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Abstract 
 
The surface band gap of the 8)Ge(111)c(2×  surface at low temperature is determined on 
the basis of scanning tunneling spectroscopy. Electrostatic potential computations permit 
evaluation of tip-induced band bending, from which a correction to the energy scale of 
the observed spectra is made. Parameter values in the computations are constrained by 
comparison of the observed spectrum with known spectral features, including high-lying 
conduction band features derived from first-principles computations. The surface band 
gap, lying between the bulk valence band maximum and the minimum of an adatom-
induced surface band, is found to have a width of eV03.049.0 ± . 
 
I. Introduction 
 
Although scanning tunneling spectroscopy (STS) has been used to study the electronic 
states of many semiconductor surfaces, quantitative determination of the surface band 
gap is rarely attempted. A significant limitation in this type of work is the occurrence of 
tip-induced band bending, in which part of the electric field in the vacuum extends into 
the semiconductor sample itself, leading to uncertainty in the precise energy scale of the 
observed spectra.1 This band bending can be evaluated by electrostatic simulations based 
on models for the vacuum tunnel junction.2 Such models involve a minimum of three 
parameters, describing the probe tip radius, sample-tip separation, and contact potential 
(work function difference) between sample and tip, and if extrinsic states (arising from 
defects and/or disorder) are present on the surface then typically two additional 
parameters are needed. In any quantitative evaluation of tunneling spectra it is desirable 
to constrain the parameter values as much as possible by matching to known quantities. 
Then, to evaluate some unknown quantity of interest from the data, it is necessary to vary 
the parameters over any remaining ranges of uncertainty in their values.  
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     In this work we consider the quantitative determination of the band gap of the 
8)Ge(111)c(2×  surface based on STS data.3 This surface has been the subject of 

previous study by a wide range of surface science probes. Its structure is known to consist 
of an array of adatoms and rest-atoms.4 Equal numbers of adatoms and rest-atoms occur 
on the surface, so that charge transfer from the former to the latter leads to a surface band 
gap, with empty surface states being localized on the adatoms and filled states on the rest-
atoms. Despite this knowledge of the surface structure, however, the electronic properties 
of the surface are not so well understood. The band of rest-atom-derived states is known 
from photoemission experiment to lie resonant with the valence band (VB), with peak 
energy at about 0.7 eV below the VB maximum (VBM),5 but the position of the adatom-
derived band is less well known. One early work based on surface photovoltage revealed 
bands of empty states with threshold energies near 0.4 and 0.45 eV above the VBM.6 A 
more recent work utilizing low energy electron scattering indicated a maximum in the 
empty-state density at 0.48 eV above the VBM,7 although the identity of both this feature 
and various additional features within the gap cannot be clearly identified in those 
spectra. The empty states have also been observed by inverse photoemission8 but the 
width of the surface band gap was not determined in that work. Considering the recent 
interest in the 8)Ge(111)c(2×  surface as a model system for studies of both atomic 
manipulation and carrier transport, 3,9,10 a quantitative determination of the width of the 
surface band gap is called for. 
 
     For clarity we point out that the term surface band gap can be defined in two different 
ways for situations such as the present one in which one band of surface states extends 
into the bulk band gap but the other is totally degenerate with bulk bands. The surface 
gap can be taken as either the difference between the extremal energy within the bulk gap 
of the surface band relative to the opposing bulk band edge, or between the energy 
extrema of the empty and filled surface bands. Of course, when significant mixing of the 
resonant surface band occurs with the bulk band (so that the bulk band edge acquires 
significant surface character) then only the former definition is tenable. In any case we 
are using the former definition in this paper although, e.g., the latter has been used in 
discussions of the 1Ge(111)2×  surface.11,12 
 
     In addition to the determination of the 8)Ge(111)c(2×  surface band gap a major 
motivation for this work is the development of a general theory for describing tunneling 
spectra of semiconductor surfaces. One component of such a theory, namely, the 
electrostatic simulations mentioned above, has already been fully developed.2,3 Within 
those models we further consider in this work the computation of tunnel currents. 
Although many of the techniques for computing tunnel current have been previously 
described,1,13,14 we bring those together in this work in a way that allows a somewhat 
more general treatment of the problem than previously accomplished. 
  
     We have acquired tunneling spectra of the 8)Ge(111)c(2×  surface over the 
temperature range 7 – 61 K. Adatom- and rest-atom-derived features are clearly observed 
in the data, with a surface band gap extending between the VBM and the minimum of the 
adatom-derived states. In our prior work we reported the observation of an apparent gap 
in the spectra of about 0.60 V, and based on rather general considerations we estimated a 
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band bending correction in the range 0.0 – 0.2 eV yielding a surface gap value of 
eV1.05.0 ± .3 That prior work was mainly concerned with investigating high-current 

behavior of the tunneling spectra that apparently involved nonequilibrium carrier 
occupation, whereas in the present work we focus on low-current measurements for 
which the band bending can be quantified using detailed electrostatic computations. To 
constrain the parameter values in the computation we compare the energy of several 
known spectral features between experiment and theory. One of these known quantities 
in particular is the location of an observed linear-onset in conduction band (CB) state-
density, which on the basis of first-principles theory is found to be associated with high-
lying CB features of the Ge. With this constrained set of band bending models we then 
determine a range of band bending corrections that can be applied to the observed surface 
band gap, yielding a final value for the surface gap of eV03.049.0 ± . 
 
     This paper is organized as follows: In Section II we summarize the experimental 
results of our prior work. Section III present the first-principles theoretical work used to 
identifying CB-related features in the surface state-density. In Section IV we undertake 
an analysis of the data, comparing experimentally determined band bending values with 
those obtained from the electrostatic simulations. This analysis is performed in Sections 
IV(A) and (B) within a semiclassical framework in which only values of the potential 
(not the current) are needed. Then, in Section IV(C) we include quantum effects, thereby 
requiring detailed computations of the tunnel current. It turns out that the quantum effects 
are not large for this system, typically about 10 meV, but nevertheless this value cannot 
be obtained without explicit computation. In Section IV(D) we determine our final value 
for the surface band gap, taking into account the various sources of error in both the 
experiment and the simulations. The paper is summarized in Section V, including 
comments on the overall methodology of the work. 
  
II. Experimental Results 
 
The experimental work leading to the observed tunneling spectra has been described 
previously,3 and will not be repeated in detail here. In brief, scanning tunneling 
spectroscopy (STS) measurements were performed at temperature in the range 7 – 61 K. 
A lock-in amplifier is used to measure the conductance, with modulation voltage of 
10−20 mV. The 8)Ge(111)c(2×  surfaces were formed by cleaving a p-type Ge sample 

with 316 cm102 −×  doping concentration on a (111) crystal face, and then annealing the 
sample at a temperature of about 500°C for a few minutes. Well-ordered domains of 

8)c(2× structure were formed in this manner. A typical diameter of the domains is 50 
nm, with the edges of the domains surrounded by disordered arrangements of adatoms 
and rest-atoms.15 These domain boundaries are observed to introduce electronic states, 
which we refer to as extrinsic states, that lie within the surface band gap separating the 
bulk VB maximum and the minimum of the band of intrinsic adatom-derived states 
associated with the 8)c(2×  structure.  
 
