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ABSTRACT: We characterize the effect of regional temperature differences
on battery electric vehicle (BEV) efficiency, range, and use-phase power plant
CO2 emissions in the U.S. The efficiency of a BEV varies with ambient
temperature due to battery efficiency and cabin climate control. We find that
annual energy consumption of BEVs can increase by an average of 15% in the
Upper Midwest or in the Southwest compared to the Pacific Coast due to
temperature differences. Greenhouse gas (GHG) emissions from BEVs vary
primarily with marginal regional grid mix, which has three times the GHG
intensity in the Upper Midwest as on the Pacific Coast. However, even within
a grid region, BEV emissions vary by up to 22% due to spatial and temporal
ambient temperature variation and its implications for vehicle efficiency and
charging duration and timing. Cold climate regions also encounter days with substantial reduction in EV range: the average range
of a Nissan Leaf on the coldest day of the year drops from 70 miles on the Pacific Coast to less than 45 miles in the Upper
Midwest. These regional differences are large enough to affect adoption patterns and energy and environmental implications of
BEVs relative to alternatives.

■ INTRODUCTION

The transportation sector is responsible for 32% of U.S. CO2
emissions and 28% of U.S. greenhouse gas emissions.1 In
addition, 70% of U.S. petroleum demand is consumed by the
transportation sector.2 Battery electric vehicles (BEVs), which
are powered by electricity alone, have the potential to reduce
transportation related greenhouse gas emissions as well as
petroleum consumption by replacing gasoline with electricity as
the energy source. However, there are some barriers to large
scale adoption of these vehicles. Range anxiety is a key factor
affecting consumer willingness to adopt BEVs.3,4 The driving
range of a BEV depends on the energy capacity of the battery
and vehicle efficiency, which are affected by design character-
istics as well as some use-phase factors, such as driving
conditions5,6 and temperature.7

Battery performance depends strongly on temperature. At
cold temperatures, battery efficiency, discharge capability, and
available energy decrease. In addition, battery internal
resistance increases, decreasing the power that can be drawn
from the battery. Battery performance increases with temper-
ature rise, but batteries also degrade faster at high temper-
atures,8 increasing thermal management requirements.
Ambient temperature determines initial battery temperature

and thermal management loading (if the vehicle is parked
outside, the battery is not thermally preconditioned, and solar
radiation is negligible) as well as battery temperature and
thermal management load during use. Weather conditions,
therefore, have a direct impact on battery efficiency. Ambient
temperature also drives the use of cabin air conditioning to

either heat or cool the cabin on cold and hot days,
respectively.9,10 The net effect of these factors causes customers
to report up to a 40% decrease in their driving range on cold
winter and/or hot summer days compared to the maximum
range they achieve.7 The cold temperature effect is generally
larger for two main reasons: electric cabin heating consumes
more power compared to cooling,11 and batteries have poorer
performance at low temperatures.
Air conditioning (A/C) use during hot days is an important

factor affecting the fuel economy in all types of vehicles, since
A/C is the largest auxiliary load in many vehicles.12 Cold
temperatures, on the other hand, are particularly disadvanta-
geous for BEVs, since vehicles with internal combustion
engines can use engine waste heat for cabin heating, whereas
in BEVs heat must be generated using limited onboard stored
electrical energy. Reduced efficiency results in increased energy
consumption and increased emissions from the electricity grid
when BEVs charge.13,14 The net effect on emissions varies
across the country due to the source of electricity generation15

as well as the regional differences in marginal electricity grid
mix.16

Prior studies investigating the regional differences in energy
consumption and emissions of electrified vehicles do not
account for efficiency losses with temperature change: A 2012
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report by Union of Concerned Scientists (UCS) investigates
the greenhouse gas (GHG) emissions of gasoline vehicles,
gasoline hybrid electric vehicles (HEVs), plug-in hybrid electric
vehicles (PHEVs), and BEVs in different regions of the US
using constant efficiency assumptions and average electricity
generation emissions in each eGRID subregion.17 They find
that about 45% of the U.S. population lives in a region where
BEVs have lower use-phase GHG emissions than the most
efficient gasoline vehicle: The Toyota Prius. Another report by
Climate Central performs a similar analysis but also includes
the carbon emissions from vehicle manufacturing and uses
average emissions factors for electricity generation by state.18

