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Abstract 
 
A theory based on the Bardeen formalism is developed for computing the tunnel current 
between a metal tip and a semiconductor surface. Tip-induced band bending in the 
semiconductor is included, with the electrostatic potential computed in a fully three-
dimensional model whereas the tunnel current is computed in the limit of large tip radii. 
Localized states forming at the semiconductor surface as well as wavefunction tailing 
through the semiconductor depletion region are fully accounted for. Numerical results are 
provided and compared with data obtained from p-type GaAs surfaces, and generalization 
of the method to semiconductor heterojunctions is discussed. 
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I. INTRODUCTION 
 
Since the invention of the scanning tunneling microscope (STM), efforts have been made 
to utilize it for measuring fundamental properties of semiconductor surfaces and 
heterostructures. Such studies are often performed in a cross-sectional mode, with the 
probe tip positioned near the heterojunction and tunneling spectra collected. In addition 
to quantities apparent in the images such as alloy ordering,1 interface roughness,2 or 
strain in layers,3 the main spectroscopic feature of interest is the relative positions of the 
valence band (VB) and conduction band (CB) edges in the neighboring layers, i.e. the 
band offsets. Spatially resolved tunneling spectra (scanning tunneling spectroscopy, STS) 
are acquired at spatial locations on either side of the interface and are compared in order 
to determine the band offsets. An early and relatively successful effort of this type was 
carried out by Salemink and coworkers on AlGaAs/GaAs heterojunctions.4 Nevertheless, 
for that study and all similar ones uncertainty in the results occurs because of the lack of 
any quantitative description of the tunneling spectra.  
     A significant impediment to the quantitative description of tunneling spectra from 
semiconductors is the occurrence of tip-induced band bending in the semiconductor, 
illustrated in Fig. 1, in which some of the applied potential between the probe tip and the 
sample is dropped in the sample itself.5 In a prior work we have presented a three-
dimensional finite-element method for evaluating this band bending.6 The main 
parameters contained in that theory, in addition to the semiconductor parameters such as 
doping concentration and effective masses, are the tip-sample separation, s, the tip radius, 
R, and the electrostatic potential energy of the probe tip relative to a point deep within the 
semiconductor, Tφ . This latter quantity is related to the applied voltage on the sample 
relative to the tip, V , according to 

φφ ∆+= eVT      (1a) 
where the contact potential φ∆  is given by the work function difference between tip and 
sample 

( )FCm EE −−−=∆ χφφ     (1b) 

where mφ  is the work function of the metallic tip, χ  is the electron affinity of the 
semiconducting sample,  is the CB minimum of the sample, and CE FE  is the Fermi-
level of the sample. Figure 2 shows an energy band diagram for the semiconductor-
vacuum-metal tunnel junction illustrating these various quantities. Even in the absence of 
any applied voltage, a negative contact potential will produce downwards band bending 
in the semiconductor and a positive contact potential will produce upwards band bending.  
     Our finite-element method yields the electrostatic potential at all points in the 
semiconductor and the vacuum. An example of typical results from such a computation is 
shown in Fig. 3. Of particular interest in the potential energy at the point on the 
semiconductor surface directly opposite the tip apex, which we denote by 0φ  as indicated 
in Fig. 1(a). Let us consider in what way this band bending will affect a measured 
tunneling spectrum. For a simple situation in which the spectrum is dominated by surface 
states (e.g. arising from a surface reconstruction), the main influence of the band bending 
will be to simply shift the spectrum of these states according to the amount of the band 
bending. Thus, whereas with 00 ≡φ  we would have the usual relationship between 
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energy of a state E and the sample voltage V , eVEE F =− , with nonzero band bending 
this equation must be modified so that  