     A typical tunneling spectrum obtained from a well-ordered region of a 8)c(2×  
domain is shown in Fig. 1, acquired at a temperature of 61 K. A number of features can 
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be readily identified in the spectrum: A band gap is visible extending from about 10.−  to 
V5.0+ . The surface Fermi-level (0 V in the spectrum) is located near the bottom of the 

gap, as expected for p-type material. A large spectral peak is seen centered at about 
V7.0+  and it can be attributed to the empty states associated with the surface 

adatoms.4,8,15 This spectral peak appears to have two components, consistent with the 
expectation of a splitting due to the two inequivalent types of adatoms in the 8)c(2×  
structure.16,17 In the filled states, at about V01.− , a spectral feature deriving from the 
surface rest-atoms is visible. This rest-atom band is resonant with VB states,5 with the 
VBM seen in the spectrum at about 10.−  V. Finally, above the adatom band, at voltages 
above about +1.0 V, the current derives either from CB states or possibly from higher-
lying surface bands. The observed surface gap is thus seen to be bounded by bulk VB 
states at its lower edge and surface adatom-derived states at its upper edge.  
 
     One additional feature occurs in the spectrum of Fig. 1, at about V9.1−  and labeled 
"inv". This feature arises from inversion of the carrier occupation at the surface, due to 
tip-induced band bending, with the bottom of the adatom band becoming occupied by 
electrons. Voltage-dependent imaging permits a definitive identification of this 
phenomenon,3 and computations of inversion current in a spherical geometry provide a 
reasonable agreement with experiment in terms of the voltage at which the inversion 
occurs. 
 
     Curve fitting of the onsets of the VB and the adatom band have been carried out as 
described previously.3 The functional form used assumes that the normalized 
conductance increases basically in a linear manner at the onsets, with some additional 
modification of the linear behavior due to the nonzero temperatures and the modulation 
voltage used in the experiment. The Appendix provides some justification of this 
functional form for the case of a bulk band (i.e. the VB in the present case), although for 
the adatom-derived surface band we use this form only because it provides a reasonably 
good fit to the data. The insets of Fig. 1 show the theoretical fits for the two onsets. 
Derived values for the onsets, based on the repeated measurements described in our prior 
work,3 are V011.0111.0 ±−  and V003.0495.0 ±  for the VB and adatom band, 
respectively, where the error values are the standard deviation of the mean. 
  
III. First-Principles Theoretical Results 
 
For the purpose of evaluating the effects of tip-induced band bending on the observed 
spectra, it is necessary to have one or more features in the spectra that have known 
energies. With these, one can then use models of the band bending to interpolate or 
extrapolate between the known features in order to determine energies of other features 
(i.e. having unknown energies). In our observed spectrum of Fig. 1 there are two features 
in the filled states (negative sample voltages) that we can use for this purpose: the rest-
atom peak and the location of the inversion voltage. However, there are no features on 
the empty states that can be immediately identified with electronic states of known 
energy. For the purpose of quantifying the surface band gap it is most useful to have a 
known energetic feature at positive sample voltage, since such a feature will aid in the 



5 

interpolation procedure. For that reason we turn to a first-principles theoretical analysis 
of the spectrum of electronic surface states. Of course, it is well known that the computed 
energies of spectral features (particularly in the CB) can be substantially lower than the 
actual energies, and for this reason we do not rely on absolute energies from the 
computations. Rather, we seek some feature whose appearance can be matched between 
experiment and theory, and we then use the energy of this feature as expressed relative to 
known positions of high-lying conduction bands in the Ge. 
 
     Density-functional theory calculations were carried out using the generalized gradient 
approximation for the exchange-correlation potential18 and norm-conserving 
pseudopotentials for the ionic potential.19 We simulate the 8)Ge(111)c(2×  surface by a 
periodic slab geometry with a computationally feasible 22×  surface unit cell: Each slab 
unit cell contains 18 layers of Ge atoms and a vacuum region of 6 empty layers. The 
bottom side of the slab is passivated by H atoms, and one Ge adatom is added on the top 
side, thus maintaining the same population ratio of adatoms and rest-atoms as the 8)c(2×  
surface. The use of the reduced 22×  surface representation is sufficient for the present 
surface electronic-structure analysis since we are interested not in absolute energy levels 
but only in the coupling of surface and bulk states, as will be discussed shortly. The 
electronic wave functions are expanded into plane waves with a cutoff energy of 15 Ry. 
The k-space integration is done using a 2424×  k-point mesh in the 22×  surface 
Brillouin zone. Other computational details can be found elsewhere.20  
 
     Figure 2 shows the results of the bulk and surface electronic structure calculations. 
The calculated surface band structure shown in Fig. 2(b) represents well the projected 
bulk band structure and surface-derived electronic features: the rest-atom-derived band at 
around eV5.0− , the adatom-derived band at around eV5.0+ , and high-lying resonance 
states produced by the coupling between the adatom band and the bulk conduction bands. 
These surface and resonance states give rise to noticeable features in the calculated 
surface density of states as shown in Fig. 2(c).  
 
     Let us now compare the theoretical results with the experimental spectrum. Referring 
again to Fig. 1, we observe above the adatom-derived surface band a linearly increasing 
density of states. This feature is marked by a dashed line in Fig. 1, with this line 
intersecting the horizontal axis at V03.001.1 ± . In the theoretical state-density of Fig. 
2(c) we find a similar feature, also marked by a dashed line and with the intersection of 
that line on the vertical axis being eV04.063.0 ± . The origin of this linearly-increasing 
feature can be ascertained by careful consideration of the conduction band structure of 
Ge.  The CB minimum of bulk Ge occurs at the L-point of the Brillouin zone, with 
energy at low-temperatures of 0.744 eV relative to the VBM.21 Higher-lying band 
extrema occur at Γ -point and along the Δ -direction (near the X-point) with nearly 
identical energies of 0.90 eV. In addition, a second band passes through the X-point with 
minimum (along the XK-direction) very close to that of the X-point energy of 1.16 eV.21  
 
     From the theoretical results of Fig. 2, it is clear that the theoretical CB states 
associated with the Γ -valley minimum are strongly perturbed by the formation of the 
(111) reconstructed surface, i.e. those bulk states admix predominantly into the adatom 
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band of the reconstructed surface. The linearly-increasing portion of the theoretical state-
density is seen to be composed primarily of states from the L-valley and the two X-
valleys, with the observed onset of this feature in Fig. 2(c) lying midway between these 
bands. To determine a location of this onset relative to the actual band energies 
mentioned above, we note that the energies of the L-valley, the Δ -direction, and the X-
point given by the theory are 0.38, 0.73, and 0.91 eV, respectively, which are shifted 
relative to the above-mentioned actual values by 0.364, 0.17, and eV25.0 , respectively. 
The average of these shifts is eV261.0 , with a maximum spread of the shifts of about 

eV100.0± . We know from the theoretical results that all of the three bands make 
substantial contribution to the linearly-increasing state density; assuming that their 
relative contributions agree to within a factor of 2 we derive an error on the 0.261 eV 
shift of eV042.0± . We shift the theoretical value for the linearly-increasing CB feature 
by the same amount, arriving at a corrected value of eV058.0891.0 ±  (computing the 
error as the square root of the sum of the squares, as appropriate for uncorrelated errors). 
 
