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Abstract 
     Scanning tunneling spectroscopy is used to study p-type Ge(111)c( 82× ) surfaces 
over the temperature range 7 to 61 K. Surface states arising from adatoms and rest-atoms 
are observed. With consideration of tip- induced band bending, a surface band gap of 

1050 .. ± eV separating the bulk valence band from the surface adatom band is deduced. 
Peak positions of adatom states are located at energies of eV020090 .. ± and 

eV030240 .. ±  above this gap. A spectral feature arising from inversion of the adatom 
state occupation is also identified. A solution of Poisson's equation for the tip-
semiconductor system yields a value for the interband current in agreement with the 
observations, for an assumed tip radius of 100 nm. The rest-atom spectral peak, observed 
at eV0.1≈  below the valence band maximum, is observed to shift as a function of tunnel 
current. It is argued that nonequilibrium occupation of disorder- induced surface states 
produces this shift.  
 
PACS numbers: 73.20.Hb, 71.20.Nr, 61.16.Ch 
 
I. Introduction 
 
     Studies of semiconductors surfaces using scanning tunneling spectroscopy (STS) have 
been actively pursued for nearly 20 years, but it is only over the past 5 years that 
measurements at low temperatures have been conducted. The reduction in temperature 
permits not only a significant increase in spectral resolution but also may allow the study 
of temperature-dependent transport properties. Recently, interesting temperature-
dependent STM and STS results have been reported by Takayanagi and co-workers for 
for Si(001) 12 × [1], and by Dujardin et al. for clean and H-covered Ge(111)c( 82× ) [2]. 
The physical mechanisms behind those results are not completely clear, but it was 
suggested that temperature-dependent transport of carriers in the semiconductor may in 
some way be affecting the tunnel current [1-3]. Earlier work at room temperature for 

SiC(0001) o30-33 R×  surfaces also demonstrated the existence of transport 
limitations in the semiconductor during STS experiments [4]. 
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     In this work we study tunneling spectra acquired from p-type Ge(111)c( 82× ) 
surfaces, over the temperature range 7 to 61 K and over a wide range of tunnel currents 
with setpoint currents (i.e. corresponding the current near one of the endpoints of the 
spectra) ranging from 2 pA to 7 nA. Features arising from the surface adatoms and rest-
atoms are identified in the spectra. For large negative sample bias voltages we observe 
inversion of the occupation of the adatom states, thereby conclusively demonstrating the 
occurrence of tip-induced band bending [5] in the semiconductor. We also observe that 
the rest-atom peak position shifts markedly as a function of tunnel current. We argue that 
this effect can be attributed to the tip-induced band bending, but only if we include the 
influence of defect states associated with c( 82× ) domain boundaries. We argue that 
nonequilibrium occupation (i.e. charging) of these states, the amount of which varies with 
the current, produces the observed rest-atom peak shifts. We observe a temperature 
dependence of this shift, consistent with that seen by Dujardin et al. [2], and this 
dependence can be accounted for within our model of transport- limited occupation of the 
defect states.  
 
     Detailed electrostatic computations are used to quantify the tip-induced band bending. 
The two main parameters in the computations are the probe-tip radius of curvature and 
the density of defect states. For the case of carrier accumulation at the surface (positive 
sample voltage for p-type material) the results are relatively independent of the 
computational parameters and we are able to deduce values of the surface band gap and 
the energies of the adatom states with considerably greater accuracy than previous 
measurements [6-8]. For negative voltages, corresponding to semiconductor depletion or 
inversion, we choose parameter values in the computation to yield agreement with the 
observed low-current values of the inversion voltage and the rest-atom peak position. 
Then, we find that the high-current values for these quantities can be understood by 
assuming a nonequilibrium occupation of the extrinsic surface states, i.e. with a surface 
Fermi- level that differs from the bulk value. We conclude that transport limitations in the 
extrinsic states are quite significant at low temperature and high current.  
 
II. Experimental 
 
     Low-temperature experiments were performed on p-type Ge wafers having resistivity 

of cm2.0 Ω , corresponding to a doping concentration of about 316 cm102 −× . Pieces of 
the {111}-oriented wafers were cleaved in ultra-high-vacuum (pressure of about 

10101 −× Torr), exposing a (111) crystal face. Cleavage was performed at room 
temperature, and immediately after cleavage the samples were resistively heated to a 
temperature of about 500°C for a few minutes. Within a few minutes after heating, the 
samples were cooled to about 50 K and were introduced into a liquid-He cryostat 
containing the home-built STM [9]. Probe-tips were formed prior to sample cleavage by 
making a controlled mechanical contact of a tungsten tip to a clean copper surface, 
thereby transferring copper atoms to the end of the tip.  Metallic tips are reliably formed 
in this manner [10]. We have obtained spectra from Ge(111)c( 82× ) surfaces using 
several different samples and probe tips, with good overall consistency in the results. The 
detailed sequence of current- and temperature-dependent spectra described here were, 
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however, obtained using a single probe tip, with no large tip changes either performed or 
observed during the measurements.  
 
     We have also performed experiments at room temperature, using an STM previously 
described [11]. In this case n-type Ge with resistivity of cm2.0 Ω  was studied. Samples 
were cleaved and annealed in an identical manner as for the low-temperature work. Pt-Ir 
probe tips were used, cleaned by electron bombardment [11]. Spectra were acquired both 
simultaneous with images and at times between image acquisition. With a drift-rate in the 
STM of less then 0.2 nm/min, and having images acquired at known times separated by 
5-10 minutes, the spatial locations of all spectra are known to an accuracy of better than 
0.5 nm. 
  
     Tunneling spectra were acquired using a voltage modulation of 10−20 mV and 
employing a lock- in amplifier to obtain the conductance.  The technique of continuously 
varying sample-tip separation was used to obtain a large dynamic range in the 
measurements [12], applying an offset to the sample-tip separation of the form 

( ) VaVs =∆  where V is the sample-tip voltage. Values of a are chosen to obtain 
conveniently measurable current and conductance values, with a value of about 1 Å/V 
typically being used (separate values of a are used for positive and negative voltages).  
 
     Normalization of the spectra was done in two steps. First, we scale the results to 
constant sample-tip separation using the scaling factor ( )s∆κ2exp  where values of κ  are 

determined experimentally [11]. We find κ  values to be generally within -1Å0.1±  of 

the value -1Å1.0 , except for large negative voltages where they fall to as low as -1Å0.5 . 
In this latter case we believe that the reduced values arise from tip- induced band bending, 
which is most predominant at these voltage as discussed Section IV. We note that 
changes in the calibration of the STM piezoelectric elements were carefully included in 
our analysis; these changes were determined by observations of unit cell dimensions and 
step heights at the various temperatures. Results for the conductance at constant sample-
tip separation are displayed below, using a logarithmic scale to reveal the 3-4 orders of 
magnitude range in the data. The second step in the normalization, done to permit 
viewing of the data on a linear scale, is to compute the ratio of differential conductance to 
total conductance, ( ) ( )V/I/dV/dI . The denominator of this quantity is formed by 
applying some broadening to ( )V/I  in order to form a suitable normalization quantity 

(i.e. to avoid divergences which otherwise occur at the band edges [11,12]). ( )VI /  is 

formed according to Eq. (5) of Ref. [11], using parameter values of  -1V2=′a  and 
V1=∆V as defined there. 

  
III. Results 
A. Surface structure  
 
     The structure of the Ge(111)c( 82× ) surface is well established. It consists of an 
arrangement of adatoms and rest-atoms on the surface, with each c( 82× ) unit cell 
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consisting of a sequence of 22 ×  and c( 42 × ) local geometries [6]. Surface states are 
associated with rest-atoms and adatoms, with the former states being completely filled 
with electrons and the latter empty. There are two inequivalent sites for both adatoms and 
rest-atoms in each c( 82× ) cell, leading to a small energetic splitting within each surface 
band [13,14]. An STM image of the surface obtained using our preparation method is 
shown in Fig. 1. We find well-ordered c( 82× ) domains with diameter of about 50 nm, 
separated by domain boundaries in which the adatom and rest-atom arrangement is 
somewhat disordered. This arrangement of ordered domains is well understood on the 
basis of how the c( 82× ) structures forms during annealing of the cleaved surface [8]. 
  
     As will be discussed in Section IV, an important parameter that is needed to fully 
understand our observed tunneling spectra is the density of extrinsic surface states arising 
from defects and disorder on the surface (these states produce surface charging, which 
leads to observed spectral shifts). We can roughly estimate the density of such states 
based on STM images such as Fig. 1. We observe a typical diameter of ordered domains 
of about 50 nm, and they are surrounded by domain boundaries about 2 nm wide. If we 
assume 2 dangling bond states (one adatom and one rest-atom) for each 22 ×  unit cell of 
the boundary, we arrive at a total density of extrinsic surface states of about 

213 cm103 −× , or 0.04 monolayers.  
 