=− eVEE F 0φ−   .      (2) 
An analysis based on this equation could be termed an energy alignment method; it 
assumes that the states being observed shift rigidly in accordance with the band bending, 
i.e. as appropriate for surface states. But, for bulk states, additional quantum effects can 
occur as illustrated in Figs. 1(b) and (c). Both wavefunction tailing through a barrier 
region in the semiconductor, Fig. 1(b), as well as localized states formation, Fig. 1(c), can 
lead to substantial errors in the use of Eq. (2) to relate experiment and theory. In this case 
one must employ a complete computation of the conductance vs. voltage characteristics, 
comparing those results with experiment in order to deduce the values of the parameters 
of interest (e.g. band gap, or heterojunction band offset) from the theory. This method can 
be viewed as a lineshape analysis of the spectra, using curve fitting to compare theory 
and experiment. It is the purpose of this paper to develop a theory for the computation of 
tunneling spectra that enables this type of analysis. 
     One additional point that should be addressed concerns the role of extrinsic states at 
semiconductor surfaces. By extrinsic, we mean any sort of states arising from disorder, 
defects, or unintentional contamination. Such states, even at low densities of 0.01 
monolayers (ML ≈ 3×1014 cm-2) or less, can hold enough charge to significantly affect 
the magnitude of tip-induced band bending. The extrinsic states produce their own band 
bending of course, and additional effects due to the tip decrease in significance as the 
density of extrinsic states increases. Directly spectroscopic observation of extrinsic states 
is difficult but nevertheless has been accomplished in some cases by STS.7 However, it is 
most common in STS experiments to acquire spectra sufficiently far from the extrinsic 
defects so that the states are not seen directly in the spectra, but they do affect the 
spectroscopic results through a change in the band bending. Thus, although not further 
discussed in this work, extrinsic states can be included in the computations according to 
the effect they have on the electrostatic potential.  
 
II. THEORY 
A. Background 
 
The main purpose of this work is to develop a theory enabling the computation of 
tunneling spectra for surfaces such as GaAs(110) for which the role of intrinsic surface 
states is relatively small [for the (110) surfaces of nearly all III-V semiconductors the 
intrinsic states associated with the anion and cation dangling bonds form resonances lying 
within the valence or conduction bands8]. In this case the tunnel current can be computed 
primarily as a summation over the bulk states, as labeled by their wavevectors. In 
addition to use of the effective mass approximation we make one other significant 
approximation in all our computations, assuming that the current can be obtained using 
only the potential along the central axis of our problem, which we denote by )(zφ , and 
then performing a planar tunneling computation with this potential. This approximation 
essentially amounts to a semiclassical treatment of the lateral (radial) part of the 
wavefunctions.9 In general the effect of curved potential contours as in Fig. 3 will lead to 
a slight focusing of the wavefunction as one approaches the surface from far inside the 
semiconductor (i.e. for a completely spherical geometry the wavefunction increases as 
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r/1  as the radial coordinate r  decreases) with this effect being weakly energy 
dependent. For localized states at the surface, as in Fig. 1(c), this approximation neglects 
any quantization of the states arising from lateral variation of the potential; those energy 
splittings have typical magnitude of 10 meV.7,10 For equipotential contours with large 
radius of curvature as in Fig. 3, both types of effects are expected to be relatively small.  
     For a planar computation we have, in two prior papers,7 ,11 developed a formalism that 
is similar to the "exact" computation of tunnel current described by Duke12 but handles an 
arbitrary potential variation )(zφ  in the vacuum and semiconductor. The current is 
written as an integral over incoming states, with some transmission factor for each state 
and where these transmission factors are computed exactly by integration of the 
perpendicular part of the Schrödinger equation.13,14 Explicitly, for a state with given value 
of the perpendicular component of the energy , then on a set of z-values labeled by j 
with separation , the perpendicular part of the wavefunction 

⊥E
z∆ ψ  is obtained simply 

from 
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where  is the effective mass and  is the potential energy. The upper sign in this 
equation is for a state in the semiconductor CB, the vacuum, or the tip, and the lower sign 
is for a state in the semiconductor VB. With our zero for the electrostatic potential energy 
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where  is the VB maximum and W is the energy difference between the Fermi-level 
in the tip and the bottom of its metallic band (typically about 8 eV). These various 
potential energies are indicated in Fig. 2. Both  and  may have different values in 
the semiconductor as compared to in the vacuum or the tip as discussed in more detail in 
the following section. In this type of "exact" computation we are dealing with 
propagating states in the electrodes and the vacuum, starting in one electrode with an 
outgoing state and integrating back through the vacuum and into the other electrode. 
Matching in that electrode to an incoming wave then enables determination of the 
transmission coefficient for that state. The wavefunctions in the vacuum are thus 
complex, current carrying functions containing both exponentially decaying and growing 
parts. 