They conclude that in 40 states a high-efficiency hybrid vehicle
like the Toyota Prius is better for the climate than a BEV over
the first 50,000 miles driven. However, Graff Zivin et al. point
out that such average emissions factors are not appropriate for
estimating the net effect of new electric vehicle load due to
differences between average and marginal generation mix and
substantial trade among regions. They estimate marginal
emission factors in each of the eight North American Electric
Reliability Corporation (NERC) regions and use results to
evaluate emissions of a Chevy Volt type plug-in hybrid electric
vehicle.16 They find that in some regions, such as the upper
Midwest, charging from midnight to 4 am will generate more
CO2 emissions than even an average gasoline vehicle.
Tamayao19 uses the marginal emission factors proposed by
Graff Zivin et al.16 and by Siler-Evans et al.20 to compare
various gasoline and electrified vehicle types while accounting
for regional driving patterns. She finds that today’s BEVs and
PHEVs reduce GHG emissions relative to their gasoline
counterparts in most urban regions, but they may increase
GHG emissions in the Northern Midwest; the comparison is
inconclusive in much of the country due to uncertainty in
marginal grid mix estimates.
All of the analyses mentioned above assume constant

efficiency for each of the vehicles they analyze, and none of
them consider the ambient temperature effect. Neubauer and
Wood analyze the impact of various factors, including climate,
on electric vehicle miles traveled.10 They use a vehicle
performance model to estimate the change of vehicle efficiency
with temperature by including a temperature dependent battery
internal resistance term in their model, and they perform the
analysis at three selected locations with different climates: hot,
cold, and mild. Their battery model (based on a nickel
manganese cobalt oxide (NCA) Li-ion battery) suggests that
battery resistance effects are negligible in their case, but cabin
thermal conditioning can increase the per mile energy
consumption by 24% percent in cold climates compared to
the case when there is no heating or cooling. Kambly and
Bradley also show that heating, ventilation, and air conditioning
(HVAC) systems can decrease BEV range depending on the
region and time of day.9,21 Their analyses, based on a thermal
comfort model of a hypothetical BEV, suggest that the vehicle
range is lowest at noon when the solar load is highest, and
thermally preconditioning the cabin before the trip can improve
the range by about 10%.21 According to their estimates, annual
HVAC energy consumption is 50% higher in Arizona than in
West Virginia.9

To the authors’ knowledge, there is no study focusing on the
regional benefits of BEVs due to spatial and temporal ambient
temperature differences. The studies investigating regional
emissions do not include the effect of ambient temperature in
their analysis, and studies that examine the effect of climate do

not assess regional environmental benefits. We aim to fill this
gap in the literature. In this paper, we quantify the variance in
driving range, electricity consumption, and related emissions
due to regional ambient temperature using real world energy
efficiency, climate, and driving pattern data. In the following
sections, the data used in the analysis are introduced, and the
analysis method is described. Results of the regional analyses
are presented, and a discussion of comparisons between
different regions is provided.

■ DATA AND ANALYSIS

To estimate regional effects of temperature on electric vehicle
efficiency, range, and emissions, we construct models of vehicle
energy consumption vs temperature; U.S. temporal and spatial
temperature variation; vehicle driving and charging patterns;
and U.S. regional grid emission factors. In the following
sections, we explain the data used for each aspect and our
analysis approach.

