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In the previous work, meta-attributes have been used to model the
relationship between two groups of disparate product attributes.
There, preference for form, function, and the relationship between
the two were modeled for individual consumers. However, this
approach is limited as designers are often called on to choose a
design that best appeals to a group of consumers, not individuals.
This work expands on the concept and makes it more generally
applicable by adapting metaconjoint to model aggregate choice
for consumer groups. The results from this work show that a meta-
conjoint approach can be used to model aggregate choice for form
and function and can yield better results on holdout sample predic-
tions than form or function alone. [DOI: 10.1115/1.4028274]

Introduction

One of the most popular methods for constructing consumer
preference models is conjoint analysis [1]. In conjoint analysis,
direct feedback is solicited from consumers in the form of product
surveys. These surveys present participants with multiple product
profiles chosen to span the design space without conflating the
effects of attributes [2]. In the past decade, conjoint analysis has
been applied in a variety of engineering design contexts [3–5].
The work presented here focuses on the metaconjoint methodol-
ogy initially developed by Sylcott et al. [6] to model combined
preference for disparate groups of product attributes. Here, modi-
fications are presented that overcome limitations in the original
methodology, allowing the method to be used to model the aggre-
gate response of a group resulting from individual preferences.
This extension is valuable because designers typically need to
develop a single best solution for a group as opposed to a unique
solution for each individual consumer.

Previous Work

A variety of approaches have been followed when modeling
aesthetic preference [7–12]. Methods have also been proposed for
modeling aesthetic preference in conjunction with functional con-
siderations [13,14]. However, unlike the metaconjoint approach,
these methods have not directly captured how consumers make
tradeoffs between form and function in a single utility function. In
a metaconjoint study, each participant initially completes surveys
that capture their form preference and function preference sepa-
rately. In an additional conjoint study, participants are presented
with combinations that include both aesthetic and performance
information. The previously acquired choice models are used to

vary the levels of form and function presented in the combina-
tions. This methodology results in a single utility function capable
of modeling preference tradeoffs between aesthetic and functional
product attributes [6].

The work presented here addresses two limitations of the initial
metaconjoint approach. The first limitation is a focus on individ-
ual consumers. Although there is value in predicting how individ-
ual consumers respond to product designs, it is potentially more
advantageous to model aggregate response when designing prod-
ucts for a target population. Second, interaction effects were not
considered in the previous work. By studying the relationship
between form and function, interaction effects will describe how
information about each aspect can influence preference for the
other and give insight into how to allocate design resources. This
work demonstrates how the metaconjoint approach can be adapted
to overcome both of these limitations making the method more
versatile and useful to designers.

Modeling and Evaluation

In this work, discrete choice models are used to describe con-
sumer preference. These models relate the utility of a design and
its alternatives to the probability of the focal design being chosen
[15]. In order to model choice for the consumer group, we treat all
conjoint data as though they come from the same consumer. This
common assumption results in an aggregate model that treats all
respondents as being drawn from the same group. The models are
fit following the maximum likelihood estimation method as
described by Train [16]. For a deeper explanation, see Ref. [17].
This work does not seek to determine a group choice through
group decision making, but rather through aggregated analysis of
the individual preferences.

One of the most common metrics used to describe a choice
model’s predictive accuracy, hit rate (HR) [18], is calculated by
comparing observed choices with the alternative of highest
observable utility in each choice set. Each time the observed
selection matches the alternative with highest observable utility
counts as a hit—otherwise it is a miss. HR is calculated asP
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number of conjoint questions answered, and Mt is the alternative
with the largest observable utility in choice set t, so that Mt 2 {vjt:
vjt> vkt 8k ! Jt}. When {vjt: vjt> vkt 8k ! Jt} contains more than
one element, the element Mt is selected at random from among
those elements. Another metric, mean absolute share error
(MASE) is used to evaluate how well the observed share of
choices matches the predicted share of choices. It is calculated by
taking the average of the absolute difference between the
observed and predicted share for each design alternative,P
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sjt is the observed share of choices for product j in choice set t.
These metrics are used to evaluate performance both within sam-
ple and on a holdout sample. The in-sample responses are those
used to construct the model while the holdout sample refers to
additional questions that are included in the survey to be used for
model validation.