IV. Analysis 
A. Tip-induced Band Bending 
  
To relate the energies of spectral features to the sample-tip voltage at which they are 
observed, we must consider the effects of band bending within the semiconductor. We 
have previously presented a 3-dimensional electrostatic simulation method whereby the 
potential distribution of the semiconductor-vacuum-metal system can be computed.2 In 
particular, we obtain the electrostatic potential energy 0φ  at a point on the semiconductor 
surface directly opposite the tip apex. This surface band bending is measured relative to 
the potential energy at a point far inside the semiconductor. With 00 ≡φ  we would have 
the usual relationship between energy of a state E  and the sample-tip voltage V , 

eVEE F =− , where FE  is the Fermi-level in the sample. With nonzero band bending 
this equation must be modified by shifting the energies by the surface band bending, as 
illustrated in Fig. 3(a), so that  
 

0φ−=− eVEE F .     (1) 

In our simulations 0φ  is a function of the electrostatic potential energy of the probe-tip 

relative to a point far inside the semiconductor, Tφ , so that explicitly we have 

)(00 Tφφφ = . The quantity Tφ  equals φΔ+eV , where φΔ  is the contact potential 
defined as the work function of the tip minus that of the sample. Hence we have 

)(00 φφφ Δ+= eV .  
 
     Our electrostatic computations depend on a number of parameters, including sample-
tip separation, tip radius-of-curvature, and contact potential. Additional parameters are 
needed to describe this 8)Ge(111)c(2×  surface since it is found that extrinsic states 
arising from disorder and/or defects on the surface play an important role in the 
electrostatics;3 we adopt a model for these states in which the density per unit energy of 
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such states is a constant. Above some energy known as the charge-neutrality level the 
states are assumed to be negative when filled and neutral when empty, and below this 
energy they are neutral when filled and positive when empty. In our prior work we cut off 
this extrinsic distribution of states at the VBM, with the rationale that below that energy 
the resonant states would be strongly mixed with bulk states and hence not sustain 
significant surface charge. In the present work however we allow the extrinsic states to 
maintain their charge character even at energies below the VBM. A correct description 
lies between these two extremes, but the latter viewpoint is probably more appropriate in 
the present situation since the resonant states arise from dangling bonds which do 
maintain significant surface character, at least for energies not too far below the VBM.  
 
     Four quantities in the observed spectrum, Fig. 1, have known energies that we can use 
to constrain our parameters. First, the VB onset observed in the spectrum has, of course, a 
known energy; measuring all energies relative to the VBM this would be 0 eV. The band 
bending at this voltage of V011.0111.0 ±−  would be thus be eV011.0101.0 ±−  using a 
typical FE  value of 10 meV above the VBM.22 The second known feature is the rest-
atom spectral peak. This peak is observed to shift with tunnel current due to 
nonequilibrium effects in the occupation of extrinsic states,3 but at low currents and 
relatively high temperatures these effects are small and the peak position is found to be 

V05.097.0 ±− . In photoemission the energy of this state, at the Γ -point, was found to 
be about 0.85 eV below the VBM in some early work,23 but at eV05.066.0 ±  below the 
VBM in later work.5 We consider the latter to be more reliable due to improved 
resolution and sample preparation and hence we use that value, yielding a band bending 
of eV07.030.0 ±− (propagating the errors as the square root of the sum of the squares, 
as appropriate for these uncorrelated errors).  
 
     The third known spectral feature derives from the observed inversion voltage in Fig. 1 
at V03.090.1 ±− . In order for inversion of the Ge to occur the minimum magnitude band 
bending would be the FE  minus the surface gap, or eV11.049.0 ±−  using the estimated 
surface gap of eV1.05.0 ±  from our previous work. However, our prior computations of 
inversion current indicate a delay in the onset of inversion since the inversion currents at 
this minimum band bending are negligible; for inversion currents near 1 pA and tip radii 
of about 30 nm this delay is V1.02.0 ± , thus yielding a band bending of 

eV15.069.0 ±− . Finally, the theoretical results of Section III yield a band bending of 
eV11.013.0 ±  at a voltage of V03.001.1 ± . All of these data points are pictured in the 

plot of Fig. 4. 
 
     We compute curves of the band bending vs. voltage, matching these to the data points 
of Fig. 4. We find that a best fit between the data and the simulations can be obtained 
with a single, unique set of parameters, namely: a tip radius of 30 nm, sample-tip 
separation of 0.9 nm (for relatively low current setpoints of about 10 pA), contact 
potential of eV4.0− , extrinsic state density of 1212 eVcm104 −−× , and charge 
neutrality level of eV083.0−  relative to the VBM. These values are listed in the first 
row of Table I. In the following Section we justify this set of parameter values and we 
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estimate error ranges for each of them. The solid line in Fig. 4, labeled a, shows the band 
bending vs. voltage for these best-fit parameter values. The band bending increases 
linearly up to about 0.3 V, at which point accumulation of holes in the Ge VB starts to 
occur and a corresponding decrease in slope of the curve is seen. Our goal is to determine 
the band bending that occurs at the observed onset of the adatom-band, at 

V003.0495.0 ± . We denote this quantity A,0φ , as indicated by the horizontal dashed 
lines in Fig. 4. 
  
     The band bending analysis shown in Fig. 4 provides a very simple and direct 
illustration of the methodology of this paper. Essentially, we interpolate between several 
known band bending data points in order to determine the band bending A,0φ  at the 
onset of the adatom band. We follow this type of semiclassical analysis in the following 
section. However, we find that for a complete description of the problem we must take 
into account quantum effects that occur in the spectra, and those are discussed in Sections 
IV(C) and (D).  
 
B. Variation of Parameters 
 
As described above, we have five parameters in our simulation theory. By matching our 
simulation results to the band bending at the VBM (which is quite accurately known) we 
can eliminate one parameter from our theory; we choose this to be the charge neutrality 
level. This parameter is highly correlated with the contact potential; varying either of 
these parameters produces primarily an upwards or downwards shift of the band bending 
curves in Fig. 4 (i.e. affecting the y-intercept). Alternatively varying the extrinsic charge 
density causes the slope of the band bending curves to change, and varying the tip radius 
has a similar, though weaker, effect. The sample-tip separation affects both the slope and 
the y-intercept, and we find it convenient to discuss this parameter in relation to the 
contact potential. In the discussion below we first focus on the values of tip radius and 
extrinsic charge density, and we then turn to the contact potential and sample-tip 
separation. 
 
     The values of tip radii consistent with experiment were estimated in our prior work on 
the basis of the observed inversion currents to be 10 – 100 nm,3 and we continue to use 
this range for the present analysis. Using our best-fit values of contact potential and 
extrinsic state density, we compute the band bending that occurs for these extremal 
values of tip radii. These curve are shown as b and c in Fig. 4, and the parameter sets are 
listed in the second and third rows of Table I with the fifth column giving the respective 

A,0φ  values. Considering the extrinsic state density, we use our best-fit value for the tip 
radius of 30 nm and we evaluate the maximal values of band bending that are consistent 
with the data points of Fig. 4. The resulting band bending curves (not shown) fall quite 
close to b and c in Fig. 4, and the respective parameters are listed in the fourth and fifth 
rows of Table I. 
 