B. Tunneling spectra 
 
     Low-temperature tunneling spectra were acquired over well-ordered c( 82× ) regions, 
and the spectra displayed here consist of spatially averaged results composed generally of 
10-20 individual spectra acquired at various points through the c( 82× ) unit cell. 
(Detailed spatially-resolved spectra were also examined during the course of the study, 
and they display results as expected with the adatom and rest-atom derived peaks being 
localized at their respective spatial locations). In Fig. 2 we display result s for a spectrum 
acquired at a temperatures of 61 K, and for a tunnel current setpoint of 7 pA. The tunnel 
current setpoint is defined as the constant-current used for STM imaging prior to 
acquisition of the spectra; the voltage used for that imaging corresponds to a voltage near 
one of the endpoints of each spectra (approximately +2.0 or 0.2−  V). The current 
setpoint thus determines the sample-tip separation, with this separation decreasing by 
about Å0.1  for each order-of-magnitude increase in current setpoint.  
 
     A number of features can be readily identified in the spectrum of Fig. 2. A band gap is 
visible extending from about 10.−  to 0.5 V. The surface Fermi- level (0 V in the 
spectrum) is located near the bottom of the gap, as expected for p-type material. A large 
spectral peak is seen centered at about 0.7 V and it can be attributed to the empty states 
associated with the surface adatoms [6,8], in agreement with inverse photoemission 
results [7]. This spectral peak appears to have two components, consistent with the 
expectation of a splitting due to the two inequivalent types of adatoms in the c( 82× ) 
structure [13] (theoretically, this splitting is expected to be 0.2 eV [14]). In the filled 
states, at about V01.− , a spectral feature deriving from the surface rest-atoms is visible. 
This rest-atom band is resonant with valence band (VB) states [15], with the VB 
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maximum seen in the spectra at about 10.−  V. As discussed below the location of the 
rest-atom peak shows a continuous variation as a function of current, but the low-current 
position of 90.−  eV relative to the VB maximum is in reasonable agreement with the 
location seen in photoemission of 70.−  eV [15]. Finally, above the adatom band, at 
voltages above +1.0 V, the current derives either from conduction band (CB) states or 
possibly from higher-lying surface bands. The observed surface gap is thus seen to be 
bounded by bulk VB states at its lower edge and surface adatom-derived states at its 
upper edge.  
 
     To investigate the effect of surface disorder on the distribution of surface states we 
have acquired spatially-resolved spectra near domain boundaries of the c( 82× ) structure. 
These studies were performed at room temperature, with results shown in Fig. 3 for 
spectra acquired at well-ordered and disordered locations. The specific spatial locations 
for the spectra of Fig. 3(b) are shown in the image of Fig. 3(a). (The spatial areas for the 
spectra of Fig. 3(c) are not shown, but they are similarly far and near, respectively, from a 
domain boundary). The spectra from ordered areas display a band gap, extending from 

10.+  down to 40.−  or V50.− , with adatom and rest-atom states visible on either side 
of this gap. The spectra of Figs. 3(b) and (c) were acquired with different probe-tips and 
display somewhat different spectral magnitudes, an effect we tentatively attribute to 
differences between the electronic structure of the respective tips. Nevertheless, the 
difference between ordered and disordered results can be clearly seen for each probe-tip. 
In Fig. 3(b), the spectrum acquired near the defect on the domain boundary displays an 
additional peak centered at about V50.−  and extending well into the lower part of the 
band gap. For Fig. 3(c), the disordered spectrum displays significant narrowing of the 
gap, i.e. tailing of the band states into the band gap.  
 
C. Curve fitting of spectral features 
 
     Curve fitting of selected portions of the spectra has been performed in order to derive 
values for onsets and peak positions. For tunneling into the bulk effective-mass bands it 
has been previously found that a linear onset for the conductance vs. voltage provides a 
good fit to the data [11]. This linear behavior is also expected on the basis of a WKB 
analysis of tunneling behavior for a planar junction [16]. We employ here a 
generalization of the linear form that includes broadening effects due to both temperature 
and the modulation voltage of the lock-in amplifier used for the measurement. Assuming 
that the band onset 0eV  is well separated from the sample Fermi- level, the resulting form 
for the conductance (or normalized conductance) is found to be [17] 
  

( ) ( ) ( )( )[ ]ββ /
01 01ln VVeVVaVg −−++−=    (1) 

 
where V is the sample voltage, a  is an amplitude parameter, and β  is a voltage interval 
given by 

 ( ) ( )[ ] 2/122 4.0/ rmsVekT +=β     (2) 
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where T is the temperature and rmsV  is the rms modulation voltage. The second term on 
the right-hand side of Eq. (2) provides an approximate means of including the effects of 
the modulation voltage. The value of 0.4 appearing there is chosen such that fits of this 
form to simulated conductance characteristics (computed from the WKB formula for 
planar tunneling) faithfully produce accurate results for the band onsets [17]. Equation 
(1) is suitable for a band that extends over 0eVE > ; the appropriate form for one that 
extends over 0eVE <  can be obtained by replacing both occurrences of ( )0VV −  in the 
equation by ( )VV −0 . Using this functional form we perform fits to the VB onset of our 
spectra, with Fig. 4(a) showing the result for the spectrum of Fig. 2. The linear behavior 
of the onset is found to fit the data quite well. Regarding the onset of the adatom band, 
this behavior will in general depend on the dispersion of that surface state band. 
Nevertheless we find that a linear onset also fits this data reasonably well and we 
therefore utilize it. The resulting fit is shown in Fig. 4(b). 
 
     For the rest-atom band the data indicates a relatively broad feature, as might be 
expected since this band is resonant (i.e. degenerate in energy) with VB states. The peak 
positions can be determined directly from the data without the need for curve fitting. For 
the adatom band, that spectral feature actually contains two separate bands, which we 
separate by curve fitting. The lowest-energy adatom band extends into the bulk band gap, 
and as mentioned above a linear function provides a good description of its onset. 
Therefore, to describe the lowest-energy adatom band we use a function of the form 

( ) ( ) ( ) ( ){ }22
112 2exp VVVVVbVg δ−−−=    (3) 

where b, 1V ,  and Vδ  are parameters. This function has a maximum at a voltage of 
VV δ+1 . For the higher-energy adatom band we use a Gaussian function. The resulting 

fit is shown in Fig. 4(c) where we see that a reasonable description of the two 
overlapping bands is obtained. The low-energy onset is not precisely described by this fit 
since we have not included broadening of the onset due to temperature and modulation 
voltage in Eq. (3), but this inaccuracy has little impact on the rest of the fit and in any 
case we fit the onset region separately as described in the previous paragraph. 
  
     Curve fitting has been performed on a series of spectra acquired at temperatures of 7, 
15, and 61 K and with setpoints currents ranging from 2 pA - 7 nA. A number of these 
spectra have been displayed in our previous work [18]. A summary of the results for the 
VB onset and adatom features is given in Fig. 5, where we plot the voltage of each 
spectral feature as a function of the sample-tip separation corresponding to those 
voltages. The latter is obtained from knowledge of the set-point current for each 
spectrum, assuming a change in separation with setpoint current in accordance to the κ  
value of 1.0 Å-1, and using the known ( )Vs∆  characteristics for each spectra. The zero in 
sample-tip separation is not precisely known, but as discussed in our prior work [18] we 
assume a separation of Å7  for a setpoint current of 1 nA (at sample voltage of V2+ ), 
and we can be quite confident that the actual separation values are not less than those 
given in Fig. 5 and they might be 1 - 2 Å  greater. For the VB onset, adatom band onset, 
and the adatom peak positions, we find results that are relatively independent of 
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temperature and current. Resulting values are V03901110 .. ±− , V01204950 .. ± , 
V01205940 .. ± , and V01807600 .. ± , respectively, where the uncertainties indicate the 

standard deviation of the measured values in each case. 
 
     In contrast to the observed results for the VB maximum and the adatom spectral 
features, the position of the rest-atom peak displays a large variation with current setpoint 
and temperature, as shown in Fig. 6. We plot in this case the peak position as a function 
of the actual current (not the setpoints) measured in each case. For convenience we can 
approximately convert this current scale into a scale of sample-tip separation, as shown at 
the top of Fig. 6. This conversion is not exact since we are discussing spectral feature at 
different voltages, but over the voltage range of interest this separation scale is correct for 
relative separations to within Å20.± . Also, the same uncertainty in the zero of this 
separation scale occurs as described above for Fig. 5.  
 
