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Abstract 
 
The electrostatic potential resulting from a metallic probe tip near a semiconductor is 
examined. A solution is formulated assuming circular symmetry and using prolate 
spheroidal coordinates in the vacuum and Cartesian coordinates in the semiconductor. 
The result is most directly applied to the case of a hyperbolic probe tip, but other shapes 
(for example, a small hemispherical protrusion on the tip apex) can also be handled. 
Numerical results are given for representative cases that might be encountered in 
scanning probe microscopy. 
 
I. Introduction 
From the earliest years of scanning tunneling microscopy it was well recognized that 
application of the technique to a semiconductor sample would result in some of the 
applied potential between tip and sample being dropped in the semiconductor itself [1,2]. 
The resulting electrostatic potential distributions were considered early on in a one-
dimensional approximation [2]. Sometime later it was noted that a three-dimensional 
situation was more applicable, and results for that geometry were reported [3,4]. In a 
semiclassical approximation, the effect of the varying electrostatic potential in the 
semiconductor is simply to rigidly shift the energy bands. Thus, this effect of the applied 
potential extending into the semiconductor, in the limit of low current, has become 
known generally as "tip induced band bending". 
     Electrostatic solutions for the potential around a sharp probe tip close to a 
semiconductor surface are nontrivial and consequently most of the prior theoretical 
results for this problem, although quite adequate for their purposes, have nonetheless 
employed various approximations to the tip shape [4-8]. For example, in our prior work 
on this problem we assumed that the slope of the equipotentials in the vacuum were small 
[ 1)//()/( <drdVdzdV  where V is the potential, z is the direction normal to the 
semiconductor surface, and r is the radial direction] [4,8]. This approximation resulted in 
a somewhat ill-defined shape for the shank of the probe tip. As the field of scanning 
probe microscopy progresses it becomes ever more important to rigorously understand 
the potential distribution between tip and sample, not only in scanning tunneling 
microscopy but also for other scanning probe microscopies in which the potential 
distribution can play an important role in determining the measured signal [5,6,9]. 
Therefore, an improved solution for this electrostatics problem is needed. Modern 
Poisson solvers have been used for this purpose [6,9], but the solution formulated in the 
present work, since it is specialized to the particular problem at hand, is likely to be more 
accurate and efficient. 
      In this work we present a solution for the electrostatics problem of a probe tip near a 
semiconductor, employing a prolate spheroidal coordinate system in the vacuum region 
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between tip and sample [10]. This type of coordinate system is well-suited to this 
problem; it has been previously used for the problem of field emission [11] as well as 
other problems involving a sharp tip in proximity to a metallic surface [12]. Here, we 
apply such coordinates to the case of the tip-semiconductor problem as encountered in 
scanning probe microscopy. We present here a complete description of the background 
theory needed for implementing the solution in a computer program. An important aspect 
of our solution is that, in additional to the usual specification of tip-sample separation and 
tip radius of curvature, the slope of the tip shank (or, equivalently, the opening angle of 
the shank) can be specified as an input parameter. We are thus able to investigate e.g. the 
approach to the one-dimensional limit as this slope approaches zero. Our final solution to 
this electrostatics problem is an iterative, finite difference one, having the usual form in 
which the potential at a given point at each iteration is assigned to be a weighted average 
of the potential of the surrounding grid points [13]. This iterative solution also, of course, 
includes a contribution arising from the nonzero charge density in the semiconductor; in 
this case we have found it necessary to devise a novel iterative updating scheme to ensure 
convergence of the result.  
       In the following section we present the underlying equations which form the basis for 
our solution of the electrostatics problem. In section III we present numerical results, 
considering primarily the regime of semiconductor depletion but also including some 
comments regarding accumulation and/or inversion. Our work is summarized in section 
IV. 
  
II. Theory 
A. Semiconductor Charge Density 
The equations describing the charge density in the semiconductor within effective mass 
approximation are well known.  For the sake of completeness we summarize them here, 
as taken from Sze [14], written for the case of a single conduction band and a twofold 
valence band including heavy and light holes.  First, for the charge density in the 
conduction band we have 
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where EF is the Fermi-level, EC is the conduction band minimum, T is the temperature, k 
is Boltzmann's constant, and F1/2 is a Fermi-Dirac integral of order 1/2. Also, 