VE

*m ⊥E

      Although the above method does indeed provide an exact solution for the propagating 
states of the two-electrode system, it has a significant drawback in that it is not clear how 
to treat states that are localized at the semiconductor surface. For this reason we switch 
approaches in the present work to the Bardeen formalism for computing tunnel currents.15 
In this case the electrodes are treated separately, integrating the wavefunctions for each 
(starting from within the vacuum back to each electrode) and dealing only with 
wavefunctions that are real (and hence not current carrying). In this case localized states 
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can be treated within the same formalism as extended states, as described in the following 
section. Our results employing the two methods are identical (both formally, and in 
actual computation) for extended states, but the Bardeen approach also permits a 
straightforward treatment of localized states.  
 
B. Formalism 
We consider tunneling between states in electrodes on the left-hand (L) and right-hand 
(R) sides of a planar junction. The left-hand electrode is the semiconductor, with Fermi-
level at FE , and the right-hand electrode is the metallic tip, with Fermi-level at 

eVEF + . Labeling the states by quantum numbers of states in the perpendicular 
direction, µ  and ν , and by their parallel wavevectors, L,k  and R,k , respectively, the 

transition rate is given by12,15

( ) ( )[ ] ( )eVEEEfEfP −−−= ∑ RLRL
,,,

2
R,L,

R,L,

Λ2 δνµπ

νµkk
kk

h
  (5) 

where  and LE RE  are the energies of the states and ( )Ef  is a Fermi-Dirac occupation 
factor. The matrix element for the transition is given by  

1
L,R, ,

2

R,L, 2
Λ

zdz
d

dz
d
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⎝

⎛
−= µ

ν
ν

µ
ψ

ψ
ψ

ψδνµ kkkk h   (6) 

where µψ  and νψ  are the perpendicular parts of the wavefunctions of each electrode, 
and the term in brackets on the far right-hand side of this equation is evaluated at a point 

 somewhere in the vacuum region. The 1z δ -function in Eq. (6) eliminates one of the 
sums over k  in Eq. (5).  

     We assume a metallic probe-tip, so that its states are all extended ones, and we treat 
both extended and localized states in the semiconductor sample. Considering the former 
case first, our derivation for the current follows that given by Duke. Writing the result for 
the CB of the semiconducting electrode with effective mass  we convert the 
summations over states to integrals as (suppressing the L subscript) 

*m
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where  is the CB minimum, CE L  is the thickness of a slab that composes the electrode, 
and A  is the area of the electrode. For a CB the perpendicular part of the energy is given 

by *2/22 mkEE h−=⊥  and ( )[ ] 2/12/*2 hCEEmk −= ⊥⊥  (for simplicity of notation 

we are assuming equal effective masses for the parallel and perpendicular directions), and 
the step function ( CEE −⊥ )θ  restricts this energy to lie within the band. For a valence 

band (VB) we have *2/22 mkEE h+=⊥ , ( )[ ] 2/12/*2 h⊥⊥ −= EEmk V , and the step 

function is replaced by ( )⊥− EEVθ  with  being the VB maximum.  VE
      For the case of the probe tip the sum over ν , for a given value of k , is easily 

evaluated to be (suppressing the R subscript) 

∫∑
∞

∞−
⊥= dkL

πν 2
      (8a) 
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where mkEE 2/22h−=⊥ , ( )[ ] 2/12
0 /2 hEEmk −= ⊥⊥ , and WeVEE F −+=0  is the 

