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We show that Friedel charge oscillation near an interface opens a gap at the Fermi energy for 
electrons with wave vectors perpendicular to the interface. If the Friedel gaps on two sides of the 
interface are different, a nonequlibrium effect – shifting of these gaps under bias – leads to 
asymmetric transport upon reversing the bias polarity. The predicted transport asymmetry is 
revealed by scanning tunneling potentiometry at monolayer-bilayer interfaces in epitaxial 
graphene on SiC (0001).  This intriguing interfacial transport behavior opens a new avenue 
towards novel quantum functions such as quantum switching. 
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I. INTRODUCTION 
Friedel charge density oscillations near defects such as impurities and boundaries are 

ubiquitous in metallic materials [1]. They usually have little effect on electron transport in 
metals, however, because the large electron density in a metal dwarfs the Friedel oscillation, 
rendering the perturbation on the electronic structure caused by such an oscillation negligible. 
The situation can be different in materials such as graphene and topological insulators, where the 
electron density is often low and the Coulomb interaction can therefore be important [2, 3]. 
Friedel oscillations in graphene [4-6] and topological insulators [7-9] have been studied both 
theoretically and experimentally in equilibrium states, where, similar to metals, the Fermi 
momentum kF is well-defined and such oscillations are characterized by the wave vector 

FkQ 2 . However, in transport experiments on materials with low electron densities, the system 
can be easily driven far from equilibrium and the Friedel oscillations become voltage dependent 
[10]. Low electron density and strong electron-electron interaction in such systems, combined 
with the sensitivity of the Friedel oscillation to nonequilibrium effects, should lead to strong 
influence on transport properties. Little effort has been spent on exploring the effects of Friedel 
oscillations on electron transport. 

Here we show that Friedel oscillation can profoundly impact electron transport across an 
interface: The electrostatic potential due to the Friedel oscillation couples the right- and left-
going waves near the Fermi energy and opens an energy gap for normally incident electrons, 
representing an extra energy cost for electron transmission across the interface. Because of the 
dependence of the Friedel oscillation period on the bias voltage, these gaps can manifest 
themselves as asymmetric electrical transport across the interface if the gaps on both sides are 
different. Such a transport asymmetry is experimentally demonstrated in our scanning tunneling 
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potentiometry measurements across a monolayer-bilayer boundary in epitaxial graphene formed 
on SiC (0001). 

We will first develop a general theory of the Friedel energy gap and the transport 
asymmetry across a boundary due to such a gap in Section II. In Section III we present the 
experimental procedure for measuring the transport asymmetry in graphene. The measured 
results are compared to theory in Section IV and are discussed in Section V. 

 
II. THEORY 
A. Friedel energy gap 
 
We first consider the effect of a charge density oscillation of constant amplitude on an electron at 
the Fermi energy in a system that has a low electron density where each lattice site is occupied 
by n  n  n 1 electrons, with ↑ and ↓ indicating spin. The onsite Coulomb energy for an 

itinerant electron, which contributes an additional term n  n  to the charge on the lattice site, 

is    nUnnUnnnnnU 
2

1
  , where U  is the Hubbard energy. Within the mean-

field approximation n  x   for a charge density      Qxx cos10 , where   is 

the unit cell volume (or area for 2D systems), 0 the average charge density, 1 the amplitude of 
the charge density oscillation, and Q  the wave vector of the charge density oscillation. The 
Coulomb energy due to the Friedel oscillation means that there is an extra Coulomb term in the 
Hamiltonian within the mean-field approximation, 

   

i
iii QxccUH  cos

2

1
11 ,       (1) 

where ci
  is the creation operator at lattice position xi , and   is the phase of the oscillation. One 

can verify that Eq. (1) reproduces the Coulomb energy of an itinerant electron if ncc ii  . 

