indicate the 
locations at which the spectra of Figs. 2 and 7 were measured. 
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