minimum energy of the metallic band in the tip.  
     Care must be taken in counting the numbers of ⊥k  states available for tunneling: 
linear combinations of the plane wave states in each electrode traveling towards and 
away from the vacuum are formed that satisfy the boundary conditions for an 
exponentially decaying state in the vacuum. The resulting standing waves can have either 
even or odd parity relative to the center of each slab, so that the total number of states 
available equals the number of ⊥k  values including both positive and negative ⊥k  
values [hence the factors of 2 preceding the energy integrals in Eqs. (7b) and (8b)]. 
Additionally, the normalization of the wavefunctions is done on these standing waves just 
mentioned, not on the plane waves, yielding another factor of 2 for each electrode that 
differs from Duke's derivation. In this way our result is a factor of 16 different from that 
of Duke, but importantly, our result agrees precisely with that expected from an "exact" 
treatment of the problem as derived by Duke (in other words, we explicitly resolve the 
factor of 16 discrepancy, noted by Duke, between his treatments using the Bardeen and 
the exact formalisms).  
     Writing the current density as AePJ /2=  (with the factor of 2 being the spin 
degeneracy), then by combining Eqs. (5-8) we arrive at the final result for extended states 
of 
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where the expressions for  and  are given following Eqs. (7) and (8), 
respectively. The values for the perpendicular part of the energy are also listed there 
(with the value in the vacuum being the same as that in the probe tip); these  values 
are needed for evaluating the wavefunctions in the bracketed expression at the end of the 
integrand. This expression scales as , since the wavefunctions are unit normalized 
on a slab of thickness 

L,⊥k R,⊥k

⊥E

2/1 L
L , and hence the  term appearing explicitly in Eq. (9) is 

cancelled.  
2L

     We compute the wavefunctions numerically by direct integration of the perpendicular 
part of the Schrödinger equation as in Eq. (3). For each electrode we start the integration 
in the vacuum with the wavefunction composed of a decaying exponential, and then 
integrate back to the respective electrode. For the tip, we then simply match the 
wavefunction to a suitable standing wave. For the semiconductor, we match the 
wavefunction and its derivative divided by the effective mass across the interface, 
integrate through any region of the semiconductor with a varying potential, and finally 
match to a suitable standing wave deep inside the semiconductor. For both the tip and 
semiconductor, this final matching procedure determines the normalization of the 
wavefunction, from which its magnitude and derivative values in the vacuum are 
determined. 
     All of our computations are made in the effective mass approximation, neglecting the 
periodic part of the Bloch functions, so that our wavefunctions are just the envelope 
function part of the actual wavefunctions. In this approximation, BenDaniel and Duke 
have argued that the boundary condition on the derivative of the envelope function 
divided by effective mass is suitable, but the matching of the envelope function itself 
across the semiconductor-vacuum interface is a significant approximation.16 Thus, 
considering the ratio of our computed currents through the VB compared to the CB, this 
ratio will be in error by some factor of order unity relating to the detailed period part of 
the Bloch functions of these states. But importantly, we expect this factor not to deviate 
too much from unity since for the (110) surface of III-V semiconductors the resonant, 
dangling bond state associated with the VB (anions) and CB (cations) both have 
comparable z-height relative to the surface. Several of the parameters in our model affect 
the ratio of the currents between VB and CB, and thus we believe that small adjustments 
in these values serve to accommodate our neglect of this factor. 
     Let us now consider localized states in the semiconducting electrode. The sum on µ  
now runs over some number of discrete localized states; writing the result for a CB for 
which the energies of the localized states satisfy CEE <µ , and including the sum over 

k , we have (again, suppressing the L subscript) 

( )∑ ∫∑ −= ⊥
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with *2/22 mkEE h−=⊥ . For the case of a VB the localized states satisfy  

and 

VEE >µ

*2/22 mkEE h+=⊥ .  

     Again using a slab of thickness L to normalize the states in the semiconductor, we 
note that in principle the sum over µ  in the expressions of Eq. (10) includes a two-fold 
degeneracy for each state (i.e. in addition to the spin degeneracy) since we can form both 
even and odd parity combinations of the localized states on the two sides of the slab. 
However, this factor of two is cancelled by the normalization of the wavefunctions if we 
properly include the portions of the wavefunction on both sides of the slab. It is more 
intuitive to consider only the portion of the wavefunction on one side of the slab; in this 
case we can normalize that portion to unity and take the sum over µ  in Eq. (10) to 
include only a single state at each value of .  µE
     Using Eq. (10b) for a CB in the semiconducting electrode and Eq. (8c) for the metal 
electrode we arrive at the expression for the current density through localized CB states 
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The means of obtaining the tip wavefunction here is the same as described following Eq. 
(9), but to obtain the semiconductor wavefunction we now match to a decaying 
exponential deep inside the semiconductor. We note that Eq. (11) is in a form well suited 
to computation; the integral over energy is evaluated in the usual way as a discrete sum 
multiplied by an energy increment E∆ , and the δ -function then makes a contribution of 

 to those terms for which a localized state first appears at that energy (for a given 
parallel wavevector) and zero otherwise. It is straightforward to show that the current 
through localized states reduces to the result for extended states in the limit that the 
localization distance at the surface becomes infinite.