Consider a pair of states, one right-going along the direction of the charge density oscillation and 
the other left-going. Suppose the wave functions of the two states without 1H are 

  /2/ )2/( xqQi
x eqQk  and   /2/ )2/( xqQi

x eqQk , respectively, and their 

energies are E Q / 2 q   E Q / 2   cq , which, with c being the group velocity, is a good 

approximation for small q if E Q / 2   is sufficiently away from a band edge. 1H  couples these 

two states. By first-order perturbation, the eigenstates are standing waves with energies 
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Therefore, a gap is opened at energy E Q / 2  , which we refer to as the Friedel gap (GF) 

hereafter. At equilibrium, Q  2kF  and the gap is located at the Fermi energy, as schematically 
sketched in Fig. 1a. The Friedel gap is different than the charge density wave condensate in low-
dimensional systems. The latter is usually the result of electron-phonon coupling, where a gap at 
the Fermi energy is formed from lattice distortion due to, e.g., the Peierls instability [11]. In the 
case of Friedel oscillation, the gap is formed simply due to the electron-electron interaction. 
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B. Transport asymmetry 

In a nonequilibrium state, i.e. under a bias V, transport asymmetry arises from an intuitive result 
that the Friedel gap on the transmitted side moves outside the transport window. This effect is 
intuitive because the transmitted electron wave functions do not form interference patterns that 
contribute to the Friedel oscillation. Indeed, a more rigorous consideration using nonequilibrium 
Green’s function showed that the period of the Friedel oscillation increases from its equilibrium 
value [10]. For bands with c > 0, this in turn shifts the Friedel gap downwards relative to the 
equilibrium Fermi energy. Numerical modeling found the bias voltage dependence of the Friedel 
period to satisfy the condition [10], 

  eVkE
Q

E F 2

1

2









        (3) 

which with a linear dispersion leads to ceVkQ F /2  .  The center of the Friedel gap therefore 

moves from the chemical potential [12]  to   eV / 2 . There exists a saturation voltage, 

eGV Fc  , beyond which the Friedel gap moves so much that it is completely below the 

equilibrium chemical potential  = E(kF).  
At an interface under a bias voltage V , the chemical potentials of the two sides, L and 

R, differ by eV . Naively, if one neglects the voltage dependence of the Friedel oscillation 
period, the Friedel gaps would move rigidly with the chemical potentials (as schematically 
shown in the upper panel of Fig. 1b), so that the current is largely carried by the states within a 
transmission window w = eV  (GFL+GFR)/2, where GFL and GFR are sizes of the Friedel gaps on 
the left and right sides, respectively. This window remains the same upon reversing bias polarity 
and no asymmetry arises. However, the bias voltage shifts both Friedel gaps downwards relative 
to the respective chemical potentials. One limiting case occurs when both Friedel gaps are 
completely located below their respective chemical potentials, as shown in the lower panel of 
Fig. 1b, where the transmission window becomes w = eV  GFL.  Upon bias polarity reversal, w = 
eV  GFR. As a result, for the same current flowing under the reversed bias, there is a difference 
in the voltage drop across the interface by approximately V = (GFLGFR)/e.  

Summarizing the above discussion, we see that when the bias is smaller than both gaps, 
there is no asymmetry (this limit ensures that there is no violation of the time reversal 
symmetry); when the bias is between the two gaps, the asymmetry increases linearly with the 
bias; when the bias is above both gaps, the asymmetry saturates to a constant |GFLGFR|/e (as 
explicitly shown in Section IV). Since Friedel gaps are opened only for normally incident 
electrons, a necessary condition for the transport asymmetry is that transmission is limited to the 
normal direction, which is satisfied in our experiments as described below. 

 
III. EXPERIMENT 
A. Experimental method 
 
Our experiment employs monolayer-bilayer (ML-BL) interfaces in graphene formed on Si-face 
SiC (0001) [13-15]. The Si-face of SiC allows for better control of the graphene thickness than 
the C-face, due to the Si-face initially growing a buffer layer that acts as a template for the 
graphene formation as the Si is sublimed from the surface. To grow graphene, a 1 mm thick 
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bow-tie shaped graphite heating plate with a narrow neck measuring about 14 mm  20 mm was 
used to heat a 1 cm × 1 cm sample resting on the neck. This heater draws a current of ~200 A. 
Water-cooled copper clamps and electrical feedthroughs supply the current, and the heater is 
contained in an ultra-high-vacuum chamber. The SiC graphene growth procedure starts with 
hydrogen etching at 1620 °C for 3 min followed by the graphene growth at 1590 °C for 30 
minutes in 1 atm argon environment.  