Energy Consumption Versus Temperature. To find a
relationship between energy consumption and ambient
temperature, we use the publicly available data collected by
Canadian company FleetCarma.7 FleetCarma provides vehicle
monitoring services for fleet owners, and they collect and
analyze vehicle data to determine performance under various
conditions. We adopt the aggregated results from Nissan Leaf
users for more than 7000 trips across North America reported
as average driving range versus ambient temperature. The use
of these real world data has two key advantages over the prior
literature: (1) our results are based on results experienced by
real drivers in actual driving conditions instead of simulation
models, and (2) we include the net effect of both cabin
conditioning and battery efficiency implications of ambient
temperature in the analysis (as well as any other factors that
may vary with temperature, such as road and driving
conditions). Although these data were collected from locations
across North America, we use only information about the
average effect of temperature on vehicle efficiency in order to
isolate the temperature effect from other location-specific
factors, such as driving conditions. We convert range to energy
consumption using the Nissan Leaf usable battery capacity of
21 kWh22 applied to every data point provided in the
FleetCarma data set, and we obtain new data points for energy
consumption, as given in Figure 1. We then fit a curve to these

Figure 1. Nissan Leaf energy consumption per mile versus ambient
temperature. The blue stars correspond to data points obtained by
converting FleetCarma range data to energy consumption. The red
curve is the polynomial fit given by eq 1.
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new data points by least-squares regression using the lowest
order polynomial that follows the trend of the data qualitatively,
and we obtain a generic functional relationship between the
vehicle energy consumption per unit distance c and ambient
temperature T as

∑=
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Spatial and Temporal Temperature Data. We use the
Typical Meteorological Year (TMY) Database from the
National Renewable Energy Laboratory (NREL)23 to obtain
time- and location-dependent ambient temperature data. The
latest database, TMY3, provides hourly values of meteorological
data, including ambient temperature. These data are given for
1020 different locations in United States,24 including Guam,
Puerto Rico, and US Virgin Islands, but we filter the data and
exclude the latter regions, which reduces the total number of
locations in our study to 1011. The temperature data in this
database represent typical hourly temperatures rather than
extreme cases, based on 1976 to 2005 records wherever
available and 1991−2005 records for other locations.
Driving and Charging Patterns. To obtain driving

patterns, we use the National Household Travel Survey
(NHTS) 2009 data set.25 NHTS is conducted by the US
Department of Transportation and is an inventory for daily
household travel. It contains information on all kinds of
transportation activity of a household, including walking, public
transport, biking, etc. To obtain a subset of data for the
purposes of this study, we filter this data set to obtain the trips
completed by private light-duty vehicles only. We also exclude
the data points that are reported by the members of the
household other than the driver to avoid counting the same trip
by the same vehicle more than once. This reduces the total
number of vehicles we include in the analysis to 87 777. The
NHTS data set has only 1 day of data for each vehicle.
Therefore, NHTS does not provide information on day to day
variability for a single vehicle. By averaging over each vehicle
driving profile and each day of the year, we thus estimate fleet
average effects, and individual vehicle owners may experience
higher or lower efficiency in a given climate. In addition, we
treat the full distribution of driving patterns in the NHTS data
as representative of every location in the country, and we ignore
any systematic regional variation in daily driving patterns in
order to isolate the effect of temperature.
The data set provides start time, end time, and distance of

every trip made by each vehicle on the day surveyed. We use
this information to determine what time of the day and how far
the vehicle is driven, and we assume charging begins upon
arrival at home after the last trip of each day and continues until
the battery is fully charged.
Grid Emission Factors. To estimate the grid emissions

related to increased load with BEV electricity consumption, we
need to know the marginal emissions from the power plants
that are utilized to meet the extra demand. The mix of the
power plants that operate on the margin, and the resulting
emissions, show significant variation across regions.16,20 Graff
Zivin et al.16 estimate the marginal CO2 emission factors by

regressing the emissions in the corresponding interconnect as a
function of electricity consumption in each NERC region. In
our analysis, we use their expected values of the seasonal time
of day marginal emission factors (MEFs) for each NERC
region (see Supporting Information). Since estimates of day to
day variation of MEFs within one season are not available, we
use the same MEFs for each day of the season. These MEFs
estimate power plant emissions and exclude upstream
emissions from feedstock supply.