2/32 )/2(2 hkTmN deC π=  where mde is the density-of-state effective mass for electrons, 
and h is Planck's constant. Similarly, for the charge density in the valence band we have 
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with 2/32 )/2(2 hkTmN dhV π= with mdh being the density-of-state effective mass for holes. 
The factor of 2 following the equals sign in the expressions for NV and NC arises from the 
spin degeneracy (the degeneracy of heavy hole and light hole bands is included in the 
definition of mdh). For the charge density due to ionized donors we have for the case of 
nondegenerate doping concentration, 
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where ND is the concentration of donors, ED is the donor energy level and the factor of 2 
before the exponential term accounts for the spin degeneracy. In the case of degenerate 
doping we have simply DD NN =+ . Finally, for the charge density due to ionized acceptors 
we have for nondegenerate doping 
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where NA is the concentration of acceptors and EA is the acceptor energy level. The factor 
of 4 before the exponential in this case arises from the total degeneracy, including both 
spin and heavy and light hole bands. For degenerate doping, AA NN =− .  From the above 
equations we can construct the total charge density in the semiconductor, as a function of 
the Fermi level position EF , 

])()()()([)( FAFFDFF ENEnENEpeE −+ −−+=ρ                                  (5) 
where e = +1.602×10–19 C and the dependence on EF of each of the constituent charge 
densities is clear from Eqns. (1-4). To solve for the value of EF in the semiconductor, one 
simply searches for a solution of 0)( =FEρ (i.e. in the bulk of the semiconductor, for flat-
band conditions). The value of EF  thus obtained is a function of temperature, i.e., it is the 
chemical potential of the system.  
     In our solution to the tip-semiconductor electrostatics problem discussed below we 
assume that EF is constant throughout the semiconductor, even in the presence of a 
varying electrostatic potential. For situations with nonzero current it is not obvious 
whether this assumption is valid, i.e. one might have a "spreading resistance" type of 
potential drop in the semiconductor in addition to the electrostatic potential distribution 
we are computing in the present work. This type of resistive drop was discussed in a very 
early work within the context of tunneling into the Si(111)7×7 surface [1], although 
numerous subsequent experiments have demonstrated that the resistive drop (at least up 
to currents in the nA-range) is negligible for this and other surfaces dominated by 
surface-states insofar as accurate spectroscopy data can be routinely acquired [15-17]. [A 
possible exception is the SiC(0001) surface for which the spectroscopy results are found 
to be quite dependent on the magnitude of the current] [18]. Similar results for the 
GaAs(110) surface in which the spectroscopy results do not appear to be particularly 
dependent on current [2] indicate, again, that a resistive type of potential drop in the 
material is small. Thus, we tentatively conclude that for most scanning tunneling 
microscopy experiments the transport of carriers within the semiconductor does not 
appear to produce a significant potential drop, so that EF can indeed be taken as constant 
in the material. 
     To include the effect of a nonzero electrostatic potential on the semiconductor charge 
density, we use a semiclassical approximation in which the electron energy bands are 
shifted rigidly by an energy φ = −eV  due to an electrostatic potential V. All of the 
energies EC, EV, EA, ED and EF given above are referenced to some fixed point in the 
energy bands. If we now shift the bands by φ, but maintain a constant EF, the new Fermi-
level position relative to the energy bands will be EF − φ. The resulting charge density is 
then given by )( φρ −FE .  Expressed in terms of the electrostatic potential energy φ, 
Poisson's equation in the semiconductor is 



4 

0

2 )(
εε

φρ
φ

−
=∇ FEe                                                           (6) 

where 0ε  is the permittivity of vacuum, and ε is the dielectric constant of the 
semiconductor. The zero reference for φ  is taken to be at a point far inside the 
semiconductor. 
     The boundary condition on Eq. (6) we use throughout this paper is the difference in 
electrostatic potential energy between the tip and a point far inside the semiconductor, 

Tφ . This quantity equals the difference in vacuum level positions between the tip and 
semiconductor, and it is formed from a sum of the applied voltage on the sample relative 
to the tip, VS , and the difference between the work functions of sample and tip. The work 
function of the metallic tip we denote by mφ , and that of the sample is given by χ + (EC − 
EF) where χ  is the electron affinity of the semiconductor. With these definitions, and 
using the fact that the applied voltage equals the difference in Fermi-level positions of tip 
and sample, we have 