We directly measure the voltage drop across a ML-BL graphene boundary by using a 
scanning tunneling potentiometry (STP) technique [16-18], implemented in a cryogenic 
multiple-probe scanning tunneling microscope (STM) [19, 20]. In the STP setup, schematically 
shown in Fig. 2a, two STM probes (probe 1 and probe 2) are in contact with the sample surface 
applying a constant current. A third tip (probe 3) is positioned between the current probes and 
scans the sample surface to measure both the topography and the local electrochemical potential 
(µec) at each point [18, 19, 21] at 80 K. Both sample and tip are maintained at same temperature.  

Unlike conventional tunneling spectroscopy where the spectroscopic resolution is limited 
by thermal broadening of the electron energy distribution in the Fermi-distribution, the 
potentiometry technique measures the local electrochemical potential with nominally zero 
current flow at the tip-sample junction. In this case, the voltage noise in potentiometry is 

dominated by thermal noise that is fTRkV TB  4 , where Δf is the bandwidth [22]. A 

resolution better than 10 µV can be achieved at low temperatures [23]. 

B. Measured transport asymmetry 

Figures 2b and 2c show STM images of the ML and BL graphene, respectively, with a moiré 
pattern and atomic lattices. By comparing STM images and scanning tunneling spectroscopy 
(STS) acquired on both sides of the step [24], we find that the lattice structure of graphene 
remains unchanged across the boundary, indicating a carpet-like growth mode covering the 
substrate step and terrace, and the extra graphene layer underneath the graphene carpet primarily 
has an armchair type of edge structure.  Epitaxial graphene on SiC (0001) is heavily n-doped due 
to charge transfer from a buffer layer [25], and a ML-BL boundary almost always coincides with 
a substrate step [26]. Therefore, a transition region of deformed graphene over the substrate step 
[27] is nearly undoped due to increased distance to the substrate [28].  This undoped region 
forms a barrier to incident electrons so that the transmission probability decreases sharply with 
transverse momentum, thus limiting transmission to near-normal incidence. 

The STM image in Fig. 3a shows a ML-BL boundary, with a step height measured to be 
~0.8 Å, in good agreement with the expectation from the interlayer spacing difference between 
SiC (2.5 Å) and BL graphene (3.3 Å) [29, 30]. Since the BL is slightly higher than the ML on the 
surface, we denote this transition as a “step-up” ML-BL boundary. Figure 3b is a schematic 
illustration of this boundary. Figure 3c shows potential profiles measured across this boundary 
for both bias polarities. A clear potential drop occurs at the step edge for each polarity. The 
potential drop at the boundary when the current flows from the BL to the ML (V, denoted as 
reverse bias) is clearly higher than when a current of precisely the same magnitude flows from 
ML to BL (V+, denoted forward bias). On the same sample, we also identified “step-down” ML-
BL boundaries, as shown in the STM image in Fig 3d and schematically illustrated in Fig. 3e. 
The STM measured step height of this “step-down” ML-BL boundary is 1.65Å. The same kind 
of bias reversal asymmetry, V > V+, is observed, as shown in Fig. 3f.  



5 
 

For comparison, we measure the potential profiles across ML graphene covering a 
substrate step, referred to as a ML-ML “boundary” (Fig. 3g), corresponding to the situation 
depicted in Fig. 3h. The potential profiles measured at several different source current values are 
shown in Fig. 3i for both bias polarities. To facilitate comparison, the profiles measured at 
reverse bias are flipped and superimposed onto the corresponding forward bias profiles. Clearly, 
the potential drops are the same for forward and reverse biases. Thus, the ML-ML “boundary” 
exhibits symmetric transport, as expected for this homojunction. These results confirm that the 
transport asymmetry at the ML-BL boundary is intrinsic to the heterojunctions and exclude a 
substrate step-induced asymmetry scenario.  

