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Liquid lubricants break down at extreme temperatures and promote stiction in micro-/
nanoscale environments. Consequently, using flows of solid granular particles as a “dry”
lubrication mechanism in sliding contacts was proposed because of their ability to carry
loads and accommodate surface velocities. Granular flows are highly complex flows that
in many ways act similar to fluids, yet are difficult to predict because they are not well
understood. Granular flows are composed of discrete particles that display liquid and
solid lubricant behavior with time. This work describes the usefulness of employing
lattice-based cellular automata (CA), a deterministic rule-based mathematics approach,
as a tool for modeling granular flows in tribological contacts. In the past work, granular
flows have been modeled using the granular kinetic lubrication (GKL) continuum mod-
eling approach. While the CA modeling approach is constructed entirely from rules,
results are in good agreement with results from the GKL model benchmark results. Ve-
locity results of the CA model capture the well-known slip behavior of granular flows
near boundaries. Solid fraction results capture the well-known granular flow character-
istic of a highly concentrated center region. CA results for slip versus roughness also
agree with GKL theory. �DOI: 10.1115/1.2164466�
Introduction
The increased capacity of turbine engines at higher thermody-

namic efficiencies in the future can result in high temperatures on
the order of 800°C. At temperatures greater than 500°C, how-
ever, conventional liquid lubricants fail. Additionally, liquid lubri-
cants promote stiction that is detrimental to the successful opera-
tion of micro-/nanoscale systems, such as MEMs devices.
Consequently, researchers have proposed innovative forms of par-
ticulate lubrication that can lower friction and prevent wear in
sliding contact interfaces �1–4�. One type of particulate lubricant
is known as a granular flow �2,5–7�. In a sliding contact, granular
flows have demonstrated the ability to act as a hydrodynamic fluid
by exhibiting the ability to carry loads and accommodate surface
velocity differences.

Since granular flows behave like fluids, modified Navier–
Stokes equations have been used to model them as a continuum,
where the discrete granules are analogous to dense fluid molecules
�2,8–10�. Navier–Stokes equations themselves can only be solved
for the simplest cases, and when they are modified for use with
granular flows, they become increasingly more complex. For ex-
ample, a simple one-dimensional granular flow problem becomes
nonlinear when coupled with equations for the granular flow ve-
locity and solid fraction �i.e., granular density�. Particle dynamic
simulations—the granular flow analog to molecular dynamic
�MD� simulations—have also been employed to model granular
flows acting as lubricants �6,11–14�. However, they are usually
computationally expensive for vast numbers of particles, which
can be problematic as the film height to particle diameter ratio
increases. Lattice-based cellular automata �CA� present a simple,
flexible, and computationally inexpensive approach for this prob-
lem. CA employs rule-based mathematics to describe physical
processes that are subsequently converted into computer simula-
tions that display emergent system behavior. While granular flows
exhibit continuum behavior, this behavior is the result of discrete
granules being energized by surface and neighboring particle col-
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lisions. Since the localized granular interactions form the basis of
the global granular flow behavior, the CA modeling approach that
is based on local rules is an attractive approach. The current work
employs a lattice-based CA modeling approach to the problem of
granular flows in a Couette interface. Continuum modeling results
that have predicted granular behavior in Couette flow environ-
ments are used as a benchmark for determining the effectiveness
of CA in modeling granular flows.

Background

Granular Flow Experiments. In past shear cell experiments,
dry metal granular beads with varying diameters between 0.61 and
0.71 mm were placed in an annular shear cell �15�. From these
experiments, efforts were made to formulate a continuum lubrica-
tion equation for granular flows. Two modes of lubrication effects
were observed in the shear cell, as described �5�. At lower speeds,
there are strong and long-lasting contact forces between the highly
compacted beads and the surfaces. This mode is called granular
contact lubrication. Load grinding noises occur, with jerky mo-
tion, and the friction coefficient was near unity. At some increased
critical speed the particles become separated due to increased agi-
tation; the motion smoothens out, and friction falls suddenly. They
called this mode a transition to granular kinetic lubrication. As the
speed increases, granular kinetic lubrication �GKL� becomes the
mode of operation. GKL is characterized by a load carrying ca-
pacity due to the shear and normal forces created by the colliding
particles against the upper surface. Both the continuum and
lattice-based cellular automata models developed and represented
in this work model the GKL regime.