)( FCmST EEeV −−−+= χφφ  .                                          (7) 
With this equation one can, for a specific physical system, relate the experimental 
parameter VS  to the theoretical  quantity Tφ  used in the present work. 
     For a one-dimensional geometry the problem of tip induced band bending under 
depletion conditions can be easily solved analytically, at least for zero temperature. The 
potential difference Tφ  between tip and sample will be dropped partly across the vacuum 
gap of width s and partly within the semiconductor over a depletion distance w. Within 
the semiconductor the electrostatic potential energy varies quadratically with distance, 
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where the semiconductor exists in the region 0<z . The potential energy at the surface is 
then )2/()( 0

22
00 εεφ wNNe AD −= and the electric field at the surface in the 

semiconductor is 
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In the vacuum the field is uniform, with value )/()( 00 esT φφ − . Applying the boundary 
condition of continuity of the electric displacement across the surface, we have 
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thus yielding a quadratic equation for w. This equation is easily solved, yielding one-
dimensional values for the depletion width, w = w0, and the surface potential 00φ . 
 
B.  Probe Tip Geometry and Coordinate System 
To handle the electrostatic problem of a metallic probe tip in proximity to a 
semiconducting surface, we use in the vacuum region the well-known prolate spheroidal 
coordinate system [10-12]. These coordinates form families of confocal hyperbolas and 
ellipses, as illustrated in Fig. 1(a). For the case of a metallic sample this choice of 
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coordinates immediately provides an exact solution of the electrostatic problem [11]. For 
the present problem of a semiconducting sample the coordinate system does not present a 
trivial solution to the problem, but it nevertheless allows a convenient (and exact) means 
of specifying the boundary condition in the vacuum and it also enables the use of a 
moderate size finite-element grid in the vacuum.  In this section and the following one we 
discuss a problem in which the probe tip fits exactly on one of the hyperbolas of the 
coordinate system; in Section D we consider the cases shown in Figs. 1(b) and (c) for 
which the probe tip shape does not have this constraint.  
     We label the prolate spheroidal coordinates by ),( ηξ , ∞<≤ ξ1  and  10 <≤η , with 
constant-ξ surfaces consisting of ellipsoids and constant-η surfaces consisting of 
hyperboloids. In terms of the original cylindrical coordinate (r,z), the constant-ξ 
ellipsoids satisfy the equation 
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and the constant-η hyperboloids satisfy 
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where a is the distance from the semiconductor surface to the common focal point of 
these iso-surfaces. Transformation equations between the cylindrical and prolate 
spheroidal coordinates are given by 

2/122 )]1()1[( ηξ −−= ar                                                 (14) 
and 

ξηaz =   .                                                             (15) 
The specific hyperboloid which corresponds to the probe tip has an η-value of Tηη = . 
These two parameters a and ηT are determined by the values of the sample-tip separation 
s and the tip radius of curvature R according to 

Tas η=                                                                  (16) 
and 
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where R is given by the inverse of 22 / drzd  for Tηη =  and at 0=r , evaluated from 
Eqs. (14) and (15). The probe tip thus defined has a specific shank slope, given by 

R
sb =  .                                                                (18) 

(Tips with other values of b are discussed in Section D). The opening angle of the tip is 
given by )/1(tan2 1 b−=θ . 
 
C. Poisson's Equation 
Assuming circular symmetry, Laplace's equation in the vacuum is given by 
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On a discrete grid of points (ξi ,ηj), i = 1, 2,... m,  j = 1, 2,... n,  we put this equation into 
finite-difference form according to 
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At the semiconductor surface (η = 0) the values of iξ  are chosen to match values of 
riri Δ−= )5.0( , where mrr /max=Δ  with maxr  being the lateral extent of our 

electrostatics solution. Thus,  
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The values of ηj are chosen to be uniformly spaced, nj Tj /ηη =  so that 
nTj /ηηη =Δ≡Δ  .  