 

IV. COMPARISON BETWEEN THEORY AND EXPERIMENT 

To facilitate a quantitative comparison between theory and experiment, we explicitly estimate 
the size of V  for ML-BL graphene boundaries on SiC using the equations derived in the theory 
section and in the Appendix A.  The electron wave function has two components in ML 
graphene, and four in BL graphene. However, for the latter a two component form containing 
only the two dominant layer-sublattice pseudospins is often used [31, 32]. In ML graphene, 
although the Friedel charge oscillations associated with the two sublattices cancel each other 
when averaged on the unit cell due to the opposite phase between them [4, 33], the Friedel gap 
persists. The amplitude of the Friedel oscillation decays away from the interface, thus the Friedel 
gap diminishes away from the interface, giving rise to a slanted effective potential barrier to 
normally incident electrons. Since any barrier less than half a Fermi wavelength (F 2 ) in width 
cannot effectively block the transmission, one may estimate an upper bound of the effective 
barrier height through Eq. (2) using the amplitude of the Friedel oscillation about F 2  away 

from the interface, i.e., at xkF .  

We now estimate the band gap in ML graphene. The Friedel oscillations in ML graphene 
are out of phase between the A and B sites [4, 33], i.e.   BA . Considering 111   BA , 

the Friedel gap is simplified to 2/1U from Eq. (A2) in the Appendix A, which is the ML 

graphene equivalent of Eq. (2). To estimate the amplitude F/2 away from the interface, which 
will serve as the parameter 1  for the gap calculation, the decay rate of the charge density 

oscillation near a step edge is derived in the Appendix A as 2/5x . From this we obtain 

  02/5
02/5

01 06.0 

  xkF , where 0 is the average total charge density with 

3
0 106   electrons per unit cell [34]. Here we have assumed that the oscillation amplitude 

is 0 on each sublattice at the interface, thus the above estimate represents an upper bound. Using 
the onsite Coulomb energy 9U  eV [35], the estimate for the gap on the ML side is 

6.12/1 U  meV.   
For BL graphene on SiC (0001), charge transfer from the buffer layer results in a vertical 

electric field [34], leading to pseudospin polarization [32], i.e. ||  || when applying Eq. (A2) 

of the Appendix A. According to San-Jose et al. [32], )(2/1 12 DEU    and 

)(2/1 12 DEU   , where U12 is the potential difference between the two atomic layers, 

DE  the chemical potential measured from the Dirac point energy. With 2  and 
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A B   for BL graphene, the Friedel gap is  DEUU   4/121 . The amplitude of the 
charge density oscillation in the BL is estimated in the same manner as in the ML graphene, 
1  0.060 .  Having 3

0 101.8   electrons per unit cell [34], 11.012 U  eV [30, 34], 

35.0 DE  eV (according to [30] and our own measurement), and 8U eV [35], we obtain a 
Friedel gap of 0.3 meV for BL graphene. The difference between the ML and BL Friedel gaps is 
1.3 meV. The theory thus predicts a polarity reversal asymmetry V < ~1.3 mV and a saturation 
voltage of ~1.6 mV. 

Because the current probes only provide a total current, to avoid errors introduced in 
estimating the current density, we use the measured local voltage to quantify the transport 
asymmetry. We define V+  V(+|I|), V  |V(|I|)|,   VVV , and 2/)(   VVV .  Figure 4a 

shows V vs. V . At low biases (V  < 1 mV), there is no noticeable polarity reversal asymmetry. 
For higher bias, the observed asymmetry V  is mostly around 1 mV. Figure 4b shows the same 
data in a different view, plotting V  against V . Here, except those measured at biases < 0.5 mV, 
all data points obtained from five ML-BL boundaries fall on the same straight line with a slope 
of 1 and an intercept of about 1 mV. The inset to Fig. 4a shows the V vs. V  data points with V  
 6 mV, along with theoretically estimates of the asymmetry depicted as the solid line. We note 
that Ji et al [21] carried out similar measurements at biases < 0.5 mV, and did not observe any 
asymmetry, consistent with both our theory and experimental data.   

 
V. SUMMARY AND DISCUSSION 
 
In summary, we show that the Friedel oscillation at an interface opens an energy gap at the 
chemical potential.  Although this gap only occurs near an interface for electrons with wave 
vectors perpendicular to the interface, it can play a key role in transport process with near-normal 
incidence. Under a bias voltage, the Friedel gaps on both sides of the interface shift downwards, 
and eventually sink completely below the respective chemical potentials when the bias is beyond 
a critical value. For a heterojunction, the Friedel gaps are different on the two sides, leading to 
asymmetric transport behavior upon bias polarity reversal. The polarity reversal asymmetry 
measured at ML-BL boundaries in epitaxial graphene on SiC (0001) is in strikingly good 
agreement with the theory, revealing the effect of Friedel gaps, which are difficult to measure 
directly since such a measurement must be angle-resolved and requires high energy resolution 
(sub-meV) as well as nanoscopic space resolution. Moreover, our theory and observation may 
provide a new avenue towards quantum manipulation of electron transport via chemical or 
electrostatic doping in graphene and topological insulators.  