Study Methodology

Overview. There were a total of 104 participants in this study
(48 female, 56 male, mean age 28.8 yr). Volunteers for this study
were recruited online using Amazon.com’s Mechanical Turk sys-
tem. Consent was obtained from each participant prior to starting
the survey. Participants were required to be 18 yrs or older. Partic-
ipants were compensated with $2.00.

The task consisted of three conjoint analysis surveys. First,
each participant was presented with a survey designed to assess
aesthetic preference for vehicle shape. Next, participants com-
pleted a survey that assessed preference for some of the functional
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attributes of a vehicle. Finally, participants were given a survey
that assessed preference for aesthetic and functional attributes
concurrently. Each of the study’s participants completed the sur-
veys in the same order, aesthetic, function, and combined. The
survey order was not counterbalanced because the combined sur-
vey needed to take place after the aesthetic and function surveys
so the initial choice models would be independent. As the initial
surveys were relatively short and as evaluation of aesthetic and
function requires separate processing, visual and verbal, respec-
tively, carry-over effects were not expected to be significant.

One of the major departures from the previous metaconjoint
work was the use of random instead of fixed survey designs. In
the previous approach, a single survey was used to develop indi-
vidual utility functions for each participant. In a random design
scheme, each participant takes a different randomly designed
survey. After specifying the permissible values of each attribute,
surveys are constructed by randomly assigning attribute combina-
tions to each question. The participant responses all contribute to
a single model and the resulting utility function describes the
aggregate choice for the group.

One potential concern when aggregating individual preferences
to make a decision for a group is Arrow’s Impossibility Theorem.
The theorem states that there is no decision procedure that con-
verts individual preferences into collective choice while still satis-
fying several minimally reasonable conditions [19]. Although
there is discussion in the literature of how this can negatively
impact the design process [20,21], the approach taken in this work
is more analogous to an evaluation by a single decision maker
than a social choice. As a result, Arrow’s Theorem is not directly
applicable [22].

Random designs have been employed in a variety studies to
model group choice [23–29] and have been shown to be robust in
situations where the importance of interactions is not known
beforehand [30]. Treating all responses as coming from a single
participant allows large enough sample sizes to sufficiently cover
the design space. Such designs are capable of estimating both
main and interaction effects. Unlike traditional conjoint analysis,
metaconjoint analysis combines independently obtained choice
models into a single function that characterizes how consumers
make tradeoffs between two groups of attributes, leading to
insight into preference tradeoff between the groups. Take form
and function, for example. For a given product, it is possible to
determine whether consumers will gain more utility from
improvements in the attributes that contribute to form or those
that contribute to function. This sort of insight helps designers and
engineers know how best to allocate limited resources (to appear-
ance or functionality). Here, the use of a random design scheme to
develop meta-attributes allows for the incorporation of responses
from a large group into a single utility function that describes
how, on average, the group values form and function relative to
one another. This relationship is likely to vary between products
and it is valuable for designers to understand how consumers
make tradeoffs between the two. Doing so allows designers to
focus their attention on the product aspects that yield the highest
gains in consumer utility. Each of the participant’s unique, ran-
domly designed surveys was developed and administered using
the Sawtooth Software SSI Web tool. After completing the con-
joint analysis tasks, participants answered some follow up ques-
tions about their product experience and demographics.

Eliciting Aesthetic Preference. The aesthetic in this study are
vehicle designs depicted by line drawing silhouettes developed by
Tseng et al. [14]. An example of the vehicle representation is
shown in Fig. 1.

As shown in Fig. 1, these representations are the composition
of eight B!ezier curves. The control points of the curves are para-
meterized in a method that allows 12 major features of the design
to be varied continuously.

In this study, wheel size and front and rear wheel position were
held constant, leaving only nine attributes, belt angle, nose angle,

ground clearance, body height, roof height, hood length, trunk
length, front windshield angle, and rear windshield angle. For
each of the nine attributes, there were three levels: low, medium,
and high. Each aesthetic preference survey consisted of 18 prefer-
ence trials, 6 holdout trials, and 1 repeat trial used to check for
consistency. The holdout trials were mixed in with the preference
trials. The same six holdout trials were used for each participant.
In each trial, participants were asked to select the design they pre-
ferred most. A sample trial is shown in Fig. 2.