     Strictly speaking Eq. (20) is not valid for i =1 or m and for j = 1 or n. However, we 
can formally extend the equation to those cases using the following extended potential 
values: For i =1 the values of j,0φ  are identical to j,1φ  due to the circular symmetry and 
for i = m  the values of jm ,1+φ  are taken to be identical to jm,φ . This latter equality is well 
satisfied so long as the lateral extent of the solution is large enough so that the potential 
on the surface at r = rm is practically zero, since in that case the potential in the vacuum is 
independent of i (see the discussion at the end of this Section on the initial value used for 
the potential). For j =1 in Eq. (20) the values of 0,iφ  correspond to those on the 
semiconductor surface, defined below, and for j = n  we have Tni φφ =, .  
     To put Eq. (20) into a form suitable for iterative solution we assign the value of ji,φ  
on the left-hand side to be its value on the (k+1)st iteration, with all the φ  values on the 
right-hand side of the equation being those on the kth iteration. We have tested this update 
formula over a wide range of tip geometries and we find it to be stable in all cases. An 
important aspect of this stability is the choice for the first derivative terms in Eq. (20) 
being )2/()( ,1,1 ijiji ξφφ Δ− −+  as opposed to ijiji ξφφ Δ−+ /)( ,,1  or ijiji ξφφ Δ− − /)( ,1, . This 
choice gives the exact result for the first derivative value at i =1 in the limit of small Δr 
for the case of a quadratic dependence of φ on r.  
     In the semiconductor we use a Cartesian grid with cylindrical symmetry to solve 
Poisson's equation [Eq. (6)]. In discrete form this equation becomes  
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with )( ijFij E φρρ −≡ . The values of ri in this equation are identical to those in Eq. (20), 
so that rri Δ≡Δ as defined above. The values of zj,  j =1, 2, ... N are chosen to be 
uniformly spaced with zj = −j zmax / N and Δzj ≡ Δz = zmax / N where zmax is the vertical 
extent of our solution. In practice, we choose both zmax and rmax to be equal to w0, or some 
multiple thereof. The application of Eq. (23) to the values i =1, i =m, and j =1 is made in 
the same way as for Eq. (20). Equation (23) is not applied to the case of j =N.  For the 
case of j =N−1, the values of Ni,φ  appearing on the right-hand side of Eq. (23) are 
assumed to equal zero; this assumption is justified so long as the vertical extent of the 
solution is sufficiently large. 
     To formulate Eq. (23) into an update equation for the potential one can envision 
several possibilities. First, we could assign the left-hand side of  Eq. (23) to be the 
potential at the (k+1)st iteration, 1)(k+

ijφ , with the right hand side being the values for the 
potential and charge density at the kth iteration. We denote the resulting updated value of 
the potential as 1)(k~ +

ijφ . We have performed numerical tests of this updating scheme and 
find that the potential values thus obtained approach their final values in a markedly 
oscillatory manner. At the very least this behavior makes it difficult to judge the 
convergence of the result, and in the worst case an instability in the solution may result. 
This problem arises in part from the nonlinear dependence of )( φρ −FE  on φ. We have 
developed a method by which this behavior is suppressed: In the updating formula, for 
the charge density, we use its value at the (k+1)st iteration rather than at the kth iteration. 
This leads, of course, to a transcendental equation that must be solved for 1)(k+

ijφ : 
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At each iteration we perform a one-dimensional search of possible 1)(k+

ijφ  values that 

satisfy this equation. The solution is assumed to be bounded by (k)
ijφ  and 1)(k~ +

ijφ , and the 

solution is located to an accuracy of  10/~ 1)(k(k) +− ijij φφ . This procedure is found to yield in 

all cases a stable final solution for the potential, and one in which the final result is 
approached monotonically.   
     At the semiconductor surface we apply the boundary condition of continuity of the 
electric displacement. Using the grids defined above, this condition takes on the form 
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with the 0,ii φφ ≡  values being the potential energy on the surface and where we have 
added the superscripts V and S to denote the potentials in the vacuum and semiconductor, 
respectively. The expression ηξ Δia  in the denominator of the left-hand side equals the 
grid spacing in the z-direction between the surface and the first η-value in the vacuum. 
Equation (25) is solved for iφ , with the resulting expression used as an update formula 
for iφ  in the (k+1)st iteration given values for the potentials in the vacuum and 
semiconductor in the kth iteration. 
     To initialize the values of the potential in the 0th iteration, we use 0≡φ  everywhere 
in the semiconductor and on its surface. In the vacuum, we use an expression 
corresponding to the solution for the potential between a metallic tip and metallic sample 
[11],  
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With this choice, iterative values of the potential approach their final value, in terms of 
magnitudes, from below. One could also use some other initialization scheme (e.g. based 
on a one-dimensional electrostatics solution) in order to approach the correct value from 
above, thereby providing a useful test on the convergence of the final result. 
 