D. Semiconductor inversion 
 
     In addition to the spectral features discussed above we observe one additional voltage-
dependent feature in our experiments. In Fig. 7(a) - (f) we present six constant-current 
STM images, selected from a series of 15 images acquired at closely-spaced sample 
voltages ranging from 52.−  to V12.+ . For Ge(111)c( 82× ) surfaces it is well known 
that at negative sample voltages (filled states) the surface rest-atoms are imaged and at 
positive sample voltages (empty states) the surface adatoms are imaged [6,8]. This 
behavior is clearly seen in Fig. 7 comparing the positive-voltage image at 7.1+  V with 
the negative-voltage ones for voltages between 8.1−  and 0.2−  V. However, at negative 
voltages below about 0.2−  V we observed a remarkable transition in which the adatoms 
again become dominant in the images, as seen by the close similarity between Figs. 7(a) 
and (f). This behavior persists for negative voltages with larger magnitude. This transition 
in the STM images is also apparent in the tunneling current vs. voltage characteristics 
themselves - we consistently observe a sharp discontinuity in the tunnel current at 
voltages near V2− , just when the contrast of the images changes from rest-atoms to 
adatoms, as shown in Fig. 7(g).  
 
     We interpret the observed transition in the voltage-dependent images near V2−  to be 
due to inversion of the occupation of surface electronic states. The adatom-derived states 
are, of course, normally empty. However at a sufficiently large negative sample-tip 
voltage tip- induced band bending can cause these empty states to occur at an energy 
below the sample Fermi- level and in that case the adatom states may become occupied, 
as long as the supply rate of electrons into these states from the semiconductor is 
sufficiently large. In Section IV(C) we perform detailed computations of the interband 
current, and we indeed find values that are comparable to the tunnel currents used in our 
experiments.  
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IV. Discussion 
A. Tip-induced band bending 
 
     It is well known that during STS experiments on semiconductor surfaces the applied 
potential between sample and tip will extend into the semiconductor [5], a phenomena 
which is generally referred to as tip-induced band bending. This effect occurs 
predominantly when the semiconductor is in depletion, i.e. negative sample voltage for p-
type material and positive sample voltage for n-type material. Let us denote the 
electrostatic potential in the semiconductor by ( )zrV , , where we are using cylindrical 
coordinates ( )zr,  with the semiconductor spanning the half-space 0<z . Charge 
densities in the semiconductor are computed in a semi-classical approximation by 
assuming that the energy bands at a particular location are simply shifted in energy by the 
electrostatic potential energy, ( ) ( )zrVezr ,, −=φ  with the zero of ( )zrV ,  taken to be at a 
point far inside the semiconductor ( −∞→z ). Thus, if the charge density with 0=φ  is 
given by ( )FEρ  where EF is the Fermi- level, then the charge density in the presence of a 
nonzero electrostatic potential is given by ( )( ) ., zrEF φρ −  Poisson's equation then 
becomes 

( ) ( )( )
0

2 ,
,

εε
φρ

φ
zrEe

zr F −
=∇      (4) 

where 0ε  is the permittivity of vacuum and ε is the dielectric constant of the 
semiconductor. Recently, a finite-element method for solving this equation for a 3-
dimensional hyperbolic tip geometry was presented by one of us [19]. The computations 
presented below are based on that computational method together with a few extensions 
as described in Appendix I, the most important of which is the inclusion of surface states. 
We assume that the occupation of surface states can be described in terms of a surface 
Fermi- level, S,FE , which in general may be different than the bulk Fermi- level. 

Denoting the surface charge density with 0=φ  as ( )SFE ,σ , the boundary condition at 
the surface is given by 

( ) ( ) ( )( )
0

, 0,
0,0,

ε

φσφ
ε

φ rEe
r

z
r

z
SF −

+
∂
∂

=
∂
∂

−+  .   (5) 

When equilibrium exists between the bulk and surface states we have FS,F EE = . 
 
     Far inside the semiconductor the electrostatic potential energy is taken to be constant, 
with a value of zero (use of a variable-spacing grid, described in Appendix I, enables a 
sufficiently large simulation region inside the semiconductor even for low or zero 
semiconductor doping). The boundary condition at the probe-tip surface is that the 
potential energy there equals a specified value, Tφ . This theoretical parameter is related 

to the experimentally specified sample-tip voltage, SV , by [19] 
φφ ∆+= ST eV           (6a) 

where the contact potential is given by 
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( )FSCm EE −−−≡∆ ∞
,χφφ     (6b) 

where mφ  is the work function of the metallic tip and χ  is the electron affinity of the 

semiconductor. The quantity ( )FSC EE −∞
,  is the difference in energy between the CB 

minimum at the surface and the Fermi- level, for a situation where the probe-tip is located 
infinitely far from the semiconductor. 
 
     Surface charge density can arise from intrinsic (i.e. associated with an ordered surface 
reconstruction) or extrinsic (derived from defects and/or disorder) states on the surface. 
The question of what type of distribution of midgap states arises from surface defects or 
disorder is one which has been considered for various semiconductor surfaces [20]. A 
variety of models have been introduced ranging from exponential tails of states extending 
in from the band edges to a Gaussian distribution of states located near the middle of the 
band gap. The major type of disorder on our surfaces are the boundaries which separate 
the c( 82× ) domains, as seen in Fig. 1. The disordered arrangement of adatoms and rest-
atoms seen there is expected to produce dangling bond states spread throughout the 
energy region separating the rest-atom and adatom bands of the c( 82× ) structure, and 
indeed we directly observe such states in the room-temperature STS results of Fig. 3.  
 
     The precise distribution of midgap states is not crucial to the arguments below, and we 
adopt a model consisting simply of a uniform distribution of states, as pictured in Fig. 8. 
To assign the charge of the states we use the well-known concept of a charge neutrality 
level, NE , above which the states have acceptor character (negative when occupied and 
neutral when empty) and below which the states have donor character (neutral when 
occupied and positive when empty) [20]. We place the charge neutrality level at an 
energy approximately midway between the intrinsic bands, at 0.2 eV above the VB 
maximum, VE . Our assumed surface charge density due to extrinsic states is thus 

( )
( )

( )
( ) VNV

AVN

ANA

EEEE
EEEEE

EEEE
E

<′−−
<<′−−

>′−−
=

σ
σ

σ
σ {    (7) 

where 0>′σ  is a constant. In this equation we have truncated the extrinsic state density 
at energies of  VE  and  AE , where the latter is the minimum energy of the intrinsic 
adatom band which according to the results of Section IV(B) is located at eV50.EV + . 
This truncation is performed because defect states outside this range are degenerate with 
continuum states and therefore incapable of holding charge. Concerning a value for s ′ , 

we estimated in Section III(A) a total density of extrinsic states of about 213 cm103 −× . 
Most of these states would have energies within or close to the adatom or rest-atom 
bands, with a lesser number lying in the energy region between the bands. Taking one-
tenth of the states to lie in the eV1≈  energy gap between the adatom and rest-atom 

bands, we arrive at an order-of-magnitude estimate for s ′  of 1212 eVcm103 −−× .  
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     Our model of extrinsic states is a spatially uniform one, even though in reality these 
states are localized mainly near the c( 82× ) domain boundaries. Charge contained in the 
midgap extrinsic states is balanced by the space charge in the depletion region of the 
semiconductor, with a depletion width of 100 nm for the doping concentration of our 
samples and a typical band bending of 0.1 eV. This value is larger than the typical extent 
of domains on the surface, 50 nm, so that the band bending induced by the extrinsic states 
will be relatively uniform over a domain. Our treatment of the extrinsic state density as 
spatially uniform is thus reasonably well justified.  
 
      Figure 9 shows computational results for the surface band bending at the surface 
location on the central axis, ( )0,00 φφ ≡ , for various values of the sample voltage and as 

a function of the extrinsic surface charge density σ ′ , and assuming equilibrium between 
bulk and surface states. The computations are performed for the known doping 

concentration of our p-type Ge samples, 316 cm102 −× , and for a temperature of 0 K 
(increasing the temperature to, say, 60 K has only a very small effect on the results 
primarily through a shift in the sample Fermi- level position of about 15 meV). We 
assume in Fig. 9 a probe tip radius of curvature of 100 nm. For the bulk charge density 
we use a single effective mass band, i.e. the Ge valence band, using a valence band 

density-of-states effective mass [21] of ( ) ( ) 0

322323
350 m.mmm

//*
hh

/*
lhdh =



 +=  

where *
lhm  and *

hhm  are the light and heavy-hole masses, respectively, with values of 

00430 m.  and 0340 m.  for Ge [22]. We see from Fig. 9 that the effect of the extrinsic 

surface states is to reduce the tip- induced band bending. The surface states charge up in 
accordance to the sign of the sample-tip voltage and in this way the boundary condition, 
Eq. (5), can be satisfied using a smaller electric field in the semiconductor. For large 
values of σ ′  the surface potential energy approaches a position equal to that of the 
assumed charge neutrality level of the surface state distribution. 
 