     With the ranges of tip radii and extrinsic state density determined as above, and 
considering for the moment a fixed sample-tip separation of 0.9 nm, the remaining 
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parameter in the theory is the contact potential. As mentioned above the primary effect of 
the contact potential is to shift of the band bending curves of Fig. 4 up or down, but since 
we are matching all of these to the observed VBM (i.e. by adjusting the charge neutrality 
level) then this effect is cancelled. A secondary influence of the contact potential is to 
affect the turnover of the band bending curves into the accumulation regime, and the 
resulting values of A,0φ  are thus affected. This effect is not large, but nevertheless we 
must somehow establish a range of contact potentials that are consistent with the 
experiment.  
 
     One means of constraining the values of contact potential is to examine the 
dependence of the band bending on separation, as determined in our prior work3 and 
shown in Fig. 5. Some uncertainty in the zero of separation occurs for this data; in our 
prior work we estimated that zero such that the separation values were lower bounds on 
the actual values, but in the present work it is more relevant to give upper bounds on the 
separations. We thus shift our zero by 0.3 nm compared to that shown in our prior work; 
it is possible that the actual separations for the data shown in Fig. 5 are 0.1 – 0.2 nm less 
than that shown there but it is unlikely that they are greater than those shown. 
 
     Figure 5 compares the experimental results with the simulations for the separation 
dependence, using various contact potential values and with our best-fit values for the tip 
radius and extrinsic state density. The predicted onset voltages are obtained by solving 
Eq. (1) for the appropriate sample voltage corresponding to a given energy of the band 
minimum (0 eV for the VB, and for the adatom band the energies that, using Table I, 
yield an onset of 0.495 V). The solid lines in Fig. 5 show the results for this semiclassical 
analysis. In Fig. 5(a) we see that, not surprisingly, positive contact potentials produce a 
rather large dependence of the adatom band edge on separation whereas values near 

eV4.0−  yield little dependence on separation, the latter case corresponding to nearly flat 
band conditions at the voltage corresponding to the adatom band edge. Comparing the 
simulation results with the experiment we thus estimate a range of possible contact 
potentials of about eV2.04.0 ±− . For the VBM, Fig. 5(b), there is more scatter in the 
data due most likely to variations in the density of extrinsic states across the surface. 
Also, for the VBM onsets, quantum effects turn out to be quite significant so we defer 
further analysis of Fig. 5(b) until after discussion of those effects. 
 
C. Tunneling Current-Voltage Characteristics 
 
Equation (1) of the previous section is based on the semiclassical notion of band bending. 
This type of analysis should work well for surface states since they are localized near the 
surface, but for bulk bands some additional quantum effects must be considered. For 
tunneling into a bulk VB or CB two types of quantum effects can shift a band onset away 
from the position given by Eq. (1). First, as shown in Fig. 3(b), states that are localized in 
the direction perpendicular to the surface can form, i.e., for band bending that is 
downwards for a CB or upwards for a VB. Such localized states can potentially shift the 
observed onset of a band e.g. by the energy of the lowest localized state relative to the 
band minimum at the surface. However, in the present system of interest we need not be 
concerned with such effects since it is the adatom-derived surface states that contribute to 
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the onset of the empty-state band in our observed spectra. We therefore do not further 
consider this particular effect here. 
 
     The second type of quantum effect that can be important in the tunneling spectra of 
semiconductor band onsets is pictured in Fig. 3(c), in which tailing of the wavefunctions 
occurs through a barrier region of the semiconductor. This phenomenon has been shown 
previously to have a large impact on the form of the tunnel current near the onset of a 
bulk band.1 We evaluate this effect here by explicit computations of the voltage-
dependence of the tunnel current. Our starting point for this computation is the WKB 
solution for the tunnel current of a planar barrier, as given by1,24 
 

( ) ( )[ ]
( )

( )∫∫
∞

∞−

−−= kED
kd

eVEfEfdE
h
eJ ,

2
2

2

2

π
   (2) 

where ( )Ef  and ( )eVEf −  are Fermi-Dirac occupation factors for the sample and tip 
respectively, k  is the parallel wavevector, and ( )kED ,  is the tunneling transmission 
term through the barrier. We assume that this formula can be applied to our case of a 
probe-tip in proximity to a flat surface, for which we take the barrier to be described by 
the potential along the central axis of our problem (any errors due to this assumption are 
expected to be quite small since the potential contours in the semiconductor have 
relatively large radius of curvature for all cases of interest).2,3 The integral over parallel 
wavevector in this equation is in general restricted by the band structures of both the 
sample and the probe-tip. However, for a usual metallic probe-tip with its band minimum 
about 8 eV below the Fermi-level, the restriction will be determined by the band structure 
of the semiconducting sample itself. For effective mass bands, the values of parallel 

wavevector then extend from 0 to a maximum value of ( )[ ] 2/12/*2 hCEEm −  for the 

conduction band ( )CEE >  or ( )[ ] 2/12/*2 hEEm V −  for the valence band ( )VEE < . 
 
     The transmission term in Eq. (2) is taken to be a product of the transmission through 
the vacuum and that through any barrier occurring in the semiconductor, ( ) ( ) ( )kEDkEDkED SV ,,, = . Within the WKB approximation the transmission factor 

for a trapezoidal barrier in the vacuum is given by ( ) ( )skEDV κ2exp, −=     (3a) 

where s  is the sample-tip separation and with 
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2 2
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⎤
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⎣
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⎞
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where φ  is the average work-function of the sample and tip. The effect of wavefunction 
tailing through the potential barrier in the semiconductor can described by a transmission 
term of the form,1  
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where A and B are turning points for the integral, iE  is the energy of the relevant band 
edge, and )(zφ  is the electrostatic potential energy in the semiconductor with 0)( →zφ  
far inside the semiconductor.  
 
     In the formulation of Eqs. (2) – (4), matching of the wavefunctions at the interfaces 
has been neglected. For effective mass bands and a planar barrier, and ignoring band 
bending in the semiconductor for a moment, this matching yields an additional term in 
the integrand of Eq. (2) given by25 
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    (5) 

where Sk  and Mk  are perpendicular components of the wavevectors of the 
semiconducting sample and metallic probe tip, respectively, and 0/* mm=α  is the ratio 

of effective mass to free-electron mass. Evaluation of Mk  requires knowledge of the 
location of the bottom of the conduction band for the metal; we take this to be 8 eV 
below the Fermi-level, a typical value for a simple metal [Eq. (5) depends only weakly on 
this value for the energies of interest].  
 
     Equation (5) is inapplicable when a barrier in the semiconductor is present, and within 
the WKB approximation it would be necessary to derive more complicated expressions 
including matching across both the semiconductor propagating and barrier regions and 
the semiconductor and vacuum barrier regions. A more direct method however, and one 
that we utilize here, is to perform a numerical integration of the Schrödinger equation 
along the entire length of the potential variation,13,14 i.e. from deep inside the 
semiconductor all the way to the probe-tip, taking care to include the effective-mass of 
the semiconductor in the matching conditions at the vacuum/semiconductor interface. We 
start with an outgoing wave on one far side (denoted by subscript 2) of the tunnel 
junction, and then integrate back through the junction to determine the amplitude of the 
incoming wave on the other far side (subscript 1). Denoting the wavevectors, effective 
masses, and amplitudes on either side as 1k , 1m , 1A , and 2k , 2m , 2A , respectively, the 

transmission term appearing in Eq. (2) is then given by  ( )( ) 2
122112 /// AAmmkk . 