Continuum Modeling Simulations. Kinetic theory uses mo-
lecular models and the methods of statistical mechanics to relate
the behavior of the individual particles to that of the bulk flow.
For dense gases, the kinetic theory was originally used to charac-
terize the stress on the surface resulting from the transport of
momentum from the colliding gaseous molecules �16�. Haff used
the kinetic theory approach to model granular flows noting that
the individual granules are treated as “molecules of granular fluid”

�8�. A key difference between real molecules and granular par-
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ticles is that colliding molecules undergo perfectly elastic colli-
sions, which means that kinetic energy is conserved. The colliding
granular particles however, inelastically collide, causing loss of
kinetic energy.

Lun et al. �7� analyzed the interaction of granules in a flow
using a statistical approach. They describe the movement of in-
elastic particles in Couette flows with variable coefficients of res-
titution. The conservation equations of mass continuity, momen-
tum, and energy have terms that must be quantified by constitutive
relations for granular flows. Lun uses an approach that considers
the collisional contributions to the constitutive equations as well
as the kinetic contribution to the constitutive equations.

Zhou and Khonsari �17� utilized Lun’s constitutive relation-
ships for the flow field, a modified version of the Hui et al. �9�
boundary conditions for momentum, and the Jenkins and Richman
�18� boundary conditions for energy, to predict the behavior of the
granular flow being sheared between parallel plates. Sawyer and
Tichy used a particle dynamics approach alongside a similar con-
tinuum approach and interpreted their results in light of the shear
cell experiments �10�. Higgs and Tichy employed a robust con-
tinuum modeling approach that applied the rigorous Jenkins-
Richman boundary conditions to the modified granular forms of
Navier–Stokes equations �2�. The resulting granular velocity and
solid fraction from their effort will serve as a benchmark for vali-
dating the capabilities of the lattice-based cellular automata mod-
eling approach introduced in this work.

Cellular Automata Simulations. Lattice-based CA are discrete
dynamical systems whose behavior is specified in terms of local
relationships. Space is represented by a uniform grid made up of
many discrete cells, each of which should be in one of a finite
number of defined states. Cells may change states only at fixed,
regular intervals of time. States are updated in accordance with
fixed rules that depend on cell value and the values of neighboring
cells.

Cellular automata �CA� are commonly misinterpreted as “com-
putational methods,” but actually they are “computational mod-
els” �19�. “Computational methods” are used for obtaining nu-
merical solutions to existing theoretical models usually in the
form of partial differential equations. Some common computa-
tional methods are finite differencing, finite volume, and finite
elements methods. “Computational models” are an alternative to
theoretical models. Computational models are developed by un-
derstanding the underlying processes of the interested phenomena
and translating this understanding into rules. Algorithms are de-
veloped from the rules that simulate the phenomena. CA compu-
tational models can be easily implemented as algorithms directly
on computers. Conversely, theoretical models describe the physi-
cal system as mathematical equations and then use computational
methods to solve them.

One important detail to note about CA models is that they can
be developed based on rules constructed from simple observations
and experiments. The fact that CA models can be independent of
theoretical models is of great relevance at this time. It bridges the
gap between cutting edge experimental work and rapidly growing
computational capabilities by bypassing the bottle neck of theory
and higher-order mathematical development. In many fields that
feature complex phenomena, sophisticated experimental studies
are established but theory is far lagging behind as is the case in
granular flows. CA gives an alternative framework to model these
experiments in terms of algorithms to take advantage of current
computational capabilities. Similar to other models, the validity of
the CA model is established by first comparing the results to ac-
tual experiments. Upon attaining satisfactory agreement, the CA
model can subsequently be modified to study further cases. CA is
potentially useful for studying a variety of physical systems.