     In addition to the surface defect state density, the other main parameter in determining 
the tip-induced band bending is the tip radius-of-curvature. Tip radius is especially 
important for situation such as the present case with moderate or low doping, since in a 1-
D computation nearly all of the applied sample-tip voltage is dropped in the 
semiconductor but in 3-D this band bending decreases significantly even for rather blunt 
tips. In the following sections we present computational results as a function of tip radius. 
The opening angle of the tip shank can also be varied on our computations [19], but we 
keep this fixed at 90° for all the results described here. Other computational parameters 
are the contact potential, already discussed above, and the sample-tip separation. The 
latter does change slightly in our experiments, in accordance with the current set-point, 
but as discussed in our prior work [18] this variation is far too small to account for our 
observed shift in the rest-atom peak as a function of current. Some uncertainty in the zero 
of sample-tip separation exists but this uncertainty has relatively little effect on our 
comparison between experiment and theory described below.  
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B. Surface band gap 
 
     The position of the Ge(111)c( 82× ) rest-atom band is fairly well known, lying at a 
central location of eV70.EV −  as discussed in Section III(C). However, the position of 
the adatom band is not well known and, in particular, no previous value for the surface 
band gap (difference between adatom band onset and VB maximum) has been reported. 
In this section we derive an approximate value for the surface gap, taking into account the 
possibility of tip- induced band bending but without assuming any particular values for 
the parameters involved in this band bending. 
 
     As discussed in Section III(C) we observe the onset of the adatom band to be at 

V01204950 .. ± and the onset of the VB to be at V03901110 .. ±− . The difference 
between these values leads to a upper bound for the surface gap of about 0.60 eV. Tip-
induced band bending will act to reduce this estimated gap value. A worst-case situation 
is when no surface states exist and the tip radius is very large. Actually, from our 
computational results we find that in the accumulation regime the variation in band 
bending with tip radius is very small (less than 0.01 eV) for radii above 10 nm, so we can 
use the results shown in Fig. 9 to estimate the band bending. Considering a sample 
voltage of V50.+  and zero surface charge density we find a band bending of eV10.0+ . 
Thus, a band edge at 0.4 eV would be observed at a sample voltage of 0.5 V, neglecting 
any possible contact potential between tip and sample (see discussion surrounding Eq. 
(6)). Allowing for a positive contact potential would mean that a band edge at 0.4 eV 
would be observed at a slightly lower sample voltage, or in other words, the observed 
band edge at 0.5 V would correspond to a band gap slightly larger than 0.4 eV. A 
negative value for the contact potential can be ruled out, for the present assumption of 
zero surface states, since the observed position of the VB onset is significantly below 0 
V. We thus deduce a lower bound for the surface band gap of 0.40 eV.  
  
     Using our estimated upper and lower bounds for the surface band gap, we assign a 
value of 1.05.0 ± eV to this gap, where the error estimate is a conservative one. We note 
at this point that the results of Fig. 9 are semi-classical, and localized states in the 
accumulation layer may in principle produce different band bending. However we have 
also made a self-consistent quantum mechanical computation of the accumulation layer 
charge density, as described in Appendix II, and we find that for the cases of relevance 
here that the semi-classical approximation produces results that are accurate to within 
0.02 eV. Turning our attention to the observed values for the separation between the 
bottom of the adatom band and the two adatom peaks, V01700990 .. ±  and 

V02202650 .. ± , these values will be shifted only slightly by the tip- induced band 
bending (since the semiconductor is in accumulation). We deduce corrections of 

V010010 .. ±−  and V02500250 .. ±− , respectively, relative to the bottom of the adatom 
band. We thus assign values of eV020090 .. ± and eV030240 .. ± to the respective peak 
positions relative to the bottom of the adatom band, and a value of eV030150 .. ±  to the 
separation between the peaks.  
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C. Interband current 
 
     In addition to computational results for surface band bending, an additional important 
quantity to consider is the sample voltage at which inversion of the surface electronic 
states occurs. The situation is pictured in Fig. 10, where we consider a p-type 
semiconductor in depletion. When the magnitude of the surface band bending, 0φ , 

exceeds the band gap of the semiconductor, then carriers can tunnel from VB to CB 
through the semiconductor band gap. If this interband current is sufficiently large, then 
the CB states will be occupied up to the Fermi- level and inversion of the semiconductor 
is said to occur. The question of how large this interband current need be to produce 
inversion is a nontrivial one and, in principle, requires detailed knowledge of a number of 
transport processes. However, if the transport of the carriers in the semiconductor after 
they tunnel from VB to CB is relatively fast, then a condition for establishing inversion is 
simply that 
 

VS II ≥      (8) 
  
where SI  is the interband tunneling current in the semiconductor and VI  is the tunneling 
current in the vacuum. 
 
     It is clear that the dominant term in establishing the interband current is the 
transmission through the band gap. This term has been considered by Jäger et al. [23], 
where they find that for GaAs, with band gap of about 1.4 eV, the interband transmission 
is negligible compared to the transmission through the vacuum, at least for sample-tip 
voltage that are not too large. However, for smaller band gaps, the interband transmission 
and the associated interband current can approach or exceed those values for the vacuum. 
We compute interband tunneling in 3-D, using the method described in Appendix III. The 
transmission of the carrier through the band  gap region of the semiconductor is described 
using the two-band model for the complex band structure in the band gap [24], (i.e. with 
the inverse decay length of the wavefunction having a maximum value at midgap and 
approaching zero as the energy approaches either band edge), and using an effective mass 
of 0043.0 m  corresponding to the light-hole mass of the Ge VB [25]. Figure 10 shows 

the resulting interband currents as computed for semiconductors with various values of 
the band gap and for a tip radius of 100 nm. As expected the interband currents show a 
dramatic reduction as the band gap increases. Interband currents on the order of the 
vacuum tunneling current ( nA1.0≈ ) occur only for the 0.5 eV band gap case. The inset 
of the figure shows the dependence of the interband current on tip radius, for a particular 
sample voltage of V2− . We find a broad maximum in this dependence; for sharp tips 
the interband current is small because the tip- induced band bending is small, whereas for 
blunt tips the band bending is large but the associated depletion region extends a greater 
distance into the semiconductor and hence the interband current is again relatively small. 
 
     To compare our computed interband currents with the experimental results for the 
Ge(111)c( 82× )  surface we must consider the possibility of carriers tunneling through 
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the depletion region from the bulk VB into the surface band of adatom states, e.g. as 
pictured in Fig. 8 by the current SI . Our method for computing the interband current is 
also applicable to this case, albeit in an approximate manner as discussed at the end of 
Appendix III. The resulting values for the interband current for the Ge(111)c( 82× )  
surface are very close to the 0.5 eV band gap results of Fig. 10. Examining in particular 
the results in the inset, for a sample voltage of V2− , we see that the computed current 
achieves values of nA1.0≈  consistent with our experiments only when the tip radius has 
a value of roughly 100 nm. This result does not change significantly even when a surface 

defect state density of about 1212 eVcm103 −−×  is included.  
 
     Based on the condition expressed by Eq. (8) the approximate agreement between 
theoretical and experimental inversion currents for the tip radius of 100 nm would imply 
that this value is characteristic of the probe tip used in our experiments. Smaller values, 
such 10 nm, might also be allowed if the transport through the semiconductor is slow (i.e. 
if Eq. (8) is not appropriate), but radii as small as 1 nm seem rather unlikely based on the 
observed inversion voltages. These conclusions are consistent with prior experience in 
STM, where tip radii of 10 - 100 nm are typically found by field emission measurements 
on tips produced by a wide range of preparation conditions [11,26,27]. Sharper tips with 
radii less than 10 nm are possible, but only for exceptional preparation conditions. 
Somewhat blunter tips are also possible, although the known occurrence of small nm-
scale protrusions at the end of the tip − as seen directly seen in field emission microscopy 
images and also evidenced by the atomic-scale resolution commonly achieved in STM 
images − would argue against having average effective tip radii that are overly large.  
  