 
     We make an explicit computation of the tunneling current, for a potential profile )(zφ  
obtained from a finite-element computation of band bending. For illustrative purposes we 
compare this result with that obtained by neglecting the wavefunction tails, i.e. by taking 
the transmission to be zero whenever a state encounters a nonzero barrier in the 
semiconductor. An example of such results are shown in Fig. 6, where we consider 
tunneling out of the valence band of Ge using heavy- and light-hole bands with effective 
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masses of 034.0 m  and 0043.0 m , respectively, and with our best-fit parameters as listed 
in the top row of Table I (with the NE  value being the semiclassical one).  
 
     We see from Fig. 6 that the effect of the wavefunction tails is to produce some 
additional tunnel current; in particular, for small voltages near the onset we find 
additional current extending into the gap region. If we view the results in terms of 
normalized conductance26 as shown in the lower inset of Fig. 6, we find from fits to the 
band edges [using Eq. (11b) of the Appendix] onset voltages of V065.0−  or V106.0−  
for the cases when the transmission through the semiconductor barrier is included or 
neglected, respectively. The latter value is quite close to the predicted onset according to 
Eq. (1) of V111.0−  for these parameters, but the former values differ from that by 

V046.0 . Such quantum effects become even larger for contact potentials that are more 
negative, since more downwards band bending occurs in that case at the voltage 
corresponding to the VB onset. 
 
     Also shown in Fig. 6 is a comparison of the computed conductance-voltage curve for 
the quantum computation (solid line) with experimental data (open circles), using the 
same data as in Fig. 1 but in this case normalized to constant sample-tip separation. It 
should be noted that the onset values obtained for these theoretical and the experimental 
curves agree to within 2 mV [that is, obtained by fitting ( ) ( )V/I/dV/dI  for both theory 
and experiment but using the same ( )VI / , obtained from the experiment, in both cases as 
described in the following paragraph],27 so that this comparison is a meaningful one. The 
overall shape of the theory curve agrees well with the experiment data for voltages as low 
as about V4.0− , below which the contribution of the rest-atom states to the conductance 
become important.  
 
      One technical issue arises in our use of the normalized conductance for the present 
situation of the 8)Ge(111)c(2×  surface. The spectrum for this surface contains a very 
large adatom band with onset at about V5.0+ , as seen in Fig. 1. When computing 
( )VI / , using a broadening of V1 , it turns out that this adatom band makes a non-
negligible contribution to the resulting ( )VI /  even at voltages as low as V1.0− . This 
effect shifts the apparent onset in ( ) ( )V/I/dV/dI  of the VB by about 10 mV compared 
to that obtained if the adatom band is absent (i.e. if we only use a bulk Ge CB, as done 
above). To obtain the best comparison of the experimental and simulated VB onset 
voltages it is thus desirable to use an ( )VI /  in the simulations that matches the 
experimental quantity. For this purpose we could attempt a detailed simulation of the 
adatom band itself, but an easier approach is simply to use the experimental ( )VI /   (i.e. 
from the data of Fig. 1) for normalizing the computed dVdI /  values. We follow this 
approach in all the results described in the following section. 
 
     The behavior of the potential profile shown in Fig. 6 is relatively simple, decreasing 
monotonically as a function of distance from far inside the semiconductor towards the 
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surface.  More complicated behavior can occur for positive contact potentials, in which 
)(zφ  initially decreases as one approaches the surface from far inside the semiconductor 

but than increases near the surface. For contact potentials greater than about 0.4 eV this 
behavior leads to localized states, i.e. accumulation states associated with the heavy hole 
band, forming near the surface. Such states are not observed in our experiments (even 
though the dynamic range of the measurement is large and such localized states have 
been observed in other situations such as for GaAs),28 and hence these situations can be 
excluded from consideration. But, even for smaller positive contact potentials that do not 
lead to localized states but still have nonmonotonic behavior of the potential, the 
predicted band onsets according to Eq. (1) will still be in error, with the error having an 
opposite sign than for the situation of Fig 6. The full theory described above utilizing 
numerical integration of the Schrödinger equation is applicable for all such situations, 
and computations based on that theory are made for each of the parameter sets considered 
below. 
  
D. Determination of Band Gap 
 
We now return to the analysis of Section IV(B), but using for the case of bulk bands the 
full current-voltage analysis of the previous section. Hence we match the observed onset 
of the VB with that obtained from the current-voltage computation [rather than matching 
the band bending values derived on the basis of Eq. (1)]. The next-to-last column of 
Table I lists the resulting values of NE  that yield a VB onset of V111.0− . We then 
evaluate the band bending A,0φ  at the voltage of +0.495 V corresponding to the onset of 
the adatom band, with the resulting values listed in the final column of Table I.  
 
     The quantum effect of wavefunction tailing through the semiconductor barrier region 
affects the analysis in two ways. First, in plots such as Fig. 4, the computed band bending 
for the VBM is shifted slightly below the data point due to the difference between the 
semiclassical and quantum onset voltages. (A similar type of full current-voltage analysis 
is in principle also necessary for the high lying CB onset at 1.01 V, but the uncertainty of 
this band bending value of this feature is sufficiently large so as to render this analysis 
unnecessary). However these shifts amount to only about 20 – 30 meV, so that the ranges 
of tip radii and extrinsic state density determined from the semiclassical analysis of Fig. 4 
can still be used. But the second effect of the quantum analysis is in the A,0φ  values 
themselves, in which case the quantum results are noticeably shifted from the 
semiclassical ones, as can be seen from Table I. 
  
     To restrict the contact potential values we return to the separation-dependence of Fig. 
5. The predicted VB onset voltages are modified due to the quantum effects, with the 
resulting dashed curves in Fig. 5(b) showing a significantly reduced separation-
dependence compared to the semiclassical results. From Fig. 5(a) a best-fit value of 
contact potential was found in Section IV(B) to be about eV2.04.0 ±− . This range also 
appears to be consistent with the quantum results of Fig. 5(b), although the scatter in that 
data prevents any further discrimination of the value. We therefore use this range of 
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eV2.04.0 ±−  for the contact potential, and the resulting parameter sets and A,0φ  values 
are listed in the final two rows of Table I. We note that the values of charge neutrality 
level for the semiclassical results in Table I fall substantially below the VBM, a situation 
that we cannot exclude but seems slightly unphysical, but in any case for the quantum 
analysis the situation changes and these values are quite close to the VBM. 
 
     Examining the entries in the final column of Table I, we find a range of A,0φ  
extending from 4 to meV35 . We have also considered variations in the values of more 
than one parameter, but still maintaining an overall band bending curve that falls within 
the range of curves b and c in Fig. 4. In this way we find a slightly larger range of A,0φ  
values that are consistent with experiment, namely, 4−  to 40 meV. Finally, we also 
consider the errors of V010.0±  on the VBM onset value and V003.0±  on the 0.495 V 
adatom-band onset that were used for matching; recomputing our results using the 
extremal values of these quantities leads to a range of A,0φ  value of 11−  to 42 meV. 
Thus we arrive at a final value for the surface gap of eV027.0490.0 ± , or in round 
figures, eV03.049.0 ± . 
 