Lattice-Based Cellular Automata in Physical Systems. Cel-
lular automata were introduced by Von Neumann as a part of his

research on evolutionary biological systems �20�. Later, many ap-
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plications in nonbiological fields were found for CA, since it is a
flexible abstract formalism that can be adapted to a desired appli-
cation. Among these, the modeling of physical systems has
emerged as one of the primary areas of application. Many inde-
pendent investigations have confirmed the feasibility of such an
application �21–23�. Some of the fields in which CA are actively
used are fluid dynamics �24–26�, diffusion reactions �27–29�,
crystal growth �30,31�, galaxy formation, �32,33� and the forma-
tion of biological systems �34–36�. One well-known CA simula-
tion is crystal growth in snowflake formation. Simple rules de-
scribing the thermodynamic evolution of the snowflake yielded
the simulation of the evolving snowflake. Figure 1 shows both an
image from the simulation based on the rules from Wolfram �21�
and a photo of an actual mature snowflake. The relevance of CA
as an alternative to conventional calculus-based approaches for
modeling physical systems is evident from the myriad of success-
ful applications.

Lattice-Based Approaches in Discrete Particulate-Type
Flows. First-principle continuum-based physics models are con-
tinuing to advance. However, they oftentimes fail at producing
accurate models when predicting very complex physical phenom-
ena such as turbulence or multicomponent flows. They also are
becoming inapplicable, as processes are increasingly pertaining to
smaller length scales. The lattice Boltzmann method �LBM� is a
lattice-based modeling approach that has been applied to molecu-
lar lubrication of data storage devices �37�. In some ways, granu-
lar lubrication flows mimic molecular lubricants since both of
their global behaviors are defined by the local and discrete inter-
actions, such as their respective particle–particle and particle–
boundary collisions. Additionally, nanomanufacturing processes
such as chemical mechanical polishing �CMP� �38–41� feature
slurries used for polishing and planarizing semiconductor wafer
surfaces. Slurries are multicomponent particulate flows that have
also been modeled using lattice-based approaches �42,43�.

Lattice-Based CA Approaches in Granular Flows. Granular
flows exhibit many peculiar and unusual characteristics. Theoret-
ical models capturing these characteristics are very complicated
and difficult to solve. They are hindered by the complexity of
higher-order nonlinear differential equations. For this reason many
alternate approaches have been attempted like Molecular dynam-
ics �6,11–14�, lattice–Boltzmann �44�, Monte Carlo �45,46�, and
others. CA modeling was one such attempt. Most of the CA mod-
els, however, concentrate on modeling one of the specific aspects
of granular flows like size segregation �47–49�, heap formation
�50–52�, complex flow patterns in pipes �53,54�, peculiar flow
down hoppers and silos �48,55,56�, and others. Some of them tried
to develop one generalized CA framework to model all the char-
acteristics inherent in granular flow �57,58�. But to best of our
knowledge, no CA model has been applied to granular flow from

Fig. 1 Crystal growth of the snowflake simulation. „a… Image
from the cellular automata simulation. „b… Photograph of a ma-
ture snowflake †59‡
a tribological perspective.
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Theory
The models discussed in this work predict the behavior of the

annular shearing flow of identically sized glass spheres. The simu-
lation mimics a small polar-rectangular region of an actual experi-
mental annular shear cell �5�, which is approximated as being a
parallel Couette shear cell with only one surface moving. This is
how it would appear if a segment of the annular shear cell were
unwrapped and the bottom surface moved relative to the fixed top
surface.

Continuum Simulation of Shear Cell. The top wall is station-
ary, while the bottom wall moves with a velocity u=U in the
positive x direction. The flow is a steady �� /�t=0�, fully devel-
oped �� /�x=0�, and the normal velocity is zero. The flow only
varies across the film, i.e., the dependent variables are only func-
tions of the cross-film coordinate y. The infinitely wide bearing
assumption �� /�z=0� was used.

The Governing Equation for Velocity and Solid Fraction.
The constitutive relationships developed by Lun �7� were substi-

tuted in the governing equations and applied to this problem. The

Fig. 2 Schematic of roughness factors
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governing ordinary differential equation, Eq. �1�, for the mixture
velocity u�y� can be determined by simplifying the x component
of the momentum equation. Similarly, the governing differential
equation, Eq. �2�, for the solid fraction ��y� is deduced from the
granular form of the energy equation

�d2u

dy2� + B1���y���d�

dy
��du

dy
� = 0 �1�

d�2�y�
dy2 + �B2���y���d��y�

dy
�2� + B3���y�� + B4�du�y�

dy
�2

= 0

�2�

The details of the B coefficients and Eqs. �1� and �2� can be found
in Higgs and Tichy �2�.