D. Case of a General Hyperbolic Tip 
The theory described in the previous two sections allows us to solve for the electrostatic 
potential for the case when the probe tip exactly matches one of the constant-η 
hyperboloids of the coordinate system. Using the tip radius R and the tip-sample 
separation s as parameters, the slope of the tip shank is then predetermined, with a value 
of Rsb /=  as in Eq. (18). In this section we consider the general case of a hyperbolic 
tip with arbitrary values of R, s, and b. In this case the tip may not correspond to a 
constant-η surface, and some adjustment of our procedure is required. 
     We distinguish between two possible cases here: one in which the specified value of 
shank slope is greater than Rs /  and the other in which it is less than Rs / . In the first 
case, illustrated in Fig. 1(b), we choose a coordinate system based on the specified values 
of R and b but for which the separation between sample and the "coordinate tip" which 
forms the basis of the coordinate system is not given by s. We use the subscript 1 to 
denote this coordinate tip and we have in this case 

2
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These equations determine the values of a1 and η1, with identical values applying to the 
actual tip, a = a1 and ηT = η1. The value of the separation between sample and coordinate 
tip is given by 2

111 bRs = , with ss >1 . Our boundary condition for solving Laplace's 
equation in the vacuum must now be modified, such that at each grid point i,j in the 
vacuum we check whether that point falls within the interior of the tip and if so then no 
action is taken. To achieve an explicit statement for this condition, we transform the 
values of ),( ji ηξ  into (r,z) coordinates according to Eqs. (14) and (15), 
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We then check whether the zij value thus obtained is greater than that corresponding to 
the periphery of the actual tip, 
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If this condition is met then the point falls within the interior of the actual tip and so the 
value of φij is left at Tφ . If the condition is not met then the usual updating is performed. 
     The second case we must consider for a general hyperbolic tip is illustrated in Fig. 
1(c). Now, the specified value of the shank slope is less than Rs / . In this case we 
choose a coordinate tip with  

111 ηass ==                                                               (32) 
and 
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These equations determine the values of a1 and η1 for the coordinate tip. For the actual 
tip, the values of a and ηT are determined by the specified slope b and radius R according 
to 

2

111
bT

+=
η

                                                            (34) 

and 

T

bRa
η

2

=     .                                                          (35) 

The value of the shank slope for the coordinate tip is given by 111 / Rsb = , with bb >1 . 
Our modification to the boundary condition for solving Laplace's equation then reduces 
to identically the same form as Eq. (31). If that condition is met then no action is taken at 
that grid point (i.e. the value of φij is maintained at Tφ ), and if not then the usual updating 
is performed.  
     The case of a general hyperbolic tip also requires some modification of the initial 
condition, discussed at the end of the previous Section. We modify Eq. (26) by replacing 
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jη  by ijη′  where we define ijη′  such that it varies from 0 at the semiconductor surface to 
ηT at the surface of the actual probe tip. Thus, iTij nj ′=′ /ηη  where in ′  is the number of 
grid points extending between the surface and the actual tip, at the ith value of ξi. 
 
E. Case of a Tip with Arbitrary Shape 
With the theory developed above for a general hyperbolic tip, it is straightforward to now 
consider modifications to the probe tip shape. One simply defines the tip periphery as 
being some new surface which is entirely contained in the vacuum, and the coordinate tip 
is chosen as the maximal hyperbolic shape which is contained entirely within this actual 
tip. As an example, let us consider a small protrusion extending beyond the apex of a 
general hyperbolic tip. The existence of such a protrusion has been previously discussed 
within the context of scanning tunneling microscopy [4]. Let p(r) describe the z-extent of 
this protrusion relative to the surface of the hyperbolic tip. Then this protrusion can be 
included in our computation simply by modifying Eq. (31) to include this additional 
factor,  
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As in the prior Section, if this condition is met then no action is taken at that grid point, 
and if not then the usual updating is performed. For more substantial modifications to the 
tip shape which significantly modify the shank geometry, e.g. using a parabolic rather 
than a hyperbolic shank, the method described here would not be so applicable and the 
use of a different coordinate system to match the shank geometry should be explored. 
 