Eliciting Function Preference. In the next survey, preference
for functional attributes was elicited. The vehicle function is
described in terms of three function specifications: fuel economy
(18, 28, or 35 MPG), 0–60 mph acceleration (6, 8.5, or 11 s), and
60–0 mph braking distance (120, 135, or 150 ft). These specifica-
tions were chosen based on those used by Consumer Reports
when providing car-rating data for consumers. Each function pref-
erence survey consisted of 9 preference trials, 6 holdout trials, and
1 repeat trial used to check for consistency. In each trial, partici-
pants were asked to select the group they preferred most. A
sample trial is shown in Fig. 3.

Eliciting Combined Preference. The third and final survey
included all the form and function attributes. Each combined pref-
erence survey consisted of 18 preference trials, 6 holdout trials,
and 1 repeat trial used to check for consistency. In each trial, par-
ticipants were asked to select the vehicle and specification group
combination they preferred most. A sample trial is shown in
Fig. 4.

Results

For each discrete choice model, the script developed by Train
[31] was used to solve for the regression coefficients, b. The
performance results from a part-worth model with first order inter-
actions for the aesthetic attributes are presented in Table 1.

The form model scored better on each of the performance met-
rics than the null model both in and out of sample. Additionally,
the b values (not shown here) indicate that participants preferred

Fig. 1 Example vehicle

Fig. 2 Sample aesthetic preference trial

Fig. 3 Sample function preference trial
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longer hood lengths and steeper rear windshield angles. For a
detailed list of all coefficients, see Ref. [17].

The performance results from the function survey are detailed
in Table 2. The function model outperformed the null model on
each of the metrics both in and out of sample. Values for b indi-
cate participants prefer high gas mileage and short acceleration
times.

Table 3 summarizes the performance results from the combined
form and function survey. The combined model scored better than
the null model on each of the performance metrics both in and out
of sample.

Next, a metaconjoint approach is used to characterize the rela-
tionship between form and function. The first step in developing a
single meta-attribute that describes overall form is to use the
model developed from the aesthetic preference survey to evaluate
each of the aesthetic designs presented in the combined survey. In
the combined survey, each of the 104 participants faced 18 deci-
sions with three alternatives per choice for a total of 5616 design
alternatives presented to the group. Figure 5 shows a scatter plot

of the utilities of each of the design alternatives sorted from low
to high.

The utility varies between a minimum of "3 and a maximum
of 2. The designs were then divided into three groups based on
their utility. These groups, for low, medium, and high utility were
defined so that there would be a comparable number of designs in
each group as shown in Fig. 6.

There are approximately 1870 design alternatives in each
group. The design groupings of low, medium, and high corre-
spond to the meta-attribute levels of 1, 2, and 3. Next, the design
matrices for the combined surveys are recoded. The nine form
attributes are replaced with the single form meta-attribute. The
meta-attribute is coded at level 1, 2, or 3 based on the utility eval-
uation of the form attributes. The same procedure is followed to
develop a meta-attribute that describes function. The new design
matrix is used to solve for beta coefficients that describe aggregate
response to the meta-attributes of form and function. The results
from this model are shown in Table 4, while Table 5 shows the
results of treating each alternative in the combined survey as
the sum of form and function evaluated with the coefficients from
the independent surveys.