E∆/1
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III. NUMERICAL RESULTS 
 
To illustrate our analysis method we consider a spectrum acquired from a p-type GaAs 
surface. This spectrum was actually acquired not too far from a InGaP/GaAs 
heterojunction, the details of which are discussed elsewhere.18 The InxGa1-xP alloy layer 
has x ≈ 0.5 and is lattice matched to GaAs; its bandgap (1.90 eV) is considerably larger 
than that of GaAs (1.42 eV) so it is useful as an alternative to AlGaAs as a barrier 
material for heterostructures.19 The GaAs layer is p-type doped at a concentration of 
1×1018 cm-3 and the 50 nm thick InGaP is undoped. Figure 4 shows the tunneling 
spectrum acquired at a point located on the GaAs layer located 4 nm from the 
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InGaP/GaAs heterojunction. At this distance the states of the InGaP do not make any 
significant contribution to the current, although the presence of this layer still affects the 
results in terms of band bending due to its low doping. The spectrum in Fig. 4 plotted as 
conductance at constant-s on a logarithmic scale, and it is compared with various 
computed spectra. The computations are performed using three valence bands (light hole, 
heavy hole, and split off bands) and a single conduction band, using effective masses (in 
units of the free electron mass) of 0.0635 for the CB (at 300 K) and 0.081, 0.643, and 
0.172 for the light, heavy, and split-off VBs, and a spin-orbit splitting of 0.341 eV.20 
Results are shown for a temperature of 300 K and using a modulation voltage of 

 (for a sample voltage V the conductance is computed by taking the 
difference in currents at , divided by . 

mV50=rmsV

rmsVV ± rmsV2 )
     The fact that the VB onset of the measured spectrum is situated far below 0 V 
necessitates negative contact potentials with rather large magnitude. The tip radius is also 
quite important in determining the tip-induced band bending, with larger values 
producing more band bending. Similarly, smaller values of tip-sample separation produce 
larger amounts of band bending although this dependence is relatively weak. As shown in 
Fig. 4(a), a contact potential of eV4.1−  together with a tip radius of 30 nm, at a 
separation of 0.9 nm, provide a reasonable fit to the experiment.  Decreasing the contact 
potential to  produces a significantly worse fit [Fig. 4(b)], although by 
decreasing the separation to 0.7 nm [Fig. 4(c)] or increasing the radius to 40 nm [Fig. 
4(d)] the good fit is recovered. It is thus seen that considerable correlation occurs among 
the parameters of the theory, and hence, determination of a band gap alone would have 
significant uncertainty since various apparent gaps can be achieved in the theory 
depending on the amount of band bending. However, for a situation of a heterojunction in 
which we only want to determine a band offset, the uncertainty is expected to be 
considerably less since we are concerned only with a difference between band edges from 
neighboring layers. (For determination of a band gap alone, it is useful to have additional 
features in the spectrum that are fit between experiment and theory, as done e.g. in Ref. 
[11]). 