D. Rest-atom peak shift 
 
     Based on the previous section, it seems reasonable to focus our attention on probe tips 
with radii in the range of 10 - 100 nm. Using these radii let us then consider how the 
density of surface disorder- induced states might affect the observed position of the rest-
atom peak. In the limit of very low tunnel currents, we expect equilibrium between the 
occupation of surface and bulk states. Also, as the temperature increases, hopping 
between surface states (intrinsic or extrinsic) will increase and transfer between surface 
and bulk states by various mechanisms should also increase. Thus, an equilibrium 
situation, with SFF EE ,=  as pictured in Figs. 11(a) and (b), is expected for low currents 
and high temperatures. Referring to our data in Fig. 6, the 61 K data at the lowest current 
values is expected to be the situation closest to equilibrium. We observe a rest-atom peak 
at 0.9 V below the VB maximum in this case, which can be compared to the known 
position of the rest-atom band is at eV7.0−VE . Assuming zero contact potential this 
comparison would imply a band bending of about 0.2 eV, or slightly more or less than 
that if a nonzero contact potential existed in the experiment. To compare the experimental 
results for the rest-atom peak position with experiment we compute band bending for a 
range of sample voltages, and search for the voltage at which the rest-atom state is 
aligned with the tip Fermi- level. 
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     Theoretical results are shown in Fig. 6, for tip radii of 10 and 100 nm. The equilibrium 
results there refer to the case of a surface Fermi- level equal to the bulk Fermi- level, 

( ) FS,F ErE = . The predicted variation of rest-atom position with sample-tip separation 
is relatively small, and much less than the observed variation in the peak positions at any 
given temperature. We have assumed values of the contact potential φ∆  of 0.0 and 30.+  
eV for the 10 and 100 nm results, respectively, in order to approximately align the 
equilibrium results with the observations at low current and high temperature (a contact 
potential of 0 for the 100 nm case causes the line to shift downwards by 0.2 - 0.3 eV, as 
seen in Fig. 3 of our prior work [18]). We note that the expected contact potential 
difference between a clean, unpinned Ge(111) surface and a Cu(111) surface is about 0.0 
eV [28,29], although the precise condition of the probe-tip used in our experiments is 
unknown. In any case these assumed values for the contact potential do not impact any of 
our main conclusions below. 
 
     The equilibrium theory is seen to disagree with the full range of the data in Fig. 6, a 
result tha t relies on the validity of the theoretical computations. We have tested this 
validity by taking the solution for the electric- field distribution and then solving the 
inverse problem using the method of images, as described in Appendix I. Equality 
between the inverse solution and the original boundary condition is obtained. In 
particular, the relatively slow variation of tip- induced band bending with sample-tip 
separation reflected in Fig. 6 is an essential feature of the 3-D semiconductor-vacuum-
metal electrostatic problem (see, e.g., Fig. 5 of Ref. [19]). For separations greater than 
about 4 Å, and for the tip radii considered here, the variation of surface potential with 
separation is relatively small. As discussed in Section III(D) we are confident that any 
experimental uncertainty in the zero of sample-tip separation will lead only to an increase 
in the separation values shown in Figs. 5 and 6, not a decrease. 
  
     Now let us consider the experimental results for high current and/or low temperature. 
In this case a large shift of the rest-atom peak position is found, implying the presence of 
some non-equilibrium surface charge [18]. We propose that the occupation of the 
extrinsic disorder- induced surface states are not in equilibrium with the bulk, so that they 
are the origin of the excess surface charge. The situation is pictured in Figs. 11(c) and (d). 
In this case, with negative sample-tip voltage, we assume that the surface Fermi- level is 
below the bulk Fermi- level. In the extreme case that the surface states are totally depleted 
of charge then the surface Fermi- level is equal to the surface VB maximum, 

( ) ( ) ( )0,,, rErErE VSVSF φ+≡= . We assume that this situation holds for radii less then 

some critical value, and for larger radii we again have ( ) FS,F ErE = . Using a critical 
radius of 300 nm, theoretical results for this non-equilibrium case are shown in Fig. 6. 
We see that the expected rest-atom peak positions are indeed shifted in the theory, by 
amounts that approximately bring them into agreement with the data on the high current 
side of the graph. Within our model for nonequilibrium occupation of the extrinsic states, 
we would thus envisage the rest-atom peak position shifting from the equilibrium results 
on the left-hand side of Fig. 6 to the nonequilibrium results on the right-hand side of the 
graph, and thus an approximate agreement between theory and experiment would be 
obtained. 
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     There are two arbitrary parameters in our model of nonequilibrium occupation −  the 
degree of depletion of the disorder- induced states in the presence of the hole- injecting 
tunnel current, and the radius over which this effect extends. Actually these two 
parameters are coupled, since we could have assumed less depletion of the midgap states 
over a larger radius (and/or increased the number of states within the range consistent 
with the STM images) and achieved similar results. To justify the value of either or both 
of these parameters is not possible at present, since it would require detailed knowledge 
of (i) the hole concentration near the surface, (ii) the recombination rate of holes in the 
midgap states, (iii) reoccupation rate for those states by electrons tunneling through the 
semiconductor depletion region, and (iv) the transport rate for hopping of carriers 
between the disorder- induced states. Process (iii) can be quantified in a manner similar to 
the interband current discussed in the previous section, and some aspects of item (i) are 
discussed below, but little is known at present about the other transport processes. 
However, even though our model is not parameter free, we argue below that it is the most 
likely possibility when compared with other conceivable sources of nonequilibrium 
charge, namely, accumulation of holes in near-surface bulk states or in the rest-atom 
states of the c( 82× ) reconstruction.  
 
     Regarding accumulation of holes in bulk states, the density of holes in the VB can be 
estimated from the known tunnel current. Holes injected in the VB, although they 
traverse the vacuum with a relatively narrow range of angles relative to the central axis 
(due to the well known dependence of the vacuum transmission barrier on parallel 
wavevector), will greatly spread out upon entering the semiconductor [30]. Scattering of 
these ballistic holes occurs primarily by emission of LO-phonons (scattering length about 
30 nm) and by acoustic phonons (scattering length about 300 nm) [31]. The trajectories 
of injected ballistic holes will be bent away from the surface due to the electric field  in 
the Ge, but until the holes are fully thermalized this should not be a large effect. To 
estimate a hole concentration p, we can use the relationship for the current density 

vepJ =  where v is the drift velocity. For thermalized holes we can take Ev µ=  with 
mobility µ  and electric field E. Thus, considering an injected current of 1 nA over the 
surface of a half-sphere with radius of 100 nm, using a field of V/nm01.0≈  from our 

computations, and with a bulk mobility of about /Vscm10 24 [32], the resulting hole 

density is -313 cm101× . This value is much less than the space charge density of 
-316 cm102×  in the depletion region, so its effect on the potential distribution will be 

negligible. Using a radius of 10 nm in the above estimate, and a field from the 

computations of V/nm1.0≈ , the hole density would be -314 cm101×  which is still less 
than the space charge density (and at this radius the velocity should also be higher, since 
the hole transport would be largely ballistic). We conclude that it is unlikely that bulk-
limited transport, i.e. a bulk spreading resistance type of effect, could account for our 
observations (although it could well be an important factor at current levels one or two 
orders-of-magnitude higher than that used in our experiments). 
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     Two other factors argue against the role of bulk transport in our experiments. First, 
our observed temperature dependence in which the transport effects become more 
pronounced as the temperature decreases is contrary to the usual increase in bulk 
mobility with decreasing temperature. For an effect arising from the disorder- induced 
states, however, temperature-dependent hopping between the states would have an 
appropriate temperature dependence [2], as further discussed below. Secondly, the 
observed rest-atom peak shift varies only very slowly, approximately logarithmically, 
with current [18]. For an effect arising from bulk transport we would expect more of a 
linear turn-on for currents above some critical value. Alternatively, for a band of 
disorder- induced states, increasing the occupation of the band (i.e. with holes in this case) 
would lead to an increased intraband conductivity thereby promoting equilibration within 
the band, so that an increasing tunnel current would only slowly increase the occupation 
of the band and the concomitant shift of the rest-atom peak. 
 
     Let us now consider the possible role of the band of c( 82× ) rest-atom states. First, it 
is important to recall that these states are resonant with the VB, so any holes occupying 
those states would be expected to rapidly dissipate into VB states. Nevertheless let us 
ignore that effect for a moment, and consider the possible transport of holes within the 
rest-atom band itself. If this transport was limited, then one could envision a buildup of 
positive charge during the STS measurement at negative sample voltages. However, in 
that case we would expect an analogous effect for the transport of electrons through the 
adatom-states, for positive sample voltages. As described in Section III(C), we do not 
observe any such effects at positive sample voltages, to a relatively high degree of 
accuracy (e.g. see Figs. 4(a) - (c)). And again, since the rest-atom states are degenerate 
with the VB we would expect that, if anything, transport through these combined 
VB/rest-atom states to be much faster than for the adatom states. One additional 
observation also argues against the role of rest-atom states in the transport limitation: in 
the temperature-dependent spectra (Fig. 2 of Ref. [18]), the shifting rest-atom feature 
does not get broader as it shifts, but rather it maintains a constant width and simply 
moves to more negative voltages. If these rest-atoms state themselves were solely 
responsible for the limited transport then we believe that this peak should exhibit  
significant broadening as it shifts. 
 
