THE GEORGE WASHINGTON UNIVERSITY

WASHINGTON, DC

aJ/bit Modulators and Photonic Neuromorphic Computing

Volker Sorger 14th NSF-Korea Nanotechnology Forum 2017

Orthogonal Physics Enabled Nanophotonics (OPEN) lab

Atto-Joule Optoelectronics

OPEN Lab

Prof. Sorger

Sorger, Zhang lab, Nature Photonics (2008) Sorger, Zhang lab, Nature (2009) Sorger lab, IEEE Photonics (2013) Sorger lab, Altug lab, Nature Nanotech. (2015) Sorger lab, Majumdar Lab, Sci. Reports (2016) Sorger lab, Optics Letters (2016) Sorger lab, IEEE STQE (2014 & 2017)

Photonic Functions

Sorger lab, IEEE Photonics (2015) Sorger lab, Nanophotonics (2016) Sorger lab, Optics Letters (2016) Sorger lab, El-Ghazawi lab, IPCC (2017) Sorger lab, El-Ghazawi lab, Mircoprocess. & MS (2017) Sorger lab, Frontiers in Optics (2017)

Analogue Computing

Sorger lab, Nanophotonics (2017) Sorger Lab, Grace lab, Biofabrication (2017) Sorger lab, IEEE Rebooting Computing (2017) Prucnal lab, Sorger lab, (in preparation)

GW OPEN Lab Prof. Sorger Modulators = Optical Transistors

Sarpkaya, (in prep)

Ye, IEEE STQE (2014)

Light In

Ma, IEEE STQE (2017)

Sorger Group, J. Opt., special issue (submitted)

GW Prof. Sorger Hybrid Plasmon Photonics Interconnect

Chip-Scale Interconnect Performance

Physics & Material \leftarrow (E/bit)_{Device} \leftarrow SNR @ Rx \leftarrow Desired BER

GW Optical on-chip FFT

OPEN Lab Prof. Sorger

Sorger Group, Frontiers in optics (2017)

Convolutional Neural Networks based-on Optical FTT

OPEN Lab

Sorger Group, IEEE Computing (2017)

Description	Assumption				
FLOPS per convolution	$20N^2 log_2(N) + N^2$				
ADC	56 GSa/s @ 2 W				
DAC	100 GA/s @ 2.5 W				
Optical loss first spiral	0.686 dB				
Optical loss modulator	3.49 dB				
Optical loss 2 x 2	0.99105 dB				
Optical loss splitter	3 dB				
Optical loss input grating coupler	4 dB				

GW Neuromorphic Photonics

Implementation Options

- A. Spiking photonic laser neurons on III-V platform
- B. Perceptron photonic neurons on Si platform

Applications

- Deep-Learning
- Real-time
- Non-linear Optimization

Vector Multiply Weighted AdditionsFor B. MAC/s per Neuron $\#MAC/s/neuron = N_{FI} \cdot f_{3dB},$ $f_{3dB} = (2\pi R_b C_{mod})^{-1}$ Computational Efficiency = J/MAC $\eta_{MAC} \equiv \frac{\#MAC/s/neuron}{P_{total}/neuron} \leq \eta \cdot \left[\frac{N_{FI}}{N_{FO}}\right] \cdot \frac{e}{4h\nu} (V_{\pi}C_{mod})^{-1}$ Goal: 1GMAC/nJ \rightarrow V_{π}C_{EOM} = 1-10aC

Prucnal, Sorger, El-Ghazawi, NSF E2CDA (2017) Ferreira de Lima, Nanophot (2016)

Neuromorphic Performance Prof. Sorger

OPEN Lab

		1
Reference	Efficiency (J/MAC)	Speed (MAC/s)
NVIDIA GPU [15]	3.4×10^{-7}	1.7×10^{7}
AlexNet FPGA [16]	2.6×10^{-10}	6.2 × 10 ¹⁰
UPSIDE Crossbar [17]	1.3×10^{-10}	4.0×10^{10}
UTK Analog Engine [18]	1.0×10^{-12}	11.8 × 10 ⁶
IBM TrueNorth [19]	2.6×10^{-11}	1.3×10^{6}
Nanophotonic Neuromorphic	7.4 × 10 ^{−18}	2.0 × 10 ¹⁷

CW Laser Bank

System Efficiency Vectors

Technology	Limitation	C _{total} (fF)	Quantum Efficiency	E _{MAC}				$0^{2N_{h}+1}$	b –	
Silicon photonics (Eq. 1)	Gain	47	7%	5 pJ	$ E_{MAC} \ge$	NEO ·	 	$\cdot \frac{2}{1}$	· <u>n ×</u>	+ $\frac{E_{\text{bit}}}{N}$
Hybrid CMOS (Eq. <mark>2</mark>)	Switching energy + noise	35	7%	2.1 fJ		{Z} fan−out	$\left \frac{pp}{z}\right $	$\left \frac{1}{2}\right $ noise and	hoton	₩E switching
Nanophotonics (Eq. 2)	noise	0.1	16%	7.4 aJ^{\dagger}			efficiency	resolution	energy/MAC	energy/MAC

Comparison Neuromorphic Processors

Chin	MAC Rate/	Energy/	Processor	Area/MAC	MAC
Ship	processor	MAC	fan -i n	(µm²)	Rate/cm ²
Silicon Photonic (Princeton)	2TMACs/s	5 pJ	56	20,000	1 → 10 ¹⁴
Hybrid CMOS-Silicon Photonics	2TMACs/s	2.1 fJ	148	5,000	4 → 10 ¹⁴
Nanophotonic (This Project)	2 TMACs/s	7:4 aJ	300	20	1 → 10 ¹⁷
TrueNorth (Electronic) [13]	2.5 kMACs/s	26 pJ	256	4.9	2 → 10 ⁸

GW Delay in Spiking Neural Networks

Gaussian Noise σ

OPEN Sorger Team

Post Docs

Grad Students

U-grads

Dr. I. Sarpkaya Dr. Ke Liu Dr. Hasan Goktas Dr. Elnaz Akbari

Mohammad Tahersima Sikandar Khan Matt Zhizhen Shuai Sun Jonathan George Rubab Amin Hani Nejadriahi Seyed Haghshenas Rohit Hemnani D. D'Hemmecout T. Weinshel J. Crandall

Collaborators

Prof. Majumdar (UW) Prof. Agarwal (UPenn) Prof. Kimerling (MIT) Prof. Reed (Stanford) Prof. Bartels (UCR) Prof. Lee (KU) Prof. Prucnal (Princeton) Prof. El Ghazawi (GWU) Dr. Sadana (IBM Watson) Prof. Cesare (NTU)

Prof. Volker Sorger sorger.seas.gwu.edu sorger@gwu.edu