V. Conclusions 

 
In summary, we have used STS to determine the surface band gap of the 8)Ge(111)c(2×  
surface, i.e. the energy difference between the bulk VBM and the minimum of the 
adatom-induced surface band. Measurements were performed over a temperature range 
of 7 – 61 K, although the data are averaged together (and no systematic variation with 
temperature is observed) so that our result represents the gap at K30≈ . The surface gap 
is found to have a width of eV03.049.0 ± .  
 
     In prior work, Büchel and Lüth used surface photovoltage measurements to determine 
onsets at 0.4 and 0.45 eV with the band associated with the first onset being apparently 
much smaller than that for the second.6 More recently, Popik et al. observed numerous 
features within the bulk gap using low-energy electron backscattering, and one feature at 
0.48 above the VBM was argued to correspond to a maximum in the empty state density.7 
Their discussion relied on comparisons with earlier works, although most of these (except 
for the work of Büchel and Lüth just mentioned) actually involved measurement on the 

1Ge(111)2×  surface rather than the 8)c(2×  surface. We therefore consider the surface 
photovoltage onsets at 0.4 and 0.45 eV to be the most reliable prior measurement of the 
surface gap.  
 
     The difference between the two previously observed onsets is somewhat smaller than 
the energy difference associated with the states of the two inequivalent Ge adatoms 
(about 0.15 eV in STS3 or 0.2 eV from theory17), and additionally the band associated 
with the first onset appears to be very much smaller than that associated with the second. 
For that type of optical experiment it must also be kept in mind that excitonic effects can 
produce a gap lowering; for the surface gap of 1Ge(111)2×  surface this exciton binding 
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amounts to about 0.2 eV, although it should be realized that the exciton in that case forms 
between bonding and antibonding state of similar nature (i.e. associated with π -bonded 
chains)11 as opposed to the present case of a transition from a bulk-like VB state to an 
adatom-derived surface state. In any case, we tentatively associate the lower onset at 0.4 
eV with defect-induced states on the surface, i.e. the same as the extrinsic states seen in 
our STS and STM work, the presence of which is inherent to the formation of the 8)c(2×  
reconstruction from the cleaved 2×1 surface.15 We further associate the 0.45 eV value 
with the surface gap, with the small difference between that result and our value of 

eV03.049.0 ±  possibly involving an excitonic effect. 
 
     We close with several comments on the methodology of this work. We have pursued 
here an analysis based in large part on the semiclassical notion of band bending, i.e. using 
Eq. (1). This type of analysis could be called an energy alignment method, and its 
utilization is quite simple since only values of the potential (not the tunneling current) are 
required. On the other hand, quantum effects are certainly present in the real physical 
situation; in the present case these are found to be quite small, but in other situations they 
may be larger. For example, in a recent re-analysis of STS data from InGaP/GaAs 
heterojunctions29 it has been found that due to the large values of contact potential and 
the relatively restricted voltage-range of the spectra that the quantum effects dominate the 
band onsets, and consequently an energy alignment type of analysis fails. In that case one 
must compute tunneling current-voltage characteristics over the entire spectrum and 
match those to the observed spectra, in a type of lineshape analysis. The theory presented 
in this work enables that type of analysis. 
 
     Our theory for computation of tunnel currents has focused on bulk bands, but it can 
also be extended in a straightforward way to the case of surface bands using some model 
for the surface state dispersion (e.g. as in Ref. [30], but with the energies of the surface 
states shifted by 0φ ). Of course, in reality, resonant bands have mixed surface and bulk 
character, but in the absence of a detailed local-state-density computation one would not 
know the precise nature of each given state. Hence, in a typical simulation of the type 
described here one must assume that a given band has either surface or bulk character. 
For our present computations we have assumed the states associated with the VB feature 
in the spectra to have bulk character, although some prior experiments have shown it to 
have partial surface character (i.e. as expected through mixing with rest-atom derived 
states).5 This assumption does however not lead to any additional uncertainty in our 
derived surface gap, since even for the extreme opposite assumption of full surface 
character for the VB feature the resulting analysis would just proceed utilizing Eq. (1), 
with the results being the semiclassical ones listed in Table I. Those results do not differ 
significantly from the quantum ones within the error range of our final result, although 
the former do tend to favor gap values in the lower part of that range. 
  
   Finally, we note that the analysis of this work has proceeded with the assumption that 
the extrinsic states on the surface can be treated as spatially uniform, whereas we know 
that they primarily originate from 8)c(2×  domain boundaries that are located 10 – 20 nm 
from the point at which spectra are acquired. To evaluate the consequence of this 
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assumption we have redone our analysis using a model in which there are no extrinsic 
states for a radius of 10 nm from the central axis of the problem, and for larger radii we 
assume a density that is an order-of-magnitude larger than 1212 eVcm104 −−×  such that 
the computed band bending curves are very similar to those of Fig. 4. The charge 
neutrality levels needed to match the VB onset then shift slightly compared to those of 
Table I, and the resulting A,0φ  values are about 9 meV less than those listed in the table. 
This effect is thus small, and does not significantly impact our final result for the surface 
gap. The same conclusion also applies to the assumed energy uniformity of the spectrum 
of extrinsic states: We know experimentally that these states are reasonably well 
distributed over the gap;3 this observation, coupled with the fact that the tip-induced band 
bending varies with distance from the tip (so that at any particular voltage the surface 
Fermi-level intersects the spectrum of extrinsic states at a different energy for each 
distance), again leads to a negligible sensitivity of our final result on the energy 
nonuniformity of the extrinsic states. 
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Appendix: Band Edge Determination using Normalized Spectra 
 
In the past, our spectroscopic normalization was used primarily as a qualitative means of 
analysis, enabling the spectra to be viewed on a linear (rather than logarithmic) scale. In 
the present work, however, we have used the normalized conductance in a more 
quantitative way in order to determine band edge energies. For this purpose, a careful re-
examination of the analysis procedure is needed. We accomplish that here by using 
simulated current and conductance characteristics, using the formulas described in 
Section IV(C) for tunneling from a metal probe-tip into a semiconductor effective-mass 
band, and neglecting tip-induced band bending [Eq. (4)]. Near a band edge, the vacuum 
transmission term of Eq. (3) can be approximated as being independent of energy. 
Neglecting the boundary matching term of Eq. (5), the integral of Eq. (2) is then easily 
evaluated to yield a quadratic voltage-dependence of the current and hence a linear 
voltage-dependence for the conductance. Including Eq. (5) however yields a voltage 
onset of the conductance varying with a 3/2 power;31 this behavior persists to higher 
voltages, and comparing with experimental data1,33 we find better agreement with the 
theory when this term is included. In Fig. 7(a) we plot such an onset, computed using a 
temperature of 10 K, sample-tip separation of 0.9 nm, effective mass of 01.0 m , 
conduction band onset of V5.0+ , and assuming a tunnel junction area of 1 nm2. The 
rather nonlinear behavior of the onset is clearly seen in the figure. 
 