Boundary Conditions. The boundary conditions for the veloc-
ity u and the solid fraction � are obtained from Jenkins and Rich-
man �18� and are shown below in Eqs. �3� and �4�, respectively.

�du�y�
dy

− RB5���y��us� = 0 �3�

y=0,H
�±
d��y�

dy
+ RB6���y�� � + RB7���y�� us

2 ± RB8���y�� us
du�y�

dy
�

y=0,H
= 0 �4�
where R is a roughness factor and us is the slip velocity. The slip
velocities at the lower and upper walls are

�a� Y = 0: us = U − u�0�

�b� y = H: us = − u�H� �5�

The roughness factor R varies as 0�R�1, where R=0 corre-
sponds to a smooth surface, and R=1 to a very rough surface,
where slip is minimum. While the literature has interpreted the
roughness factor R in several ways, the authors employ the defi-
nition of R as the fraction of granule that fits in the gap between
the wall disk “asperities” �18�. This definition is straightforward to
implement in experiments, as shown in Fig. 2.

Cellular Automata Simulation of Shear Cell. To employ CA
for this problem, the first step is to discretize a region of the shear
cell. A two-dimensional rectangular grid, with unit length equal to
the diameter of the granule is created. The length and height of the
grid correspond to the length and thickness of granular film. Two
types of particles constitute the grid; boundary particles and object
particles �see Fig. 3�. Boundary particles are special particles that
collectively define the upper and the lower wall. Object particles,
which represent the granules, can move with discrete steps on the
grid space. Unless otherwise mentioned, “particles” refer to object
particles �i.e., granules�. Since periodic boundary conditions were
implemented, particles going out of the grid on the left side will
come back on the right side, and vice versa. Each grid location
can be either empty or filled with one particle only. This captures
the volume solid fraction property of the granular flow. Along
with film parameters, other material properties of the boundary
and granules have to be input into the simulation. For example,
the coefficient of restitution and roughness factor are assigned to
the walls and particles.

The simulation should also be capable of mimicking the dy-
namic granular behavior. The movement of the particle is obtained
by updating its coordinates at each time step, and the movement
must have a direction and speed. Being a rectangular grid, the
particle can have one of eight discrete directions �see Fig. 4�. The
speed of the particle is defined by “time factors,” which represents
the number of steps before the particle can advance one grid step.
The fastest speed that can be implemented is one grid step in one
time step �i.e., time factor=1�. The current grid location, direction,
and speed can completely define the movement of the particle.
The lower wall is moving and energizing the system, so we assign
the maximum speed in the 1-direction to all the boundary particles
that define the lower wall.

Next, the rules of evolution for the simulation are developed. In
this case the evolution is the movement of the granules and granu-
lar collisions. Granular collisions can be particle–particle or
particle–wall collisions. Rules for movement require updated co-
ordinates; the direction and the speed remain the same. In a col-
lision, the position remains the same, but direction and speed
change. For simplicity, the rules for updating direction and speed
are implemented separately, and there will be a separate set of
rules for boundary interactions and particle–particle interactions.
Figure 5 graphically summarizes all the rules for updating the
direction for boundary interactions. All these rules are intuitive
and can be determined experimentally by observing balls collide

in a billiard-type apparatus. Figure 6 summarizes the rules for
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updating the directions for particle–particle collisions. An impor-
tant assumption here is that all of the other particles except the
one being updated are fixed. In cases where there are two possible
resulting directions, one of the resulting directions is chosen ran-
domly. An important detail to note is that while collisions can
result in numerous post-collision directions, the simulation dis-
cretizes them into only eight directions.