The transport asymmetry shown in Fig. 4 is in good agreement with our theoretical 
estimate, and stands in stark contrast to that of a typical nonlinear conductance induced by 
density of state mismatch or asymmetric transmission probability. As explained in detail in 
Appendix B, such a nonlinear I-V can be expressed as a polynomial form 

)( 32 VObVaVI  , which would lead to a reversal asymmetry of the form 2VΔV  .  
Without considering the Friedel gaps, electron transmission across ML-BL graphene boundaries 
is a smooth function of energy [31, 36-38].  Nonlinear transport in the polynomial form can be 
derived by considering, for example, the DOS mismatch between ML and BL graphene if there 
are no sharp bulk DOS features near the Fermi energy. But, our experimentally observed 
asymmetry is not of the form of 2VΔV  .  
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In principle, a possible source of systematic error that cannot be excluded by our 
measurement of the ML-ML “boundary” is a thermovoltage change at the ML-BL junction due 
to the thermopower difference between the two sides [39]. To estimate the size of this error, we 
measured the thermovoltage across the ML-BL boundary in our cryogenic STP system (with a 
temperature gradient ΔT < 1 K between the sample and STM tip) [40]. The measured 
thermovoltage value is less than 10 µV [40], 2 orders of magnitude smaller than the observed 1 
mV transport asymmetry and hence unlikely to be the source of that asymmetry. Thermovoltage 
corresponds to the logarithmic derivative of the electronic density of states, and thus provides a 
good way to visualize local DOS variations [40]. Friedel oscillations associated with intra-valley 
scattering have indeed been observed on BL graphene in the thermovoltage distributions, but not 
on the ML graphene [40] as the oscillations associated with the two sublattices are opposite in 
phase and thus cancel each other, corroborating our above analysis.  

Because the Friedel gap is proportional to both the onsite Coulomb energy parameter and 
the amplitude of the Friedel oscillation, the size of the effect can be enhanced by increasing 
either factor. Some topological insulators [41] exhibit very strong Coulomb interaction, 
indicating that they may be possible candidates for exploring larger Friedel gap effects. 
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APPENDIX A: THEORETICAL CONSIDERATION FOR GRAPHENE 
Friedel gaps in ML and BL graphene 
 
Friedel oscillations have been observed in both BL and ML graphene as quantum interference 
patterns in local density of states (DOS) [5, 6, 42-44]. Furthermore, as a result of the smooth 
scattering potential in the continuous top layer at ML-BL boundary on SiC (0001) [30, 42, 43, 
45], only intravalley scattering induced long-wavelength Friedel oscillations can occur and 
intervalley scattering induced oscillations are absent [4, 40, 43].  Therefore the energy gap 
considered here is opened by the long-wavelength (Q = 2kF) Friedel oscillation associated with 
intravalley scattering. 

We need to consider a special case of a monolayer-bilayer (ML-BL) boundary where 
only intravalley scattering induced charge density oscillations are present. In this consideration, 
the K and K’ valleys are equivalent, therefore only one needs to be considered. The two 
sublattices in graphene means that the wave function has two components, which are usually 
referred to as pseudo-spins, which in turn leads to two Friedel oscillation components with a 
common period but different phases. For monolayer (ML) graphene, the wave function can be 
written as [31] 

k  1

2


 exp(i )









exp(ik  r), 

where yx kk yxk ˆˆ   with )/arctan( xy kk ,   is the unit cell area (which contains both 

sublattice sites) over which the wave function is normalized, and  =  =1 in the absence of 
pseudo-spin polarization.   
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For BL graphene, we invoke the low-energy approximation for the wave function, which 
reduces the four-spinor (two sublattices on each sheet) into an effective two-spinor wave 
function [31, 32]: 

 k  1

2


 exp(i2 )









exp(ik  r), 

where  and  represent the two dominate pseudo-spins (sublattice A in one layer and sublattice 
B in the other) and ||||    due to pseudo-spin polarization induced by the vertical field.   