III. Results and Discussion  
In this section we discuss results for the distribution of electrostatic potential energy for 
specific tip-sample systems. Many of our results will be presented in terms of the surface 
potential energy at a point directly opposite the apex of the probe tip; we denote this 
value by 0φ . As discussed in Section II(C), the radial grid points in our simulation are 
specified by riri Δ−= )5.0( , i =1, 2, ..., m  so that we do not have a grid point precisely 
at r = 0. We therefore use quadratic interpolation to form 0φ , 8/)9( 210 φφφ −= , where 1φ  
and 2φ  are the surface potentials at 1r  and 2r , respectively. 
     Figure 2 displays results for the surface potential for n-type material with doping 
concentration of 1×1018 cm-3, in depletion with a tip electrostatic potential energy of 3 eV 
relative to a point far inside the semiconductor (the semiconductor band gap is chosen to 
be large enough so that inversion does not occur). The sample-tip separation is taken to 
be 1 nm. A dielectric constant of ε =12.9 (corresponding to GaAs) is used for the 
semiconductor, and for illustrative purposes the donor level is placed 1 meV below the 
conduction band mimimum, using nondegenerate statistics. The temperature used in the 
computation is 0 K. The one-dimensional surface potential for these parameters, from Eq. 
(10), is 2.03 eV with depletion width of w0 = 53.8 nm. In Fig. 2 the surface potential 0φ  is 
plotted as a function of the probe tip radius, using various opening angles for the tip: 30°, 
90°, 150°, and a variable angle chosen to exactly match the eccentricity of the coordinate 
system used in the computation. [The slope b of the tip shank is related to the opening 
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angle θ  by )2/tan(/1 θ=b ]. The results shown in Fig. 2, and those below for depletion 
conditions, vary with the tip potential in a nearly linear manner. 
     A number of features of the three-dimensional band bending problem are apparent in 
Fig. 2. First, it is seen that even for rather large tip radii of 1000 nm the one-dimensional 
limit is not yet reached. Typical tip radii in scanning tunneling microscopy are in the 
range 10−100 nm [8], so it is clear that the one-dimensional limit is a poor approximation 
in reality. The effect of shank slope is seen in the results particularly for small values of 
the tip radius. In the limit of small radii our geometry reduces to that of a wedge of 
specified opening angle in proximity to the semiconductor. As the opening angle 
approaches 180° then one must reach the one-dimensional limit, and this behavior is 
apparent e.g. in the difference between the 90° and 150° curves in Fig. 2. Considering the 
limit of small opening angles for the results plotted in Fig. 2, i.e. the lower limit of the 
potential values, our geometry presumably approaches that of a metallic sphere in 
proximity to the semiconductor. Comparing the results in Fig. 2 with our prior results of 
Ref. [8] (which, as discussed in the Introduction, used an approximation resulting in a 
somewhat ill-defined tip shank geometry), we find good agreement with the results for a 
tip opening angle of ≈90°. 
     Figure 3 shows specific results for a tip radius of 4 nm and opening angle of 90°, with 
parameters for the semiconductor identical to those of Fig. 2. Figure 3(a) gives a contour 
plot of the electrostatic potential energy, for potentials of 0.5, 1.0, and 2.0, and with the 
probe tip at a potential of 3.0 eV relative to a point far inside the semiconductor. Figure 
3(b) shows the potential along the central axis and Fig. 3(c) shows the potential along a 
line on the surface of the semiconductor and passing through the central axis. 
      Figure 4 shows results for the bend bending for a lower doped semiconductor, with 
doping concentration of 1×1016 cm-3 and all other parameters identical to those of Fig. 2. 
The qualitative trends in Fig. 4 agree with those of Fig. 2, but the surface potentials in 
Fig. 4 are all somewhat larger due to the lower doping concentration. The one-
dimensional surface potential in this case is 2.88 eV with depletion width of w0 = 641 nm. 
As for Fig. 2, the results of Fig. 4 emphasize the fact that the one-dimensional limit is 
inappropriate for realistic tip geometries. Comparing Figs. 2 and 4 we see that the change 
in surface potential due to this two-order-of-magnitude change in doping concentration is 
typically 0.5 eV, which is similar to the change in potential when varying the tip radius 
by one order of magnitude. We thus conclude that the divergence of the potential in the 
semiconductor is affected by both three-dimensional spreading of the field lines away 
from the tip as well as the one-dimensional curvature arising from the space charge of the 
ionized dopant atoms, with the former dominating for small tip radii. Only for very large 
tip radii and/or shank opening angles very close to 180° is the one-dimensional limit 
approached. 
     In Fig. 5 we show another perspective on the band bending problem, namely, its 
dependence on sample-tip separation. As 0→s  the surface potential 0φ  must approach 