     We have considered a number of alternate models for the shifting rest-atom spectral 
feature, most notably the possible influence of the electric field at the surface. This field 
has magnitude in the range 0.1 - 0.2 V/Å for the relevant sample-tip voltages and 
separations. Since the energy splitting between adatom and rest-atom states depends on 
the charge transfer between these species, a modification of this charge transfer due to the 
field must be considered, especially since changes in this charge transfer are commonly 
observed in surface adsorption reactions [33]. Indeed, for negative sample-tip voltages 
the field will induce charge transfer from rest-atom to adatom thereby lowering the 
energy of the rest-atom state, consistent with our observations. However, to fully account 
for our data the shift of the rest-atom state with field would have to be quite large, similar 
to that estimated for the extreme case of alkali-metal adsorbates [34], and furthermore the 
shift would have to vary quite nonlinearly with field to follow the data of Fig. 6.  
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     Our main argument against an explanation based on electric field is that it is difficult 
to envision any temperature dependence for this mechanism. Our data does show clear 
temperature dependence, as in Fig. 6, in agreement with the prior results of Dujardin et 
al. [2]. Within our model of nonequilibrium extrinsic-state occupation we believe that 
this temperature dependence arises from temperature-dependent hopping between the 
states. At high temperature this transport process is relatively rapid, producing 
equilibrium occupation of the states. But at low temperature and high current the process 
is slow compared to the supply rate of holes from the tunnel current, producing 
nonequilibrium extrinsic state occupation. We emphasize that the extrinsic states are 
present on the surface both at high and low temperatures but within our model it is their 
occupation, under conditions of injected hole current, that varies with temperature.  
 
  
V. Conclusions  
 
     In summary, we have identified features in low-temperature tunneling spectra 
acquired from p-type Ge(111)c( 82× ) surfaces associated with the VB maximum, with 
surface rest-atom and adatom bands, and with the occurrence of inversion of the surface 
electron occupation. A bulk band gap of eV1.05.0 ± is determined. The spectral position 
of the rest-atom peak is found to shift considerably with current and/or temperature. This 
shift was discussed in our prior work, where we argued that some additional, non-
equilibrium source of positive charge at or near the surface was likely responsible for it 
[18]. We have demonstrated in the present work that a possible source of this surface 
charge are disorder- induced states associated with the disordered arrangements of 
adatoms occurring at domain boundaries of the c( 82× ) structure. We find that our 
observed results for the rest-atom peak position can be well understood by including a 
density of disorder- induced states which is consistent with that observed in the STM 
images, and assuming that such states are significantly depopulated by holes injected due 
to the tunneling current. 
 
     We believe that the model proposed here provides a likely explanation not only for 
our results but also for the prior results of Dujardin et al. [2]. The temperature 
dependence of the results would arise from temperature-dependent hopping, a mechanism 
identified in the work of Dujardin et al.  Those workers were not specific, however, in 
distinguishing between hopping between intrinsic states of the c( 82× ) surface or 
between extrinsic disorder- induced states. We believe it is the latter that is responsible for 
the observed effects, as argued in Section IV(D). We briefly mention in this regard the 

previous work on the SiC(0001) o30-33 R×  surface in which current-dependence of 
the spectra was also observed, but for which it seems quite clear that it is the intrinsic 
states of the reconstructed surface which produce the transport limitations [4]. One 
difference between that system compared to Ge is the much larger band gap for SiC (2.9 
eV), yielding vastly smaller tunneling rates for carriers through the depletion region of 
the semiconductor. Also, the dangling bonds of the SiC adatoms are quite localized, 
producing Mott insulator behavior for that system [4,35]. Further study is needed to more 
fully understand the difference between this case as compared to the Ge surface. 
 



18 

     Our model can also be compared with that previously described by Ono et al. [3] as a 
possible exp lanation for the low-temperature results first observed by Takayanagi and co-
workers on the Si(001) surface [1]. Although the experimental situations (and findings) 
are quite different than for the Ge(111)c( 82× ) surface, we do feel that there is one 
significant similarity between the two cases. Specifically, for the temperature dependence 
of the Si(001) STM images, Ono et al. proposes that the current originating from 
occupation of the normally empty  *π  surface band  can account for the observations. As 
to why this current should vary with temperature, i.e. why the Fermi- level moves up into 
this band as the temperature is reduced, those workers suggested the freeze-out of free 
carriers (increased Debye length) could be responsible. On this latter point we suggest 
that an alternative explanation can be found be considering the occupation of midgap 
defect and/or disorder-induced states (some of which invariably occur on Si(001) 
surfaces). At elevated temperatures these states will act to pin the Fermi- level near 
midgap, i.e. below *π  band, but at low temperatures the states may be out of equilibrium 
with the bulk and the surface Fermi- level could then move into the *π  band.  
 
     Finally, we briefly comment on the implications of this work for STS measurements 
of semiconductor surfaces in general. The possible occurrence of tip- induced band 
bending (for surfaces possessing a band gap) has been known from the early days of STS 
[5], and it is well known that use of high doping concentrations and/or sharp probe tips 
will minimize such effects [11]. The dependence of tip- induced band bending on current 
and temperature has not, however, been previously considered. In particular, 
nonequilibrium effects in the occupation of midgap states can produce, as argued in this 
work, potentially important effects both STS and STM measurements of semiconductor 
surfaces at low temperature and/or high current levels. However, for measurements at 
room temperature, with low currents, such effects in many cases should be small and the 
regular equilibrium theory should generally suffice to estimate the effects of tip- induced 
band bending on tunneling spectra. 
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Appendix I - Finite-element computation of electrostatic potential 
 
     We have made two extensions to our finite element method for solving Poisson's 
equation relative to the theory presented in Ref. [19]. First, as discussed in Section IV(A), 
we allow for the presence of a surface charge density within the boundary condition of 
Eq. (5). Following in detail the definitions and notation of Ref. [19] this boundary 
condition, in a first-order approximation, takes the form  
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where the subscript i refers to the ith radial grid point, iφ  is the potential on the surface,  

V
i 1,φ  is the potential at the first grid point in the vacuum located at a distance of ηξ ∆ia  

from the surface, and S
i 1,φ  is the potential at the first grid point in the semiconductor 

located at a distance of z∆  from the surface. This equation can be rearranged to yield the 
surface potential 
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Taking the quantities V
i 1,φ , S

i 1,φ , and iφ  on the right-hand side of this equation to have 

their values at the kth iteration, we can then evaluate the right-hand side to obtain iφ  at 

the (k+1)st iteration. Let us call this value )1(~ +k
iφ . We find that for large, nonlinear 

surface charge density this method for updating iφ  can lead to instabilities in the 
iterative solution. An analogous problem was encountered in our bulk solution of 
Poisson's equation [19], and we formulate here a similar solution to the problem as used 
for the bulk: We take the iφ  on both the right- and left-hand sides of Eq. (A1.2) to be the 
values at the (k+1)st iteration, and we solve the equation implicitly for this value. To 

accomplish this we perform a 1-D search, using as limits )1(~ +k
iφ  and )(k

iφ [36]. With this 
method we obtain a stable iterative solution for the potential. One final comment 
regarding the boundary condition is that we actually use a third-order solution for this, 
rather than the first-order form of Eq. (A1.2), thereby obtaining substantially improved 
convergence of the iterative finite-element method.  
 
     The second extension to our finite-element theory is the use of a grid with variable 
spacing in both the r- and z-directions. Given the parameters r∆ and z∆ , the grid points 
in the radial direction are taken to be 
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and in the z-direction into the semiconductor by 
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The spacing between grid points as used in finite-element formulae for derivatives are 
then given by 
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This variable grid spacing is found to be particularly useful in problems involving low-
doped semiconductors and relatively sharp tips, for which a small grid spacing near the 
tip apex is needed but a large total extent for the simulation is also required. 
 