Since the transmission probability decreases sharply with transverse momentum ky thus 
limiting transmission to near-normal incidence due to the depletion region formed at the 
monolayer-bilayer (ML-BL) boundary in our sample (see main text), we may consider only the 
normal incidence, i.e. ky = 0.  In order to have a unified expression for the Freidel gap that 
applies to both ML and BL graphene, we write for kx  0: 

 )exp(
2

1
xikk xx 















 

and 

 )exp(
)exp(2

1
xik

i
k xx 














, 

for both ML and BL graphene, where  =  =1 and    for ML, while ||||    and  2  
for BL. 

Next we derive a general two-component formula for the Friedel gap and then apply it to 
graphene. In the presence of an oscillating charge density,  

     B
B

A
A QxQxx   coscos 110 , 

the extra Coulomb term in the Hamiltonian is in the form, 

1

2
U 1

A ciA

 ciA
cos QxiA

A   1
B ciB

 ciB
cos QxiB

B 
iB


iA













,   (A1) 

where 1
A(B)  are the amplitudes of the charge density on the two sublattices, ciA ( B )

  is the creation 

operator at lattice position xiA ( B )
 on sublattice A(B) , and A(B)  are the phases of the oscillations. 

For BL graphene, A and B denote sublattice with A in one layer and sublattice B in the other, 
respectively.  Without the extra Coulomb term, the pair of the right- and left-going wave 
functions that will be coupled eventually by the perturbation can be generally written as 









  2/2/ )2/( xqQieqQ
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  2/
)exp(

2/ )2/( xqQie
i

qQ



 respectively. 

The part of the full Hamiltonian projected to these two states is, 

E
Q

2







 cq

1

8
U 1

A 2eiA  1
B 2ei(B) 

1

8
U 1

A 2eiA  1
B 2ei(B)  E

Q
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 cq
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where we assume an (approximate) linear dispersion E Q / 2 q   E Q / 2   cq . This linear 

dispersion is rigorously true for ML graphene (where Fvc  , vF being the Fermi velocity of 
graphene). We find that new eigenstates are standing waves with energies 

E  EF 
1

8
U 1

A 2 2
 1

B 2 2
21

A1
B 2 2 cos A B    8cq 2

 . (A2) 

For ML graphene,   , thus the gap is maximum when the oscillations on two sublattices are 
out of phase to each other. For BL graphene,  2 , so the gap is maximum when the 
oscillations on two sublattices (in this case, in two separate sheets) have the same phase. 
 
Amplitude decay of Friedel oscillations in ML and BL graphene 
 
In the above discussion, as well as in Section I, we treated the Friedel oscillation as a periodic 
potential without considering its decay.  Now we consider the decay rate for the Friedel 
oscillation amplitude. The change in the local density of states due to the scattering off the 
boundary is  

A(B) E, x   k

vF

d
 /2

 /2

 4 r

1 r
2 cos 2kx cos A(B) ,    (A3) 

following the method in Ref. [46], and we include the graphene density of states in the prefactor 
which was omitted by Ref. [46]. Here, A(B)  is the phase of the reflection coefficient r  for each 

sub-lattice and should in principle depend on  . In our case the boundary is strongly reflective 
so 1r  and we cannot use sinr  as in Ref. [46]. To capture the leading even and odd terms 

of A(B) ( ) , we note that the dominant contribution to the Friedel oscillation is from small   

and write 

A(B)  A(B) 
3

4
 CA(B) .        (A4) 

The negative sign and the extra phase of  3

4
  are included to ensure a consistent phase 

definition with Eq. (A1), as we will see below. The derivation below shows that inclusion of 
higher order terms in   does not change the result other than an overall scaling constant. 
Inserting (A4) into (A3), we have 

A(B) E, x   k

vF

d
 /2

 /2

 cos CA(B) cos 2kx cos A(B) 
3

4








 . 

The total Friedel charge density is obtained by integrating the local density of states over the 
energy, 

A(B) x   dE
k

vFED

EF

 d
 /2

 /2

 cos CA(B) cos 2kx cos A(B) 
3

4








. 