     Let us now consider use of the normalized conductance ( ) ( )V/I/dV/dI  rather than 
simply dVdI / . Phenomenologically, this normalized conductance has been found to 
produce what appear to be well-defined band edges with linear onset behavior.32,33 In this 
normalization, ( )VI /  is formed by broadening of )/( VI  through convolution with some 
suitable function (this broadening is necessary since, near a band edge, the current 
approaches zero faster than the conductance and in the absence of any broadening the 
ratio ( ) ( )VIdVdI //  diverges at a band edge). We examine the normalization procedure 
in detail here, using various methods to accomplish it. We first consider broadening using 
an exponential convolution-function, )2/()/exp( VVV ′Δ′Δ− , where V ′Δ  is the 
broadening parameter. As described in Ref. [33] we include a scaling function 

)exp( Va′−  multiplying )/( VI  such that the convolution, at some voltage V , weights 
voltages above and below V  approximately equally. An appropriate value of a′  is given 
by the voltage dependence of the tunnel barrier transmission term,14 

( )[ ]{ }h/2/22exp 2/1Vems −− φ . Equating this form to [ ]{ } { }Vams ′− exp/22exp 2/1
hφ  

yields, to lowest order in V , ( )[ ] 1-2/1 V1/2/ ≈≈′ hφmesa . The complete formula for 
( )VI /  is then given by 
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Normalized spectra computed using this method are shown in Fig. 7(b), with various 
values of V ′Δ  and using the simulated conductance vs. voltage curve of Fig. 7(a). For the 
purpose of the normalization it is necessary to assume a valence band (at negative 
voltages), which we take to have an effective mass of 01.0 m  and onset of V5.0− . 
 
     We take this opportunity to point out a significant difference between the convolution 
method discussed in Ref. [33] and the analysis method that was actually used in that 
work. The difference between the methods is most easily described in terms of Fourier 
analysis, which in practice is how we compute the convolutions.32 The Fourier transform 
of the scaled )/( VI  is multiplied by the Fourier transform of the convolution-function, 
and an inverse transform is then made of this product, which after inverse scaling yields 
( )VI / . Let us denote by f  the frequency variable conjugate to voltage. The Fourier 
transform of the exponential convolution function is given by 

2
0

21
1

ff+
       (7a) 

with 

V
f

′Δ
=

π2
1

0   .    (7b) 

Although this exponential broadening method was explicitly discussed in Ref. [33] we 
have recently realized that the method actually implemented in the computer program 
used there is not given by Eq. (7). Rather we have used (in Ref. [33] and in all subsequent 
works) the following form, 

01
1

ff+
       (8a) 

with 

V
f

Δ
=

1
0   .     (8b) 

There are two discrepancies in this form compared to Eq. (7) – the power of 2 on the 
frequency in Eq. (7a) is only a linear power in Eq. (8a), and the factor of π2  in the 
denominator of Eq. (7b) is absent in Eq. (8b). This second discrepancy can be easily 
accommodated simply by taking VΔ  to be V ′Δπ2 . The first discrepancy is potentially 
more significant, but we find from a comparison of normalized spectra computed using 
Eqs. (7) and (8) that the methods produce very similar results so long as the 0f  parameter 
in the latter case is about 2 times greater then that of the former. Combined with the 
previous factor of π2 , we find that the normalization methods expressed by Eqs. (7) or 
(8) are nearly equivalent so long as VV ′Δ≈Δ 3 .  
 
     For completeness, we derive the convolution-function corresponding to Eq. (8). This 
is given by its inverse Fourier transform, which we evaluate to be VVVg ΔΔ /)/2(2 π  
where )(xg  is an auxiliary function to the Sine and Cosine integrals Si(x) and Ci(x), 
given by )](Ci)cos()(si)[sin()( xxxxxg +−=  with )2/()(Si)(si π−= xx .34 Efficient 
algorithms for evaluating )(xg  are known.34 The function )(xg  for 0>x  decreases 
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monotonically with x . It diverges logarithmically as 0→x , and it decreases relatively 
rapidly with x  up until 2.1≈x  where it is comparable in magnitude to )exp( x− . For 

larger values of x  it decreases relatively slowly, varying asymptotically as 2/1 x . The 
median values for )(xg  and )exp( x−  for 0>x  are comparable, being 62.0≈x  for the 
former and 693.0=x  for the latter. With this form for the convolution-function, the 
formula for ( )VI /  computed according to this second normalization method is given by 
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Normalized spectra obtained using this method are shown in Fig. 7(c). We see that the 
results of Figs. 7(b) and (c) are nearly identical, so long as one includes the factor of 3 
between their respective broadening parameters. 
 
     We also show in Fig. 7(d) the results for a third type of normalization, in which we 
compute simply ])/[(/)/( ε+VIdVdI  where ε  is a parameter. Again, very similar 
results are obtained as with the other normalization methods, for appropriate values of the 
parameters. The methods of Figs. 7(b) and (c) each have two parameters as compared 
with a single parameter for the method of Fig. 7(d), which is an apparent advantage of the 
latter. However, as discussed in Ref. [33], the former two methods can be applied in 
combination with the acquisition method of variable sample-tip separation such that the 
analysis involves only a single parameter. Also, these two methods can be applied to any 
data set using nearly invariant parameter values, whereas the method of adding ε  to the 
denominator requires a different parameter value for different ranges of the conductance. 
In any case there is no large difference between the results of the various methods; for 
consistency with our past results we continue our use of Eq. (8) for normalization of our 
spectra. 
  
     Referring again to Fig. 7, it is apparent that a good choice of parameter values in the 
normalization is that which produces the solid lines in each of Figs. 7(b) – (d), i.e. in 
which the edge of the band is quite sharp and linear but for which no significant 
overshoot occurs at the edge. It is thus seen how the normalization produces some 
linearization of the band edge. Having found this behavior, we seek a simple functional 
form, which includes temperature dependence, to describe such an onset. To derive this 
we first write the tunnel current in a very approximate manner as 

( ) ( )[ ] ( )∫
∞

∞−

−−∝ dEEeVEfEfI Sρ     (10) 

where ( )ESρ  is an effective state-density for the sample which includes the effect of the 
vacuum transmission factor in selecting states over a certain range of k  values (we are 
assuming a constant tip state-density here). To obtain a linear dependence of conductance 
on voltage we then use a linearly increasing sample state-density, 

( ) ( ) ( )00 eVEEeVEEE FFS −−−−∝ θρ  where 0eV  is the onset energy of the band 
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relative to the sample Fermi-level, and ( )Eθ  is a step function. Assuming that the band 
onset is well separated from the sample Fermi-level, the resulting form for the 
conductance is found to be  

( ) ( )

( ) ( )( )[ ] (11b)1ln
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where ekT /≡β  and with C  being a parameter. These equations are suitable for a 
conduction band extending over 0eVEE F >− ; the appropriate form for a valence band 
extending over 0eVEE F <−  can be obtained by replacing both occurrences of ( )0VV −  
in Eq. (11b) by ( )VV −0 . As discussed above, we perform fits to the normalized 
conductance rather than to dVdI /  itself, since it is the former that has the most linear 
behavior near a band edge. 
 