Tφ  for all values of tip radius and shank angle. The manner in which this limit is 
approached will, however, vary depending on the tip geometry and the semiconductor 
doping concentration, as illustrated in Fig. 5. The three-dimensional results  (θ = 90°) are 
very nonlinear as 0→s , showing a sharp increase towards the value of Tφ =3 eV only at 
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separations significantly less than 1 nm. By the same token, the electric field in the 
vacuum reaches rather large values at these small separations. 
      All of the results discussed above have dealt with the semiconductor in depletion. We 
comment briefly here on the situation when the semiconductor is in accumulation or 
inversion. As noted previously [8], the tip induced band bending in accumulation is 
relatively independent of tip geometry, since the semiconductor charge densities near the 
surface are large and these dominate in determining the solution to Poisson's equation. 
Using the theory described in Section II we can compute the potential distributions within 
the semi-classical approximation in which the charge density in the semiconductor is 
assumed to equal )( φρ −FE  where φ is the electrostatic potential energy. In reality the 
accumulation layers states are, of course, quantized, by confining potentials in both the 
vertical (z-direction) and lateral (radial) directions. The resulting discrete accumulation 
layer states have been directly resolved in scanning tunneling spectroscopy at low 
temperatures [7,20]. The semi-classical approximation is expected to be valid whenever 
many quantum states are occupied, i.e. in conditions of severe accumulation or inversion. 
The solution thus obtained is also clearly self-consistent. 
     In accumulation or inversion situations when only a few quantum states are occupied 
the computation of the electrostatic potential becomes more complicated for two reasons. 
First, one must perform a Hartree computation in which the charge density in the 
semiconductor is computed as a sum of state-densities of the occupied states (as in Ref. 
[7]), and second, the potential and associated charge densities must be computed self-
consistently. This type of computation takes us beyond the scope of the present work. 
Nevertheless, we do present here a few simple semi-classical computations of the energy 
level separation due to the vertical and lateral confinement, which are useful at least for 
estimating the number of occupied states. We initially consider only vertical 
confinement, in which case the quantum states are easily computed using the WKB 
approximation. Using the potential along the central axis as a barrier for the carriers and 
assuming no penetration into the vacuum, then as previously described [20] the energies 

0<nE  of the confined states satisfy 

[ ] ndzzEm
L n ππφ =−−∫ 4

3)(*20

2h
                                    (37) 

with z = L being the turning point of the potential where )(LEn φ=  (recall that 0<z in 
the semiconductor), and with n = 0 for the lowest lying state. Figure 6 displays results for 
the energy level positions as a function of the tip potential energy, using m*=0.1m0. We 
consider a negative tip potential energy of −3 eV, so that the n-type material is in 
accumulation. For the tip radii displayed in Fig. 6 we find 3 bound states. Since we are 
considering only vertical confinement each state corresponds to the bottom of a subband 
of states in which the carriers can freely move parallel to the surface. 
     As a prelude to computing the complete three-dimensional confinement of the carrier 
wavefunction, we first consider vertical confinement using a variational approach. We 
use the well-known form for the wavefunction appropriate to triangular potentials [21], 

)]/[exp( 2/3βzzAψ =  where the constant A is determined by normalization. We compute 
the energy in the usual manner and vary the parameter β to minimize the energy. The 
results are shown by the dashed line in Fig. 6; for example, for R = 1 nm we find β = 4.30 
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nm and a ground state energy of −54 meV. As seen in Fig. 6 we find good agreement 
between the variational result and the lowest-lying state from the WKB computation, thus 
giving us some confidence that the energy splittings and number of states found in the 
WKB computations are reasonably accurate. 
      We now consider the full three-dimensional confinement of the wavefunction, again 
using a variational approach. The ground state wavefunction now assumed to have the 
form )]/exp([)]/exp([ 2/32/3 γrβzzAψ = where again A is determined by normalization 
and the parameters β and γ are varied so as to minimize the energy. The result for the 
ground state energy is shown by the dotted line in Fig. 6; for example, for R = 1 nm we 
find β = 5.5 nm, γ = 8.3 nm, and a ground state energy of −24 meV. Comparing in Fig. 6 
the variational results with and without lateral confinement we find that this effect 
produces an upwards shift in energy of 20−30 meV. This amount provides an estimate of 
the radial confinement energy for the wavefunction. In terms of the total number of 
bound states, considering both vertical and lateral confinement, we conclude that 
approximately 2 or 3 of them will exist for the tip radii considered here (i.e. about 2 from 
the lowest subband and perhaps 1 from the next higher subband). The system is thus in a 
moderately quantum regime; with a greater number of occupied bound states the semi-
classical approximation might be valid, whereas with fewer bound states a self-
consistent, Hartree approach would certainly be necessary to obtain the correct potential 
distribution. 
  