eV3.1−

     In addition to the three parameters shown in Fig. 4, the fourth parameter used in 
matching experiment to theory is the overall amplitude of the spectrum. This amplitude is 
directly related to the area of the tunnel junction, a quantity that we expect to be greater 
than the area of a single atom, ≈0.01 nm2, and less than or approximately equal to an area 
of several atomic-spacings on a side, ≈1 nm2. In the theory of Section II the results are 
obtained as current density, , from which the current is given by  for area J JAI = A . 
We must however also account for image potential effects, which increase the overall 
magnitude of the tunnel current by about 3 orders-of-magnitude (with no significant 
dependence on energy nor tip-sample spacing of this factor).21,22 We thus divide the area 
A  by 1000 to obtain an effective area corrected for the image potential. For spectra (a) 
and (d) of Fig. 4, at tip-sample separation of 0.9 nm, we find a corrected area of 0.7 nm2, 
while for spectrum (c) with a separation of 0.7 nm we find a corrected area of 0.014 nm2. 
Both of these results are in the range consistent with expectations, although separations 
significantly larger or smaller than these would produce inconsistency between 
experiment and theory. 
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     It should be noted that for the large, negative contact potentials encountered in this 
work, wavefunction tailing through a barrier region in the semiconductor, as in Fig. 1(b), 
dominates the GaAs spectrum for negative voltages. This effect is illustrated in Fig. 5, 
where we shown theoretical results for various parameters sets. The parameters for Fig. 
5(a) are identical to those of Fig. 4(a), with the parameters of Figs. 5(b) and (c) also 
chosen to produce approximate matches [albeit slightly worse than for Fig. 5(a)] with 
experiment. For the parameters of Fig. 5(a), the inset on the lower, left-hand corner the 
figure shows the potential profile in the semiconductor for a sample voltage of . It 
is seen that the band bending in the semiconductor is rather large, extending nearly all the 
way down to the tip Fermi-level (at 

V1.1−

eV1.1−FE ), so that essentially all the tunnel 
current (indicated by the arrow in the inset) is formed by carriers tunneling through the 
barrier in the semiconductor. A similar situation also occurs for Figs. 5(b) and (c). Proper 
description of the wavefunction extending through the semiconductor barrier region, 
which in our theory is characterized by the hole effective masses, is therefore essential in 
obtaining a quantitative description of the spectra. 
     The other quantum effect described by our theory is the formation of effective-mass 
states localized at the semiconductor surface, as pictured in Fig. 1(c). Such states make a 
negligible contribution to the theoretical curve of Fig. 5(a), but they make noticeable 
contributions to curves (b) and (c).  Figure 5(b) is computed with a smaller tip radius and 
larger-magnitude contact potential than Fig. 5(a), resulting in band bending at voltages 
near 1 V that is lower (more negative) than for Fig. 5(a). The inset in the lower, right-
hand corner of the figure shows the potential profile in the semiconductor for a sample 
voltage of . Two localized states are formed in the CB, at energies of 50.6 and 0.2 
meV below the energy of the CB edge deep inside the semiconductor. These states make 
a significant contribution to the current, as seen by comparing the symbols in Fig. 5(b) 
with the dotted line. 

V1.1+

     Figure 5(c) displays a situation with a larger tip radius and smaller-magnitude contact 
potential compared to Fig. 5(a), resulting in band bending at voltages near 1 V that is 
higher (more positive) than for Fig. 5(a). Localized states associated with the heavy-hole 
VB are thus formed, at energies of 7.1 and 0.8 meV above the VB edge as shown in the 
inset in the upper part of the figure for a sample voltage of V1.1+ . These states make a 
significant contribution to the current as seen by comparing the open symbols in Fig. 5(c) 
with the dotted line, and this contribution is an accumulation current associated with the 
VB.  
     For all the theoretical curves in Fig. 5 a nonzero conductance is found between 0.1 
and 1.0 V; aside from the localized states just mentioned this current arises from 
electrons tunneling into extended VB states that are empty due to the p-type doping. This 
is the so-called dopant-induced component, or D-component, commonly observed on p-
type GaAs having a relatively low density of extrinsic states and probed with a tip having 
a contact potential which does not have a large negative value. It should be noted that the 
ordinate in Fig. 5 spans many orders-of-magnitude, with typical experimental data 
extending only over the top 3 – 4 of these, so that the magnitude of D-component seen in 
the theory would generally not be visible in a typical experiment [although for Fig. 5(c) 
the D-component does just reach an observable range]. That expectation is consistent 
with the data of Fig. 4 in which the D-component is indeed not observed.  
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IV. SUMMARY 
 