     We show in Fig. 8 results of fitting this functional form to the simulated curves of the 
normalized conductance [the normalization being performed using Eq. (8), with 

-1V1=′a  and V1=ΔV ]. We perform the fits over values of normalized conductance 
values over the range 0 to 2.0. For the simulated spectra at temperatures of 10, 100, 200, 
and 300 K respectively, the results for the 0V  parameter of the fits are 0.508, 0.506, 
0.502, and 0.493 V for the eV5.0+  onset and 509.0− , 508.0− , 507.0− , and 

V505.0−  for the eV5.0−  onset. The discrepancy between the fit results and the actual 
onsets are thus less than 10 mV in all cases. In contrast, if we simply fit the 0=T  form 
to the 300 K results we obtain for the eV5.0+  onset an error of 38 mV. These results are 
fairly independent of the parameters a′  and VΔ  used for the normalization; varying 
either of these values by a factor of two produces only small changes (5 mV at 10 K, and 
15 mV at 300 K) to the fit results. 
 
     To fully describe the observed band onsets we also consider the additional broadening 
effect of the modulation voltage used for the data acquisition. The measured conductance 
is obtained from the input signal, ( )VI , according to the actions of the demodulator and 
integrator in the lock-in amplifier as given by   

( )∫ +=
π
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π
θθ2

0
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2
sin
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VVI
V

d
dV
dI     (12) 

where rmsV  is the rms modulation voltage used in the measurement. We therefore 
perform simulations using this form for dVdI /  rather than the numerical derivative of 
( )VI  as done for the simulations in Fig. 8. The results (not shown) do indeed display 

additional broadening at the onset. We fit the simulated results using the form given by 
Eq. (11b), but with a modified value for β  which we take to be 

( ) ( )[ ] 2/122/ rmsVcekT +=β     (13) 
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where c is a parameter. We choose a value for c such that the fits based on Eq. (11b) 
accurately reproduce the simulated normalized conductance. Considering temperatures in 
the range 10 – 300 K and for rmsV  values as large as 50 mV, we find an optimal value for 
c of about 0.4. The errors in the onset voltages 0V  thus obtained have magnitude of about 

rmsV15.0  over and above that from the temperature dependence alone. In contrast, if no 
accommodation is made for the modulation voltage then this additional error is about 

rmsV5.0 . 
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Table I. Various sets of values of the theoretical parameters, assuming a sample-tip 
separation of 0.9 nm, that produce a match between the simulations and the 
experimentally determined band bending values: tip radius TR , density of extrinsic 
surface states σ , contact potential φΔ , and charge neutrality level NE  relative to the 
VBM. Values of NE  are determined in the semiclassical analysis by matching to a band 
bending of V101.0−  at the VB onset voltage of V111.0− , and in the quantum analysis 
values by matching to the VB onset voltage itself. The resulting band bending at a 
voltage of V495.0+ , corresponding to the onset of the adatom band, is listed as A,0φ .  
  
 

 

 
 

semiclassical quantum TR  
(nm) 

σ   
(cm-2eV-1) 

φΔ  
(eV) NE  

(eV) 
A,0φ   

(meV) 
NE  

(eV) 
A,0φ   

(meV) 
       

30 4×1012 – 0.4 – 0.083 28 – 0.004 21 
10 4×1012 – 0.4 – 0.008 20 0.050 4 
100 4×1012 – 0.4 – 0.186 38 – 0.098 30 
30 2×1012 – 0.4 – 0.233 32 – 0.072 25 
30 7×1012 – 0.4 – 0.018 23 0.029 11 
30 4×1012 – 0.2 0.028 43 0.082 35 
30 4×1012 – 0.6 – 0.255 21 – 0.111 5 
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FIG 1. Tunneling spectrum of the 8)Ge(111)c(2×  surface, acquired at 61 K. Insets show 
fitting of the onsets of the valence band and of the adatom surface-band, to a function that 
assumes linear onset behavior modified by effects of temperature and modulation 
voltage.  
 

 
FIG 2. (a) Bulk band structure of Ge along the symmetry lines connecting L= 

( )2/1,2/1,2/1/2 aπ , X= ( )1,0,0/2 aπ , and L’= ( )2/1,2/1,2/1/2 +−−aπ . The bulk lattice 
constant, a , was calculated as 0.578 nm. (b) Surface band structure of 22)111(Ge × : 
Large and medium open circles represent surface localized states containing more than 
0.02% and 0.01%, respectively, of charge in the surface region of 0.45 – 0.55 nm away 
from the ideal first layer. (c) Surface density of states of 22)111(Ge ×  obtained by 
integrating the local density of states over the surface region of 0.45 – 0.55 nm away 
from the ideal first layer. Arrows indicate the band-state origins of the state-density 
peaks. All energies are given relative to the VBM. 
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FIG 3. (a) Sketch of energy bands used for computations of the electrostatic potential. 
The sample Fermi-level is denoted by FE  with the tip Fermi-level at eVEF +  where V  
is the sample-tip voltage. The band bending at the surface is denoted by 0φ , with V  and 

0φ  both being negative in this diagram. Quantum effects within the semiconductor can 
produce shifts in the observed band edges, as illustrated in (b) and (c) for localized state 
formation and for wavefunction tailing through a depletion region, respectively. 
 

 
FIG 4. Band bending in the semiconductor at a point opposite the probe tip apex, as a 
function of sample-tip voltage. Data points are shown for spectral features that have 
known energy such that the band bending can be absolutely determined (VBM – valence 
band maximum, RA – peak of rest-atom band, CB' – high lying conduction band feature, 
and INV – voltage at which inversion occurs). Theoretical curves interpolating between 
the data points are shown, with the solid line giving a typical result and the dotted lines 
giving maximal results consistent with the data. The vertical dashed line is located at the 
position of the observed onset of the adatom band (AA), with the horizontal dashed lines 
then giving the band bending at this voltage. 
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FIG 5. Dependence of the onsets of (a) the adatom band and (b) the VB, as a function of 
the sample-tip separation. Data points show experimental results with the error bars 
representing the precision of curve fitting. Lines show simulated results for the contact 
potential values indicated, with solid lines showing semiclassical results and dashed lines 
quantum results. 

 
FIG 6. Conductance at constant sample-tip separation for the spectral region near the 
VBM, comparing simulated results with (solid line) and without (dashed line) quantum 
effects, along with experimental data (open circles). The lower inset shows computed 
( ) ( )V/I/dV/dI  curve for the simulated results. The upper inset shows the potential 
profile from the simulations at a sample-tip voltage of V111.0− , with the arrow 
indicating the transmission through the semiconductor depletion region that is included in 
the quantum simulations. 
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FIG 7. Comparison of various methods for spectroscopic normalization: (a) Simulated 
curve of dVdI /  based on tunneling at a temperature of 10 K into an effective-mass band 
with onset at V5.0+ . (b) Normalization performed by convolution of VI /  with 
exponential function, for the values of a′  and V ′Δ  indicated. (c) Normalization 
performed by convolution of VI /  with function composed of sine- and cosine-integrals, 
for the values of a′  and VΔ  indicated. (d) Normalization performed by addition of a 
constant to VI / , for the values of ε  indicated. 
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FIG 8. Simulation of tunneling spectra for tunneling into effective mass bands, with 
onsets at V5.0± . The computed spectra are displayed as (a) conductance at constant 
sample-tip separation (one decade per division) and (b) normalized conductance on a 
linear scale, and results are shown for temperatures of 10 K (dotted lines) and 300 K 
(solid lines). The insets in (b) show an expanded view of the band onsets, with circles 
indicating a fit to the 300 K onset using a functional form that includes the temperature 
dependence of the normalized conductance.  
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