Discussion

The results listed in Tables 1 and 2 show both the form and
function models performed moderately well on the holdout sam-
ple predictions and much better than the null model, which is
equivalent to random guessing. The accuracy of the prediction
made by the model validates this approach. However, these results
are not sufficient to understand how these consumers view form
and function in relation to one another. Since the combined survey
solicited choices based on both form and function, consumers had
to take both into consideration when making decisions. The
results in Table 3 are from a model developed by treating each of
the form and function attributes independently. The results from
this combined model differ from the form only and function only
models in two interesting ways. First, several of the form attrib-
utes that were found to be insignificant in the form only survey,

Fig. 4 Sample combined preference trial

Table 1 Aesthetic choice model performance

Null model Form

In sample LL "2056.60 "1762.90
HR 34% 56%

MASE — —

Hold out LL "685.53 "619.99
HR 37% 54%

MASE 17% 10%

Table 2 Function choice model performance

Null model Function

In sample LL "1028.30 "638.15
HR 32% 74%

MASE — —

Hold out LL "685.53 "829.16
HR 23% 52%

MASE 29% 23%

Table 3 Combined form–function choice model performance

Null model Combined

In sample LL "2056.60 "1314.77
HR 33% 71%

MASE — —

Hold out LL "685.53 "484.59
HR 48% 69%

MASE 29% 10%

Fig. 5 Plot of aesthetic design evaluations in combined survey

Fig. 6 Division of aesthetic design evaluations in combined
survey
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such as body height, were significant in the combined survey.
Trunk length was found to be significant in the form only survey
but insignificant in the combined survey. Likewise acceleration
and braking distance were found to be significant in the function
only survey but insignificant in the combined survey. This sug-
gests that consumers may adjust their decision-making strategy
when presented with form and function information simultane-
ously. Second, the combined model performs much better on
holdout sample prediction (HR¼ 69%) than either of the form
(HR¼ 54%), or function (HR¼ 52%) models. Despite having
more attributes for consumers to consider, the model that included
both form and function was found to be a better predictor than
form or function alone.

The results from the metaconjoint approach listed in Table 4
show that there was a significant positive response to form being
at a high level, a negative response to function being at a low
level, and a positive response to function being at a high level.
There was not a significant response to form being at a low level.
The magnitudes of the function betas were also relatively higher
than those for form suggesting function had a higher impact on
consumer decision making. This is supported by self-report
responses. Participants were asked to indicate the extent to which
they based purchasing decisions on form and function. A 5-point
scale was used: 1 being not at all and 5 being entirely. The mean
for form was found to be 3.4 (standard error¼ 0.1), while the
mean for function was found to be 4.1 (standard error¼ 0.1). This
difference is statistically significant (p< 0.001). The interactions
between form and function were not significant. This suggests nei-
ther form nor function moderated response to the other. Interest-
ingly, the holdout predictions based on the meta-attributes
(HR¼ 77%) outperformed predictions from the combined model
(HR¼ 69%). The meta-attribute results were comparable to
results listed in Table 5 from the model where the form and func-
tion coefficients were assumed to be the same as those found in
the form only and function only model. However, that formulation

included no information about the relationship between form and
function highlighting a major advantage of the metaconjoint
approach.

One limitation of this work has to do with the designs the model
will predict as high utility. If the group likes sleek sporty vehicles
as well as large boxy sport utility vehicles (SUVs), the model
makes no distinction and they will have the same utility level at
the meta-attribute level. This is a potential pitfall in this method
as treating two very different designs as identical introduces error
to the model. This issue can be addressed in future work by
restricting the vehicle model to just cars or SUVs, for example.
Another limitation comes from the potential for consumers to
make inferences about the attribute combinations. In developing
the preference trials, no constraints were placed on the attribute
combinations. As a result, combinations where all the attributes
were at the highest levels were permitted. Consumers may infer
that such combinations would be infeasible or prohibitively ex-
pensive and alter their decisions. To minimize these effects, par-
ticipants were instructed to choose the combination they preferred
based only on the information provided and as if those were the
only choices available.

Conclusion

This work presents an extension to the previous metaconjoint
methodology that allows for characterizing how groups of con-
sumers relate form and function with meta-attributes, based on
aggregated individual data. This is an important distinction, as
designers often need to find solutions that appeal best to a group
and not just individuals. The results from this approach are shown
to have higher predictive accuracy on the holdout sample than ei-
ther the form or function models alone or a combined model that
includes both. Here, metaconjoint provided an easily interpreted
description of how consumers relate form and function. Under-
standing this relationship is useful as consumers often make deci-
sion based on both form and function. However, the approach can
also be extended to other disparate groups of product attributes.
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