IV. Summary 
In summary, we have presented a finite-difference technique by which the electrostatic 
problem of a probe tip in proximity to a semiconductor sample can be solved. Using 
prolate spheroidal coordinates in the vacuum region enables us to rigorously specify the 
slope of the tip shank, in addition to the usual parameters of tip radius and tip-sample 
separation. Numerical results for representative situations are presented, from which the 
approach to the one-dimensional limit as a function of either tip radius or tip slope is 
apparent. We conclude, consistent with prior works, that the one-dimensional 
approximation is not appropriate for realistic tip geometries [3,4,8].  
     The method presented here can be readily extended to other situations with circular 
symmetry. For example, the problem of a charged threading dislocation lying in the 
semiconductor, colinear with the tip axis [9,22,23], could be handled by modifying the 
boundary condition in the semiconductor at r = 0 and as −∞→z . Similarly, a nonzero 
surface charge density can be accommodated by modifying the boundary condition at the 
surface, Eq. (25), by adding to it the surface charge density (which in general will be a 
function of the surface potential, φi ). For other situations which do not have circular 
symmetry, such as cross-sectional studies of pn-junctions or other devices [5,6,8], a 
significant extension of the present method to include its full angular dependence is 
required. Nevertheless the use of prolate spheroidal coordinates is still useful in that case 
for the same reasons as for circular symmetry, namely, it permits a modest size grid to be 
used for the vacuum region and it enables convenient and exact specification of the 
boundary condition in the vacuum.  
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Fig. 1.  (a) Illustration of 
prolate spheroidal 
coordinates (ξ,η) 
consisting of confocal 
ellipses and hyperbolas, 
respectively. The probe 
tip is given by a 
hyperbola with η=ηt, 
having radius of curvature 
R. The sample-tip 
distance is s and the 
sample-focus distance is 
a. The probe tip shown 
here exactly corresponds 
to one of the hyperbolas 
of the coordinate system, 
with slope of the tip 

shank given by Rsb /= . Situations when the probe tip does not correspond to a 
hyperbola of the coordinate system are shown in (b) and (c), with the solid line denoting 
the actual tip and the dashed line showing the "coordinate tip" used as a basis for the 
coordinate system. 
 
 
 

Fig. 2.  Electrostatic potential 
energy at a point on the 
semiconductor surface directly 
below the tip apex, for tip-
sample separation of 1 nm and 
n-type doping concentration of 
1×1018 cm-3. The probe tip has a 
potential energy of 3 eV relative 
to a point far inside the 
semiconductor. Results are 
shown for shank opening angles 
of 30°, 90°, 150°, and angles 
equal to s/R1tan2 − where R is 
the tip radius and s the tip-
sample separation. The dashed 
line gives the one-dimensional 
result (corresponding to an 
opening angle of 180°). 
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Fig. 3.  (a) Potential energy profiles at 0.5, 
1.0, and 2.0 eV for a probe tip radius of 4 
nm, a tip-sample separation of 1 nm, and 
an n-type doping concentration of 1×1018 
cm-3. The probe tip has a potential energy 
of 3 eV relative to a point far inside the 
semiconductor. (b) Potential along the 
central axis, through the semiconductor 

)0( <z  and the vacuum )0( >z . (c) 
Potential along a line on the 
semiconductor surface and passing 
through the central axis.  
 
 
 
 
 
 
 
 
 
 

 
 

 
Fig. 4.  Same caption as for Fig. 2, 
but for a n-type doping concentration 
of 1×1016 cm-3. 
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Fig. 5.  Potential energy at a point on 
the semiconductor surface directly 
below the tip apex, as a function of 
tip-sample separation. The probe tip 
has a radius of 10 nm and a potential 
energy of 3 eV relative to a point far 
inside the semiconductor. Results are 
shown for shank opening angles of 
90° and 180°, and for n-type doping 
concentrations of 1×1016 and 1×1018 
cm-3. 
 
 
 
 
 
 
 

 
Fig. 6. Potential energy of 
accumulation layer states for n-
type material with a doping 
concentration of 1×1018 cm-3 
and effective mass of 0.1m0. 
The thick solid line shows the 
energy of the conduction band 
minimum at the surface, with 
thin solid lines showing the 
energy of localized states as 
computed in the WKB 
approximation and considering 
only vertical confinement. The 
dashed and dotted lines show 
variation results for the lowest-
lying accumulation layer state, 
with the former including only 
vertical confinement and the 
latter including both vertical 
and lateral confinement. 