     In addition to the above two extensions of our finite-element theory, we have also 
undertaken a validation of the computer program that implements the technique. To 
accomplish this we take the output of the program and then use that in a separate (small) 
computer program to solve the inverse problem. The output of the original program 
provides the electrostatic potential energy ( )zr,φ  at every point in space. Of specific 
interest is the surface charge density on the probe tip, which is obtained from 

nT E0εσ =  where nE  is the electric field normal to the surface of the tip as given by 

e/φ∇
v

. We consider for simplicity a situation with zero-doping in the semiconductor, in 

which case this surface charge is the only charge in the problem. In this case, the inverse 
problem can be solved simply by taking this surface charge density and integrating it to 
obtain the potential at any point in space. We use the method of images [37] to perform 
this integration for our system containing the dielectric in a half-space, so that the 
potential energy at any point in space is given by 
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with the integrals extending over the surfaces of the tip and its mirror image in the 
dielectric, respectively, the distances R  and R′  are defined in the inset of Fig. 12, and 
where  
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Figure 12 shows a comparison between the solution for the inverse problem and the  
original problem, plotting the results as a function of the number of grid points used for 
both solutions (this same number of points is used in both the r- and z-directions). The 
original problem converges quite quickly to the final solution. The inverse problem 
requires a much finer grid to achieve the same solution (this finer grid to needed to 
accurately describe the potential over the entire surface of the probe-tip including out to 
large distances from the surface as achieved with our variable grid spacing) but equality 
between the two solutions, within 0.5%, is finally achieved. 
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Appendix II - Self-consistent treatment of accumulation layer states 
 
     To test the validity of the semi-classical results discussed in the main text of this 
paper, we describe here a self-consistent, quantum-mechanical treatment of band bending 
for the case of accumulation (a similar treatment would also hold for inversion). In the 3-
D confining potential of the accumulation region the localized wavefunctions are denoted 
by ( )zrj ,,θΨ  with energies jE , and where we are using cylindrical coordinates ( )zr ,,θ  

with 0<z  in the semiconductor. To be specific we consider the case of p-type material 
with positive sample voltage, so that the only charge density in the semiconductor that 
need be considered is that arising from the occupation of the VB by holes. The potential 
is computed from Poisson's equation in a Hartree manner, with the charge density being 
obtained from 
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,,12,, θθρ    (A2.1) 

where ( )jEf  is the Fermi-Dirac occupation factor for the state with energy jE , and the 
factor of 2 is for spin degeneracy.  
 
     We assume a large barrier in the vacuum, such that the amplitude of the wavefunction 
at the semiconductor surface is zero. The wavefunction for localized states are described 
in separable form as ( ) ( ) ( ) ( )zZrcRzr θφ Θ=Ψ ,,  where c is a normalization factor. With 
azimuthal symmetry, ( ) ( )θθ imexp=Θ  where K,2,1,0 ±±=m  is the azimuthal quantum 
number. In the radial direction we use as a basis set wavefunctions of the 2-D harmonic 
oscillator,  
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where m
nL  is an associated Laguerre polynomial with radial quantum number 

K,,,n 210= , and where dhm=µ  is the hole effective-mass and ω  describes the radial-
curvature of the potential at the origin as specified below.  In the z-direction we use Airy 
functions (i.e. appropriate to a triangular potential), 
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where 0<ia  are the zeroes of the Airy function and F is the electric field in the 
semiconductor at the origin. For these wavefunctions, the normalization constant c is 
evaluated to be 
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where ( )iaiA ′  are derivatives of the Airy function evaluated at its zeroes. 
 
     We use a first-order perturbation treatment to evaluate the wavefunctions and resulting 
charge density. For the zeroth-order wavefunctions we use the forms given by Eqs. 
(A2.2) and (A2.3), in which the parameters ω  and F are evaluated from 

222 / r∂∂= φµω  and zeF ∂∂= /φ  where ( )zr,φ  is the potential energy and the 
derivatives are evaluated at the origin. We evaluate these derivatives using a Gaussian fit 
to ( )0,rφ  and an exponential fit to ( )z,0φ , respectively. Our approach thus follows that 
used by Dombrowski et al. [27], except that in our case we obtain the potential by a full 
3-D solution to Poisson's equation whereas those workers assumed a Gaussian form for 
the potential with parameters chosen to match experiment.  
 
     At each iteration of the computation, new values for the potential are evaluated 
according to our finite-element scheme described in Appendix I, and from that potential 
we obtain new values of ω  and F. According to the above choice of wavefunctions the 
zeroth-order potential is taken to be parabolic in the r-direction and triangular in the z-
direction ( 0<z ), with energies for these hole states given by 
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where the first-term is from the 2-D harmonic oscillator wavefunctions, the second term 
from the Airy functions, and the third term provides a zero reference value for the 
energies. First-order correction to these energies are then given by 
 

( ) ( ) inminminm eFzrzrE Ψ−−+Ψ=∆ 0,0
2
1

, 22 φµωφ  . (A2.6) 

The perturbing potential listed here, while suitably small near the origin, actually 
diverges at large values of r or z. However this is not a problem in the evaluation of the 
integral since the wavefunctions decay exponentially as a function of r or z, thus 
producing finite (and small) values for E∆ . This integral is evaluated for ascending 

values of i, n, and m  until inminm EE ∆+)0(  is several kT  below FE , and the entire set of 
wavefunctions thus obtained are then used in Eq. (A2.1) to evaluate the new charge 
density. 
 
     Results are shown in Fig. 13 for the band bending under accumulation conditions as a 
function of sample voltage, comparing the semi-classical results with the quantum results 
and using the same effective mass of 035.0 m  [from Section IV(A)] in both cases. We 
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also indicate the number of quantum states occupied at zero temperature for various 
points along the curve. (One might expect the solid curve to have discontinuities as the 
number of states changes, but in our self-consistency loop the occupations oscillate 
between neighboring integers thus yielding, in effect, fractional occupation of the states 
and a continuous result for Fig. 13). The semi-classical results are seen to provide a rather 
good estimate of the band bending, despite the fact that the charge densities in the two 
cases are quite different as seen in the insets of Fig. 13. As seen there for the charge 
density ρ  as a function of z along the central axis, the quantum treatment produces only 
a single state in the z-direction, for the value of effective mass used here. 
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Appendix III - Tunneling in a spherical geometry 
 
     The expressions for planar tunneling as derived within the WKB approximation are 
well known [38]. Our goal in this Appendix is to develop an analogous formalism for 
computing an interband tunnel current in a nearly spherical geometry. We consider 
traveling waves incident on the semiconductor depletion region as pictured in Fig. 14. So 
long as the energy of those waves is greater than 0φ+CE  (with 00 <φ ) then those 

waves can tunnel through the band gap region and contribute to the interband current. For 
ease of discussion we initially assume that, within the semiconductor, the equipotential 
curves have perfect spherical symmetry relative to an origin located at some point 

00 >= zz  along the central axis. In terms of the spherical coordinates ( )ΦΘ,,R , the 
appropriate wavefunction for the incident electrons is the linear combination of plane 
waves that carries current only towards the origin [39], 

( ) ( )( ) ( )ΦΘ=ΦΘ ,,, 2 m
m YkRhCR llllψ    (A3.1) 

where l and m are angular momentum quantum numbers, mYl  is a spherical harmonic, 
( )2

lh  is a spherical Hankel function of the second kind, and h/E*mk 2=  where E is 
the energy of the state and m* is an effective mass. The spherical Hankel function 
consists of a power series in inverse powers of R, multiplied by an exponential term 

( )ikR−exp . So long as a nonzero size region near the origin is excluded, which is the 
case for our problem, then these wavefunctions can be normalized, resulting in 

mR/kC =l  where mR  is the maximal radius of the semiconductor.  
 
     The current carried by each incident wave is ( )mR*m/keh . Summing over all 
incident waves, and including a factor of 2 for spin degeneracy, we arrive at the 
expression for the total interband current 
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where ( )EDl  is the transmission of an incident wave through the band gap and ( )Ef  is 
the occupation of the incident VB state. ( )EΩ  is the solid angle subtended by the surface 
through which the current flows, i.e. the area of that surface divided by its radius of 
curvature squared. With spherical symmetry the transmission can be estimated using the 
WKB approximation in 3-D [40], 
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where bE∆  is the barrier seen by the electrons, and 1R  and 2R  are the turning points i.e. 
the values of R  for which the integrand is zero. The barrier seen by the electron varies 
from 0 when E coincides with the VB maximum or CB minimum, up to a maximum 
value when E is near midgap, in accordance to the complex band structure of the 
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material. We use the well-known two-band model of Kane [24], for which the barrier can 
be expressed as [41] 

( )[ ] ( )[ ]
G
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Vb E

REE
REEE

2ˆ
ˆ φ
φ

+−
−+−=∆     (A3.4) 

where VE  and CE  are the VB maximum and CB minimum, respectively, at a point far 

inside the semiconductor, VCG EEE −=  is the band gap, and ( ) ( )RzR −≡ 0,0ˆ φφ .  
 
     Equations (A3.2) - (A3.4) permit evaluation of the interband current for a spherically 
symmetric geometry. To extend this theory to situations that deviate slightly from 
spherical symmetry we compute the transmission factors by taking line integrals along 
the electric-field lines pictured in Fig. 14. Along the ith such line we introduce an 
integration variable iα . The value of ( )iR α  at each point along these integrals is taken to 
be the local value of the radius of curvature of the equipotential, 

( ) ( ) 122 /
−

∂∂= zrR iC φα where ( )zrφ  is the equipotential curve for the particular value of 

φ  at the location iα  along the electric- field line (we are using the same ( )zr,  cylindrical 
coordinates here as introduced in Section IV). To obtain the contribution to the total 
current from each such transmission factor, we evaluate the fraction the solid angle 
subtended by the contribution to the current from the integration along the ith electric 
field line (we evaluate this solid angle according to the local values of radius of curvature 
at the outer surface of the tunneling region, e.g. the eV1.0−  contour in Fig. 14). 
 