For ML, E  ED  vFk , 

A(B) x   k dk
0

kF

 d
 /2

 /2

 cos CA(B) cos 2kx cos A(B) 
3

4








. 

Integrating over k  first, we find, 
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A(B) x   d
 /2

 /2

 cos CA(B) 
sin 2kF x cos A(B) 

3
4








 sin A(B) 

3
4










2x cos










kF


cos 2kF x cos A(B) 

3
4








 cos A(B) 

3
4










2x cos 2










 

We apply the stationary phase approximation on the leading oscillatory term to integrate over  , 
and get 

A(B) x 
cos 2kF x A(B) 

kF x 3/2
x

. 

For BL, the energy dispersion is not linear. However, it is approximately linear for 
energies sufficiently away from the band bottom and the contribution to the Friedel oscillation 
from energies close to the band bottom is much smaller. Therefore, the linear dispersion can be 
approximately used for the entire integration range, which yields the same decay rate.  We 
conclude that the Friedel oscillation at an edge scales as 2/5x  with distance for both ML and BL. 

 
APPENDIX B: EFFECTS OF DENSITY OF STATE MISMATCH 

 
We consider here the effects of a density of state (DOS) mismatch in the two electrodes of a 
tunnel junction, as well as possible asymmetric transmission probabilities under opposite biases. 
In general, a nonlinear current-voltage (I-V) relation of the tunnel junction can be expressed as 

)( 32 VObVaVI  .        (B1) 
The second order term leads to asymmetry under polarity reversal.  To quantify the asymmetry, 
we define |)(||)(| VIVII   and 2/|])(||)([| VIVII   when measuring I(V) and I(V), 

where small V > 0.  Similarly, |)(||)(| IVIVV   and 2/|])(||)([| IVIVV  , if the 

voltages are measured at current biases I and I.  For small V , the polarity reversal asymmetry 
due to a nonlinear I-V relation described by Eq. (B1) can be quantified by 

V
a

b

V

ΔV

I

ΔI 2
 .         (B2) 

We consider tunneling currents that can be written as 

dEEfEfEDEDETI )]()()[()()( 1212  



,      (B3) 

where T(E) is the transmission probability, and D2(E) and D1(E) are DOS functions of the two 
sides of the junction. For simplicity, we consider the low temperature limit  

dEeVEDETEDI
eV

V






)()()( 201 .      (B4) 

Here, TV(E) is the transmission probability of energy level E at a bias V, and D20(E) is the DOS 
on side 2 at zero bias, and  is the chemical potential on side 1. Any possible asymmetry of the 
transmission probability under V is captured by the V dependence of TV(E).  In the following, 
we will drop the 0 in the subscript of D20 for ease of notation.  
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To evaluate Eq. (B4) to the second order of V, we write TV(E) to the first order as 
KeVETETV  )()( 0 , where )(0 ET  is the transmission probability at zero bias, and K is a 

proportional constant. We can further expand T0(E) in the neighborhood of  and have 
KeVETTETV  ))((')()( 00  ,      (B5) 

where 






d

dT
T

)(
)(' 0

0 . We also expand )(1 ED  and )(2 eVED   around , and have  

))((')()( 111   EDDED ,       (B6) 

))(('])(')([)( 2222   EDeVDDeVED .     (B7) 
Inserting Eqs. (B5) through (B7) into (B4), we get the integrand of Eq. (B4) to the first order of 
(E) as: 

)]}()(')()][('))(()()('[

)('])()[({])(')(][)()[(

221010

2012201







EeVDDDKeVTDT

DKeVTDeVDDKeVTD
  

Take the integral, and we have 
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1
)()()('

2

1

)()(')(
2

1
)()([)()()(

332
201201

20121201

VeOeVDTDDTD

DTDKDDeVDTDI








   (B8) 

A good approximation for )(ETV  can be 

2/)(')()2/()( 000 eVETETeVETETV  .     (B9) 

Comparing Eq. (B9) to KeVETETV  )()( 0 , we have )('0 TK   in the neighborhood of . 