When the particle collides with the boundary, its change in
velocity depends on the coefficient of restitution �ew� and the
roughness �R� of the wall. The speed of the particle is updated
using

up,f = up,i + R�U − up,i� �6�

Fig. 3 Schematic of the

Fig. 4 Eight possible directions of motion
Fig. 5 Rule for boundary interaction
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up,f = U − ew�U − up,i� �7�
Similarly when there is a particle–particle collision, the speed

of both the particles is updated according to Eqs. �8� and �9�,
which depend on the coefficient of restitution �ep� of the particles.
While Eqs. �8� and �9� are standard in theory, they are empirical
relations derived from experiments. Thus, we are not violating the
property of CA that it can be built independent of any presup-
posed mathematical physics-based theory, namely first-principal
differential equations

up1,f = „�1 − ep�up1,i + �1 + ep�up2,i…/2 �8�

ellular Automata model
Fig. 6 Rule for interparticle interaction
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up2,f = „�1 − ep�up2,i + �1 + ep�up1,i…/2 �9�
The simulation takes the dimensions of the shear cell and solid

fraction as inputs. Based on this information it calculates the num-
ber of granules in the shear cell, which remains constant through
out the simulation. Before starting the simulation, the granules are
given initial conditions, such as a random and a unique grid loca-
tion. This makes the initial distribution of particles random. Ad-
ditionally, granules are assigned random directions and given an
initial velocity. This is necessary to start the processes of granular
collisions. However, this initial velocity is much smaller com-
pared to the velocity of the lower wall.

The system evolves in discrete time steps, where the location,
direction, and speed of the particles are updated each step. Par-
ticles are consecutively updated in each time step and when one
particle is being updated the others are assumed to be at rest. The
order of the particles is shuffled in each time step to avoid any
bias. This makes the current work fall under the category of asyn-
chronous CA, which results in a loss of the parallel processing
capability that the more robust CA models possess. However, the
simplicity of the algorithm more than compensated for the loss of
this feature. Whenever each particle was updated, its current lo-
cation is retrieved and its neighboring locations in all eight direc-
tions are determined using periodic boundary conditions. Depend-
ing on the direction, the corresponding neighboring site is checked
to see if it is occupied or not. If the neighboring site is empty, the
coordinates of the particle are updated. If the neighboring site is
occupied, it is checked to see if it is filled by a boundary particle
or a granule. The appropriate rule is then applied from the table to
determine the new velocity and the direction. Subsequently, it
attempts to move again in the new resulting direction. This is
repeated until an empty neighboring site is found or all the pos-
sible directions are exhausted. Collisions are assumed to be in-
stantaneous, so each particle can have multiple collisions in one
time step. Once the position, direction, and the velocity of the
particle are updated according to the rules, this particle is fixed
and the next particle is updated.

The simulation has to run until it reaches a steady state. The
way to determine the number of steps required to reach the steady
state is to keep running the simulation for increasing number of
time steps. Whenever consecutive readings match, it implies that
steady state is reached. Once the simulation is complete, the po-
sition, velocity, and direction data at steady state are tabulated.
The algorithm outlined above was implemented in “
MATHEMATICA® 5” on a 3.2 GHz processor with 2 GB ram.
Simulations handling 850 particles for 10,000 time steps were
processed in 1.92 h.

Results

Continuum Modeling Simulation. The parameter values used
are those approximating the experiments of Yu et al. �1�:
U=2 m/s, ep=0.85, ew=0.65; �p=2550 kg/m3; d=0.787 mm;
H=4 mm; R=0.65. �The last parameter is simply an assumption�
The solid fraction, �max=0.65 refers to the theoretically maximum
possible solid fraction while filling up rectangular space with
spherical particles. The length of the cell is not relevant since the
flow is fully developed and the granular properties do not vary
with length.

CA “Modeling” Simulation. The input conditions of the simu-
lation are correlated to the theoretical model as best as possible.
The coefficient of restitutions and roughness factor has a direct
correspondence in both the models. So we set ep=0.85, ew=0.65,
and R=0.65. The height of the film and the length of the film are
input in terms of the diameter of the particle. H=10d and L
=100d, where d is the diameter of the particle. In the initial solid
fraction �=0.85 it is important to note that since the CA simula-
tion has rectangular particles, it can have a maximum solid frac-

tion of one. The bottom wall that is energizing the granules is
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assigned the maximum velocity in the model. The height and ve-
locity are made dimensionless to compare the plots of both the
models. Hence the actual value of the film height and the wall
velocity are not required.