In summary, we have developed a theory based on the Bardeen formalism that allows 
computation of tunneling current from semiconductor surfaces. The theory employs a 
fully three-dimensional finite-element solution for the potential, whereas the tunnel 
current is computed only along the central axis of the problem (i.e. as appropriate for 
large tip radii). For large tip radii such as that shown in Fig. 3 this approximation seems 
reasonable, as discussed in Section II(A), but for smaller tip radii a fully three-
dimensional treatment of the Schrödinger equation is needed.  
          Our results can be compared to prior computations of tunnel current that include 
tip-induced band bending: The main differences between the present results and those of 
Ref. [5] are, firstly, the potential here is described in a 3D model and, secondly, that a full 
numerical integration is done in computing the current rather than using the WKB 
approximation. Both effects influence the conductance vs. voltage characteristics, with 
the latter one in particular leading to a saturation of the conductance vs. voltage 
characteristic at high voltages that does not match the experimental data (although it 
should also be noted that higher lying and/or nonparabolic bands, i.e. beyond the 
effective mass approximation, will also affect the theory in this voltage range).23 
Comparing our results with those of Dombrowski et al.,  we note that their results, while 
providing an excellent treatment of accumulation layer states, are not predictive in terms 
of the potential (a Gaussian form is assumed, with parameters fit to experiment) and in 
this sense are rather different than the current computations. 
     Finally, we comment on the extension of this method to semiconductor 
heterostructures, a topic that provides a major motivation for the present work. In our 
prior data obtained from InGaP/GaAs heterojunctions we clearly observe a continuous 
evolution of the spectra from GaAs-like to InGaP-like as the tip moves across the 
heterointerface. Using the methods described here we are able to fit spectra located well 
away (at least several nm) from the interface. Such fits allow a measure of the band 
offsets between GaAs and InGaP, although since the spectra in the respective materials 
are acquired at points separated by ≈5 nm then some uncertainty occurs in the resulting 
band offset since a lateral field may exist across the interface and shift the respective 
spectra relative to each other. To reduce this uncertainty, spectra located closer to the 
interface must be analyzed, but in that case we observe tails of the states from the GaAs 
extending into the InGaP. Those effects cannot be described by the present theory since 
we deal only with a homogeneous material. Extension of the technique is required to 
allow a description of such evanescent states near the heterointerface, and such work is 
currently in progress.24  
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FIG 1.  (a) Sketch of energy bands used for computations of the electrostatic potential. 
The sample Fermi-level is denoted by FE  with the tip Fermi-level at eVEF +  where V  
is the sample voltage. The band bending at the surface is denoted by 0φ , with V  and 0φ  
both being negative in this diagram. Quantum effects within the semiconductor are 
illustrated in (b) and (c) for wavefunction tailing through a depletion region and for 
localized state formation, respectively. 

 
 
FIG 2.  Energy diagram for semiconductor-vacuum-metal junction, with p-type doping in 
the semiconductor. The sample voltage V is negative in this example, as is the contact 
potential ( FCm EE −−−=∆ )χφφ . Other quantities are defined in the text. 

12 



 

 
 
FIG 3.  Example of a potential distribution obtained from the theoretical computations, 
for a tip-sample separation of 1 nm, tip radius of 30 nm, and tip position 1 nm inside the 
InGaP layer. A situation of depletion in the semiconductor is shown, with potential energy 
contours separated by one tenth of the potential difference between tip and semiconductor 
(e.g. with the electrostatic potential energy of the tip being 1 eV relative to a point far 
inside the semiconductor, the contours are at energies of 0.1, 0.2, ..., 0.9 eV). 
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FIG 4.  Tunneling spectrum (lines) obtained from a p-type GaAs(110) surface, shown 
repeated four times with each curve compared to a theoretical computation (circles). 
Consecutive pairs of experimental and theoretical curves are displaced by an order-of-
magnitude, for ease of viewing. The theory is computed using various parameter values 
as indicated; tip-sample separation , tip radius-of-curvature s R , and contact potential 
φ∆ . 
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FIG 5.  Computed tunnel spectra for the parameter values indicated, using a tip-sample 
separation of 0.9 nm for all spectra. The open symbols give the result including both 
extended and localized states, and the dotted lines include extended states only. Insets 
show the band bending profiles for various sample voltages indicated by the closed 
symbols: lower left,  for curve (a) showing the VB profile; lower right, 1.1 V for 
curve (b) showing the CB profile and the wavefunctions of localized states; upper center, 
1.1 V for curve (c) showing the VB profile and the wavefunctions of localized states. 
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