Analysis. We start our analysis by estimating energy
consumption per mile traveled every day and every hour at
each location provided in the TMY3 data set and for each
vehicle driving profile in the data obtained from NHTS using
the temperature-efficiency relationship extracted from the
FleetCarma data. In this calculation, we apply some boundaries
to the temperature values that can be used in the computation.
The lower bound is equal to the minimum temperature
recorded in the FleetCarma data set. For the upper bound (i.e.,
high temperatures), we extrapolate the curve to the point at
which the energy consumption is equal to the maximum value
recorded, as shown with the curve fit in Figure 1b. This results
in the lower and upper ambient temperature boundaries of −15
°F and 110 °F, respectively. The extrapolation is necessary for
fair comparison of hot vs cold regions. The regional hourly
electricity consumption per distance traveled can thus be
estimated for each vehicle as follows:
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where cldh
HOUR is the Nissan Leaf’s electricity consumption per

unit distance (Wh/mi) and Tldh is the ambient temperature
(°F) at location l ∈ {1,2,..., NL}, day d ∈ {1,2,..., ND}, and hour
h ∈ {1,2,..., NH}, where NL = 1011, ND = 365, and NH = 24. In
our base case, whenever the temperature is lower or higher than
the given boundaries, we assume the energy consumption will
be equal to the value calculated at the boundaries.
To estimate the daily average electricity consumption per

mile, we need to know how much each vehicle is driven at each
hour of the day. We estimate this using the national driving
patterns from the NHTS data set. For all the vehicle driving
profiles in the subset of data we are using, we distribute the
driving durations into hourly bins throughout the day by
looking at the start and end time of each trip, and we compute
Δhv

DRV, the amount of time (hours) each vehicle driving profile v
∈ {1,2,..., NV} spent driving during the corresponding 1 h bin h
(where NV = 87 777 vehicle driving profiles):
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where tτ
S and tτ

E are the start and end times of each trip τ,
respectively, and Tv is the set of trips for vehicle driving profile v
in the data set.
We then use Δhv

DRV to obtain the weighted daily average
energy consumption per unit distance for each vehicle driving
profile v as follows:

=
∑ Δ

∑ Δ
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c

c l N
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L
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where cldv
VEH is the daily average energy consumption per mile for

vehicle driving profile v in location l and at day d (in Wh/mi).
The expected daily range in each region can be found by first

calculating the range for each vehicle driving profile and then
averaging over all the profiles in the data set.
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where sld is the regional expected daily range averaged over all
vehicle driving profiles used in the analysis and CBAT is the
battery usable energy capacity, taken as 21 kWh for Nissan Leaf
battery.22

The distance driven by each vehicle profile on each day in
each location is computed as

=
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where sv
NHTS is the distance traveled by vehicle driving profile v

in the NHTS data set. Here, we assume that if the distance
driven in a vehicle profile is longer than the all-electric range
(AER) of the vehicle, the vehicle shortens travel on those days.
We test robustness via sensitivity cases that include a larger
battery (to reduce truncated trips) and a slower recharging rate
(to shift charge timing).
The regional average electricity consumption per mile cl

REG

averaged over all vehicle profiles and days of the year can then
be estimated as
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Greenhouse gas emissions vary depending on charge timing.
We first determine the total charging duration for each vehicle
profile as

=t
s c

rldv
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(8)

where sldv is total daily distance traveled by vehicle profile v, tldv
is the total charging duration in hours, and r is the constant
battery charging rate, which is 6.6 kW for Nissan Leaf battery.26

Then, we distribute the total charging duration into hourly bins
assuming charging starts right after the last trip of the day ends:
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where Lv is the last trip of the day for vehicle profile v, and we
obtain Δldhv

CHG which gives the charging duration that falls into
hourly bin h. Using this information, CO2 emissions can be
estimated as

η
Γ =

Δ
=

r M
v N, 1, ...,ldhv

ldhv ldh
CHG MEF

V
(10)

where Γldhv is the CO2 emissions in grams from charging vehicle
v at hour h of day d in location l, Mldh