Model Comparisons. Figure 7 shows the granular velocity for
the GKL continuum model across the film. There is slip at the
upper and lower boundaries, as is evident by the deviations from
the wall velocities. For example, the lower wall moves with a
velocity of u=U, and the top wall is stationary �u=0�. The no-slip
boundary condition is not in effect, as the flow velocity at the
lower and upper walls are not u=U and u=0, respectively. The
CA simulation also captures the slip behavior of the granular flow,
as seen in Fig. 8. However, the linearly decreasing trend of the
curve looks more like that of a Newtonian Couette flow. It did not
capture the nonshearing vertical region in the center. Figure 9
shows the solid fraction across the channel for the GKL model.
The flow is dilute at the lower and upper walls because these walls
are the major energy source and sink to the flowing granules.
Consequently, the region farthest from the walls—the center
region—is the most dense. This is also a common characteristic of
granular flows in Couette cells. The solid fraction results of the

Fig. 7 Velocity versus height from theoretical model
Fig. 8 Velocity versus height from CA model
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CA simulation in Fig. 10 also capture the maximum solid fraction
region. However, the profile is asymmetrical. The actual range is
different for both the profiles, because CA simulation has rectan-
gular particles. However they show that solid fractions are close
to their maximum possible values at the center region. Figure 11
shows the variation of slip at the lower wall that is moving as the
roughness factor R varies. Both the models show that the slip
decreases with increased roughness, which is expected. The de-
viations in the results from the CA model are attributed to the fact
that the simulation is discrete in nature and that the rules em-
ployed were based on the simplest understanding of colliding
spheres. Thus, certain disagreements between the continuum and
lattice-based CA results do not indicate that either model is
flawed.

Conclusion
Granular flows are believed to macroscopically display con-

tinuum behavior over time, but this behavior is composed of in-
teractions of discrete particles. In this work we describe the use-
fulness of employing CA, which is a discrete particle simulation
technique, as a tool for modeling granular flows in lubrication-
type systems. In the past, granular flows were modeled using con-
tinuum and molecular dynamics modeling approaches. The con-
tinuum modeling approach known as the granular kinetic
lubrication �GKL� model has been successful at predicting trends
gleaned from experiments conducted with granules in a Couette
shear cell. The average velocity and solid fraction from CA simu-
lations of granules in a Couette cell were compared to results from
the GKL model. The trends have satisfactory agreement consider-
ing the following:

• the computational cost of employing CA to the granular
flow problem is much more inexpensive than the continuum
modeling approach;

• the simplicity of the rules describing local granular colli-
sions yielding the correct global behavior;

• CA results for velocity capture the well-known slip behavior
of granular flows near boundaries;

• CA results for solid fraction capture the well-known charac-
teristic of the high concentration of granules in the center
region, and a lower concentration of granules at the bound-
aries;

• CA results for slip versus roughness agrees with the GKL
model;

• CA provides an alternative rule-based mathematics ap-
proach to elaborate first-principle physics-based differential
equations.

Lattice-based cellular automata simulations have the potential
for modeling complex systems where theoretical physics-based
mathematical models prove computationally expensive or unsolv-
able. Using lattice-based cellular automata for modeling complex
tribological systems, such as lubricating granular flows, could
prove useful in providing answers where traditional tribology and
physics-based models cannot.
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Nomenclature
d � diameter of the granules
H � height of the film
L � length of the film
U � velocity of the bottom wall
ew � coefficient of restitution between the wall and
Fig. 9 Solid fraction versus height from theoretical model
Fig. 10 Solid fraction versus height from CA model
Fig. 11 Roughness factor versus slip from GKL model and CA

the granules
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ep � coefficient of restitution between the granules
R � roughness factor of the wall
� � solid fraction
u � mixture velocity of granules

up � velocity of discrete granular particle
us � slip velocity
B � coefficients from �2�

Subscripts
i � before the collision
f � after the collision
1 � first particle
2 � second particle
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