Inserting into Eq. (B8), we get  

)())]((')()()(')[(
2

1
)()()( 332

21210201 VeOeVDDDDTeVDTDI    (B10) 

If the junction is symmetric, the second order term vanishes.   
To examine the bias polarity reversal asymmetry associated with this nonlinear I-V 

relation, we comparing Eq. (B10) and (B1) to yield eDTeDa )()()( 201  , and 

)](')()()(')[(
2 21210

2

 DDDDT
e

b  .  Using Eq. (B2), we get 

V
DD

DDDD
eV

a

b

V

ΔV

)()(

)(')()()('2

21

2121


 

 .     (B11) 

The above analysis shows that the nonlinear I-V relation of a tunneling junction is 
described by Eq. (B1), and the associated polarity reversal asymmetry can be calculated using 
Eq. (B11). An interesting case, where one of the two DOS functions, say, D1 is constant, leads to 
a very simple expression 

V
D

D
e

V

ΔV

)(

)('

2

2




 .         (B12) 

We apply Eq. (B12) to the ML-BL graphene boundary on SiC(1000). The coincident step 
in the SiC substrate leads to a barrier. We therefore take the approximation that only normally 
incident electrons can tunnel through the barrier.  In 1D (normal incidence), the linear E(k) 
dispersion of ML graphene leads to a constant DOS D1, therefore Eq. (B12) applies. 
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To find the BL graphene DOS in 1D, D2(E), we first write down the BL graphene band 
dispersion [47]: 

2/)2/()( 1
2

1
22   kvE F ,       (B13) 

where vF  108 cm/s, and 1  0.4 eV.  In 1D, we have  

kv

kv

dE
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ED
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2
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22
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 .       (B14) 

Using Eq. (B14) and after some lengthy algebra, we get 
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Due to charge transfer from the substrate, the chemical potential referenced to the charge 

neutral energy for BL graphene on SiC(0001) is about  = 0.35 eV, which yields 
)(

)('

2

2




D

D
 

0.28 eV1.  By Eq. (B12), we have 
21 )V28.0( VΔV  .         (B16) 

The sign indicates that a smaller potential drop will be measured when electrons tunnel from BL 
to ML (i.e. the current flows from the ML to BL).  For typical scanning tunneling potentiometry 
(STP) measurements, the potential jump at the junction, V , is on the order of mV, therefore the 
asymmetry is minuscule. In the STP performed by Ji et al [21],  V  < 0.3 mV, therefore ΔV < 
0.03 µV.  The estimate is consistent with the absence of observable asymmetry in their 
measurements.  When V  = 20 mV, however, we have || V  = 0.1 mV, which should start to 
become observable in careful STP measurements. 
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Fig. 1 (color online). (a) Schematic illustration of the Friedel gap at EF for wave vectors 
perpendicular to an interface, assuming a linear unperturbed dispersion (e.g. that of graphene). 
(b) Schematics showing the Friedel gap shifting on two sides of an interface. Upper panel: 
Friedel gaps open at the respective chemical potentials, without considering the nonequilibrium 
effect of Friedel gap shifting. Lower panel: both gaps completely exist below their respective 
chemical potentials. 

 

Fig. 2 (color online). (a) Schematic of the STP measurement setup. (b) STM images of ML and 
(c), BL graphene. Scale bar: 1 nm.  
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Fig. 3 (color online, 2 columns). (a) STM image of a step-up boundary. Scale bar: 6 nm. (b) 
Schematic of the step-up boundary. (c) Potential profiles measured across the boundary with 
forward and reversed bias conditions (222 µA current). (d) STM image of a step-down boundary. 
Scale bar: 10 nm. (e) Schematic of the step down boundary. (f) Potential profiles measured 
across the boundary with forward and reversed bias conditions (313 µA current). (g) STM image 
of a ML-ML graphene “boundary”. Scale bar: 15 nm. (h) Schematic of a ML-ML boundary. (i) 
Potential profiles measured across the boundary with different current values and directions.  
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Fig. 4 (color online). (a) The asymmetry of potential drops (V) as a function of the averaged 
potential drop (V ) at the junction between forward and reverse biases. Inset: measured and 
calculated upper bound of V at low V . (b) The potential drop at reverse bias (V) as a function 
of potential drop at forward bias (V+) at the junction. Data points shown in blue color correspond 
to those measured with a bias voltage less than 0.5 mV. 
 