MEF is the expected value of
the regional seasonal time of day marginal emission factors in
grams/kWh, and η is the charging efficiency, taken as 87%.27

Note that 87% represents the on-board charger + electric
vehicle supply equipment (EVSE) efficiency. In other words,
87% of the energy delivered from the grid can be charged into
the battery. We neglect any losses that might occur between the
onboard charger and the battery; therefore, the efficiency value
used here does not affect charging duration. We account here
only for power plant emissions and ignore upstream emissions
associated with feedstock supply.
Regional average CO2 emissions in grams/mile, γl (averaged

over all vehicle profiles and days of the year), are then found by

γ =
∑ ∑ ∑ Γ

∑ ∑ sl
d h v ldhv

v d ldv (11)

■ RESULTS AND DISCUSSION
The variation of daily average driving range in selected cities is
shown in Figure 2. In three of the cities shown in Figure 2, the

median of the daily averages is around 70 miles (112 km). In
San Francisco, the median is 76 miles (122 km) and the driving
range is greater than 70 miles 99% of the time. As the location
changes to cities where more hot or cold extremes might be
observed, we see a wider spread of vehicle range throughout the
year. In Phoenix, where the daily average temperature can be as
high as 105 °F (41 °C), the range can drop as low as 49 miles
(78 km), a 29% decrease from the median value of 69
miles(111 km). In cold climates, such as Rochester, MN, the
decrease in the range compared to the median can be as high as
36%.

Figure 2. Box plot of daily driving range distributions for selected
cities. Red lines indicate median range; blue boxes capture the 2nd and
3rd quartiles across days of the year; the whiskers extend to the most
extreme data points that are not considered outliers, and the red +
symbols indicate outlier days.
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As mentioned before, the temperature limits used in
computations are −15 and 110 °F (−26 and 43 °C), and we
do not know exactly how the range or vehicle efficiency
changes in excess of these values. In Figure 3, the locations

where the temperature is outside the limits at least 1 h on the
worst day of the year are marked, indicating that actual range
on the worst day of the year may be lower than estimated here.
For comparison, we also make the same calculation by
extrapolating the curve for a wider range of temperature values
in the Supporting Information, and overall trends are robust.
Similar to the change in driving range, Figure 4 shows that

the average energy consumption per mile can increase by 15%

from 273 Wh/mi (170 Wh/km) along the Pacific Coast or in
certain parts of South Florida to 315 Wh/mi (196 Wh/km) in
the Upper Midwest. It is also possible to observe that the
energy consumption can vary inside the same state because of
the temperature differences of different locations. In Southeast
California, the average energy consumption is 323 Wh/mi (201
Wh/km), 18% higher than the coast.
As depicted in Figure 5, the most significant factor affecting

the regional differences in emissions is the grid mix. The worst
region in terms of CO2 emissions is MRO, where both the

marginal emission factors and the energy consumption per mile
are high. WECC, with the cleanest grid, has the lowest
emissions, especially on the coast where energy consumption is
the lowest. When the mean value of average emissions in MRO
is compared to the mean value in WECC, there is a 186%
increase due primarily to grid mix. Within the WECC region,
the emission rates can increase from 100 g/mi (62 g/km) up to
122 g/mi (76 g/km), a 22% increase inside the same NERC
region due to ambient temperature. Note that this happens
mainly because of two reasons: energy consumption changes
with temperature, but also as energy consumption changes so
does the charging duration. This creates an impact on
emissions, too, since marginal emission factors vary depending
on the time of the day when the vehicle is being charged. For
reference, tailpipe CO2 emissions for a Toyota Prius hybrid
electric vehicle is reported as 179 g/mi (111 g/km);28 however,
gasoline vehicle emissions rates also vary with temperature.
Since the main source of difference in the regional emissions

is the grid mix, as the grid becomes cleaner for most of the
country, as targeted by the Environmental Protection Agency’s
Clean Power Plan,29 the impact of location on the environ-
mental benefits of electric vehicles will be reduced. However,
ambient temperature will remain a source of variation in EV
benefits across the US.
To see the sensitivity of these results to some of our

assumptions, such as battery capacity and charging rate, we ran
two other cases: (1) with an increased battery capacity of 85
kWh and (2) with a lower charge rate of 3.3 kW. Both of these
assumptions can change emissions estimates up to 4%. Details
are available in the Supporting Information.