      One remarkable feature of the above WKB result for the tunnel current, Eq. (A3.2), is 
that it is independent of the details of the final states into which the current flows (i.e. this 
state must exist, but its amplitude does not enter into the formulas for the current). This 
independence occurs because the WKB formalism as used here neglects detailed 
matching of the wavefunction across the turning points. This procedure is clearly an 
approximation, but in most cases it should be a good one since the transmission factor is 
dominated by exponentially small terms associated with the barrier height and width 
whereas the amplitude of the wavefunction will only introduce linear corrections to this 
result. For the present case of interest of estimating inversion currents for the 
Ge(111)c( 82× ) surface we therefore need only identify the relevant energies to be used 
in the equations. For the band gap in the barrier height, Eq. (A3.4), we must use the full 
band gap of Ge, eV740.EG = . However in the energy integral of Eq. (A3.2), the value 
of the conduction band minimum in the lower limit of the integral will be that given by 
the surface band gap, for which we use the value of 0.5 eV as determined in Section 
IV(B).  
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FIG. 1. STM image of the Ge(111)c( 82× ) surface, showing a domain boundary 
separating two domains of the reconstruction. The image was acquired at a temperature 
of 61 K using a sample-tip voltage of V22.− and constant-current of 0.3 nA, and is 
displayed with a gray-scale range of 0.05 nm. 
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FIG. 2. Tunneling spectrum of the p-type Ge(111)c( 82× ) surface, displayed as (a) 
conductance at constant sample-tip separation (on a logarithmic scale) (b) normalized 
conductance (on a linear scale). The spectrum was acquired at a temperature of 61 K and 
at a sample-tip separation corresponding to a set-point current of 7 pA at a sample 
voltage of V2.2− . Adatom (A), rest-atom (R), valence band (V) and conduction band 
(C) components in the spectra are indicated, as is the voltage below which inversion 
occurs (inv). 
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FIG. 3. (a) STM image acquired at room temperature from the n-type Ge(111)c( 82× ) 
surface using a sample voltage of V02.+ and constant current of 0.1 nA, and displayed 
with a gray scale of 0.1 nm. (b) and (c) Spectra acquired at ordered (dashed lines) and 
disordered (solid lines) locations on the surface, with the latter offset by 2 units of the 
normalized conductance for clarity. Adatom (A) and rest-atom (R) derived states are 
indicated. The spectra in (b) were acquired from the surface displayed in (a), with the 
disordered spectrum obtained from the location indicated by the center arrow and the 
ordered spectrum being an average of those obtained from the locations indicated by the 
right and left-side arrows.  
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FIG. 4. Fits of the spectral features for the spectrum of Fig. 2: (a) valence band onset, (b) 
adatom band onset, and (c) entire adatom band. Solid lines show the data and dashed 
lines (displaced above the solid lines for clarity) show the fits. In (c) the dotted lines 
show the separate components of the fit function used. 
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FIG. 5. Observed positions of the (a) upper adatom peak, (b) lower adatom peak, (c) 
onset of adatom band, and (d) onset of valence band, as a function of the sample-tip 
separation for each measurement.  
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FIG. 6. Observed positions of the rest-atom peak, as a function of tunnel current and for 
various temperatures. Typical error bars are shown on a few points, indicating the 
variation in the results at different points on the surface and due to small (unintentional) 
variations in tip shape. Theoretical curves are shown for equilibrium situations with tip 
radii of 10 nm (solid line) and 100 nm (dashed line), and for extreme nonequilibrium 
situations with radii 10 nm (dotted line) and 100 nm (dot-dashed line). 
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FIG. 7. (a) − (f) STM images of the Ge(111)c( 82× ) surface, acquired at sample voltages 
of 7.1+ , 8.1− , 9.1− , 0.2− , 1.2− , and V2.2− , respectively. All images were acquired 

at a temperature of 7 K with a constant current of 0.3 nA, extend over 2nm6.36.3 × , and 
are displayed with gray-scales in the range 0.02 - 0.04 nm. (g) Portions of tunneling 
spectra, acquired at the temperatures and current setpoints indicated. 
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FIG. 8. Schematic energy level diagram for the Ge(111)c( 82× ) surface states. Intrinsic 
surface state bands associated with adatom (AA) and rest-atoms states (RA) are 
indicated. Bands of disorder- induced states are denoted by σ , with the charge neutrality 
level NE  separating states with different charge character. The electrostatic potential 
energy at the surface, relative to a point far inside the semiconductor, is denoted by 0φ . 

The surface Fermi- level is indicated by S,FE  and the bulk Fermi- level by FE ; these 
values are equal for equilibrium between surface and bulk but are unequal for a 
nonequilibrium situation as shown. An important transport process in establishing 
equilibrium is the interband current through the semiconductor band gap, SI . The sample 
Fermi- level is located at an energy eV−  above the tip Fermi- level, with 0<V  in this 
diagram. 
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FIG. 9. Computed results for surface potential at a point along the central axis, for p-type 

Ge with doping concentration of 316 cm102 −×  and using a 100-nm-radius tip with 0.8 
nm sample-tip separation. Results are plotted a function of the density of extrinsic 
midgap states, with these states being distributed uniformly across the semiconductor 
band gap and with charge neutrality level of 0.2 eV above the VB maximum. Curves for 
various values of the sample-tip voltage (assuming zero contact potential) are shown. 
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FIG. 10. Computed results for interband current flowing between VB and CB of 
semiconductors having band gaps GE  as listed, with p-type doping concentration of 

316 cm102 −×  and using a two-band model with effective mass of 0043.0 m . The solid 

lines show results for a tip radius of 100 nm, plotted as a function of the energy 

difference 0φ−GE  between the VB maximum far inside the semiconductor and the CB 

minimum at the surface (the sample-tip voltage is an implicit parameter varied along each 
line, and a sample-tip separation of 0.8 nm is used). The inset shows the interband current 
for a 0.5 eV band gap and a sample voltage (assuming zero contact potential) of V2− , 
as a function of tip radius.  
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FIG. 11. Schematic energy diagrams of models for occupation of disorder- induced 
midgap states: (a) and (b) equilibrium, with SFF EE ,= ; (c) and (d) nonequilibrium, 

with SFF EE ,≠ . Panels (a) and (c) show axial views as a function of z, with (b) and (d) 
showing radial views on the surface as a function of r. The sign of the surface state 
density σ  at various values of r are indicated. 
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FIG. 12. Convergence of electrostatic solutions, showing the difference between the 
potential energy at the tip apex (upper x-mark in inset) and on the surface location 
directly opposite the tip apex (lower x-mark in inset) as a function of the linear number of 
grid points. Solid line: results from the original problem, with eV3=Tφ  being the 
boundary condition and 0φ  being obtained from a finite-element computation. Dashed 

line: results of the inverse problem, in which the surface charge density on the probe-tip 
is integrated using the method of images to obtain both Tφ  and 0φ . 
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FIG. 13. Computed results for surface potential at a point along the central axis, for p-

type Ge with doping concentration of 316 cm102 −×  under accumulation conditions and 
using a 100-nm-radius tip with 1 nm sample-tip separation. Results are shown for 
quantum (solid lines) and semi-classical (dotted lines) computations. The integers along 
the solid curve indicate the number of quantum states occupied at each point. The insets 
show two cuts of the potential energy φ  and the charge density ρ  in the semiconductor 
for a sample voltage of 2 V: left-side − along the central axis as a function of z, and right-
side − 1 nm into the semiconductor as a function of r. The full-scale range in the insets 

for φ , ρ , z, and r, respectively, are 0.2 eV, 320 cm105.0 −× , 10 nm, and 70 nm. 
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FIG. 14. Equipotential lines (marked in terms of electrostatic potential energy) for a 10 
nm radius probe-tip located 1 nm from the semiconductor surface, with the tip biased at 

V62.+  (energy difference of eV62.− ) relative to the semiconductor. The 

semiconductor is assumed to be p-type with doping concentration of -316 cm102× . The 
dotted lines show the electric-field lines extending between the 1.0−  and eV6.0−  
equipotentials. These lines correspond to the line- integral paths for evaluating the 
interband current, for the case of the semiconductor with 0.5 eV band gap and with an 
electron energy of 0.1 eV below the VB maximum of the semiconductor as pictured in 
the inset. 
 
 
 