Limitations and Assumptions. In this study, we use data
only for a particular electric vehicle, the Nissan Leaf. Other
electric vehicles differ in vehicle efficiency, HVAC efficiency,
battery technology, and thermal management and may
therefore have different temperature-specific range and
emissions implications. Nevertheless, the trends observed
here are fairly general because (1) heater and A/C use
increases BEV energy consumption and (2) electrochemical
reactions in batteries are temperature dependent. With
improvements in battery technology and with the use of
more energy efficient vehicle thermal conditioning systems, it
might be possible to see a reduced effect of ambient
temperature in the future.
The driving range versus temperature data set we use in this

study is collected from real world trips. It therefore contains
some effects due to different driving styles, trip conditions such

Figure 3. Average range across the fleet on the worst day of the year
(day with the lowest predicted EV range). In the figure, dots (•)
represent the locations given in the TMY3 data set, crosses (×)
represent locations with temperatures colder than the minimum data
point at least one time during the year, and plus signs (+) represent
locations with temperature warmer than our imposed upper limit of
extrapolation at least one time during the year.

Figure 4. Energy consumption per mile averaged across the fleet over
a full year (Wh/mi).

Figure 5. CO2 emissions per mile in eight NERC regions averaged
across the fleet and over the year (g/mi).
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as congestion on the road, driver preferences on climate
control, technology differences due to different model years,
and other weather elements, such as precipitation and humidity.
We attribute the entire efficiency effect to temperature, which
could introduce bias if temperature is correlated but not
perfectly correlated with these other factors. In addition, the
FleetCarma data set reports average driving range observed
across the fleet. Therefore, the results shown in Figure 2 do not
show the worst range that can be experienced but rather the
fleet average range on the worst day of the year. Some drivers
may experience shorter range. In particular, the Nissan Leaf
drivers observed in the data are early adopters and may have
different behaviors than mainstream consumers (for example,
with respect to HVAC use or driving style). Also, we assume
the range at temperatures below −15 °F or above 110 °F are
equal to the estimated range at the corresponding limit. The
results using extended extrapolation are also provided in the
Supporting Information, resulting in similar trends but
increased magnitude in the hottest and coldest regions.
The NHTS data set provides information on the trips taken

by each surveyed U.S. vehicle on a single survey day and does
not include day to day variability for each vehicle. In this study,
we average over the vehicle profiles to assess implications for
average driving distances and assume these daily distances are
identical spatially and seasonally. Individual drivers may
experience different range and efficiency, and any correlations
between driving distance and location or weather could
influence results.
We only consider convenience charging in this study.

However, time of charging could have a significant effect on
emissions. For example, delayed nighttime charging may avoid
adding demand during peak times and reduce costs while
increasing marginal emission rates in many areas because coal
fired power plants tend to be on the margin at times of low
demand.16 In addition, we assume charging rate is constant
during charging, and we neglect the effect of temperature on
charging efficiency and duration.
Finally, we use point estimates for marginal emission factors

and for the curve fit in eq 1. Uncertainty in marginal emission
factors and vehicle efficiency implies uncertainty in implications
of electric vehicle charging. Further, we attribute the estimated
marginal emissions within each NERC region to every location
in that NERC region. In practice, marginal emissions vary by
location within each NERC region, but due to substantial
interregional trade, differences of marginal emission rates at
sub-NERC-region resolution are not known. Large penetration
of electric vehicles could also have grid effects that are beyond
marginal. Additionally, we estimate only power plant emissions
associated with electric vehicle charging and do not consider
the full life cycle (e.g., including upstream emissions from
feedstock supply or temperature-specific repair and main-
tenance), and we characterize only CO2 emissions and do not
estimate implications of other air emissions from electric
vehicle charging.
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