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ABSTRACT 

When design decisions are informed by consumer choice 

models, uncertainty in the choice model and its share 

predictions creates uncertainty for the designer. We take a 

first step in investigating the variation in and accuracy of 

market share predictions by characterizing fit and forecast 

accuracy of multinomial logit, mixed logit, and nested logit 

models over a variety of utility function specifications for the 

US light duty new vehicle market. Using revealed preference 

data for years 2004-2006, we estimate a multinomial logit 

model for each combination of a chosen set of utility function 

covariates found in the literature. We then use each of the 

models to predict vehicle shares for the 2007 market and 

examine several metrics to measure fit and predictive 

accuracy. We find that the best models selected using any of 

the proposed metrics outperform random guessing yet retain 

substantial error in fit and prediction for individual vehicle 

models. For example, with no information (random guessing) 

30% of share predictions are within 0.2% absolute share 

error in a market with an average share of ~0.4%, whereas 

for the best models 70% are within 0.2% (for the 2007 vehicle 

market this translates to an error of ~33,000 units sold). Share 

predictions are sensitive to the presence of utility covariates 

but less sensitive to the form. Models that perform well on one 

metric tend to perform well on the other metrics as well. In 

particular, models selected for best fit have comparable 

forecast error to those with the best forecasts, and residual 

error in model fit is a major source of forecast error. 

1. INTRODUCTION AND MOTIVATIONS 

Motivated by a call to base design decisions explicitly on 

predictions of their downstream consequences for the firm [1], 

researchers have proposed a variety of methods to predict the 

influence of design decisions on firm profit. The majority of 

these efforts apply discrete choice methods [2] to predict 

consumer choice as a function of product attributes and price, 

using choice predictions to guide or even optimize design 

decisions [3–11]. Such methods rely on the accuracy of choice 

predictions: uncertainty in choice predictions creates 

uncertainty about which designs are best [5,12]. Given the 

many sources of uncertainty in such models, Frischknecht et 

al. [8] question the suitability of using choice models in a 

design context.   

Among the most popular product domains for application 

of choice modeling is automotive design. A national focus on 

alternative vehicle adoption has resulted in a variety of 

research reports that attempt to predict the vehicle market 

landscape as far as 40 years into the future. The variety of 

sources - equity research houses, consulting firms, academic 

institutions, and public sector government agencies - 

illustrates the interest in vehicle demand prediction. However 

despite these considerable research efforts, predictions for the 

market share of annual new vehicle purchases for several 

powertrains over the next 40 years vary wildly (see Appendix 

A). If such market models are employed in the context of new 

vehicle design, researchers must be aware of the degree of and 

implications of forecast uncertainty. 

Prediction variation can arise from factors like dissimilar 

data sources and assumptions, and even within a single model 

prediction uncertainty may result from a multitude of factors 

including limited market data histories in the case of 

alternative vehicle powertrains, statistical estimation 
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procedures, and model specification. In this paper we begin an 

investigation of predictive power and uncertainty in model 

predictions by focusing on utility function form and structural 

specifications (e.g. multinomial logit, mixed logit and nested 

logit).  

Measuring the forecast accuracy of a particular model in a 

particular year may have idiosyncratic components. Forecast 

accuracy will depend on model specification as well as the 

particular factors affecting sales in the year of interest. A 

comprehensive study would examine a range of models 

representative of those used in the literature to model and 

predict choice, including models with alternative utility 

function specifications (including population heterogeneity 

and Bayesian hierarchical specifications), estimation and 

calibration procedures (e.g.: maximum likelihood, 

instrumental variables, or generalized method of moments), 

and data sources (aggregate sales data vs. individual-level data 

and stated vs. revealed choice data). We characterize share 

forecast accuracy of multinomial logit choice models in the 

automotive market with a variety of utility function 

specifications informed by the literature, each fit to aggregate 

market sales data from 2004-2006 and tested for accuracy of 

predicting share in the 2007 market. We apply several metrics 

to answer the following research questions: 

1.) How widely do predictions vary based on utility function 

specification? 

2.) How can we quantify share prediction error, and do 

different evaluation metrics lead to different selections 

of the “best predictive model”? 

 

The second question is included as a necessary discussion in 

the course of answering the first. If we are to judge which 

utility or structural specification is the “best” at making 

predictions, we must have a clear definition of “best”. We also 

compare the best multinomial logit models to mixed and 

nested logit models with similar utility function specifications, 

as well as to models estimated on alternative years and vehicle 

class sub-segments. 

Section 2 contains an overview of the development and 

notable applications of choice models and their appearance in 

design literature. Section 3 describes our data set and detailed 

experimental setup so that a reader could replicate our work. It 

also discusses the metrics which we use to evaluate our 

models. Section 4 compares the results from estimating 

various utility and structural model specifications using the 

metrics described in the methodology section. Section 5 

concludes with a summary of our findings, especially those 

relevant to designers, and Section 6 outlines some of the topics 

which require further investigation for a complete 

understanding of discrete choice model uncertainty. 

 2. LITERATURE REVIEW 

Broadly, there are two schools of research in the vehicle 

demand literature. The first is concerned foremost with 

predicting future vehicle demand shares, usually at an 

aggregate level like vehicle class or powertrain type, and often 

without transparency about the assumptions and models used 

to make the forecast. We henceforth refer to this type of 

literature as “forecasting”. The second school is interested in 

model construction and in vehicle and consumer attribute 

coefficient estimation especially as it pertains to willingness to 

pay and demand elasticity in past markets. We henceforth 

refer to this type of literature as “explanatory”. Appendix B 

compares publications of each type. Engineering design in the 

decision based design and market systems areas requires 

models that can predict response to a new design. The 

forecasting literature is typically not used due to lack of 

transparency and documentation of data and modeling 

assumptions. Rather, models from the explanatory literature 

are applied in a predictive context. 

Forecasting studies are conducted by private or 

government research entities or issued in report format from 

an academic research institute (see Appendix B). Reports are 

not generally peer reviewed and rarely contain a full 

mathematical description of the model, making it impossible 

to reproduce the model without additional information. Some 

reports include sensitivity cases formed with variations on 

model assumptions; for example, the EIA Annual Energy 

Outlook [13] contains base, low and high alternative vehicle 

future market share as a result of base, low and high future oil 

prices. This type of sensitivity only captures uncertainty about 

model input parameters and assumes that model specification 

and estimated coefficients are known. In practice, model 

specifications for choice contexts as complex as automotive 

purchases are always uncertain, and the relevant question is 

whether or not the model is sufficient for its intended function. 

The bulk of the new vehicle purchase demand literature is 

explanatory, conducted by academic researchers and published 

in peer-reviewed academic journals (see Appendix B). This 

literature extensively discusses model estimation and to a 

lesser degree model selection, including potential sources of 

error from model misspecification. Usually researchers 

compare the goodness of fit across several specifications in 

order to determine which model best represents a known, 

current reality. However, most of this literature does not 

attempt to make predictions about future vehicle market-share 

penetration or evaluate models with predictive capabilities in 

mind (Frischknecht et al. [8] is a rare exception). In general, 

models that fit the existing data best may not necessarily be 

the best at predicting counterfactuals [14].  

The earliest applications of economic models to predict 

overall automotive demand focused on macroeconomic 

variables and, as Train [15] highlights, only included price. 

These studies are referred to as aggregate studies because the 

level of granularity of predictions was at the whole market or 

vehicle class level as opposed to individual make-models. 

Disaggregate studies evolved to predict the number of vehicles 

an individual household would choose to own [15]. For 

example, Lave and Train [16] advanced this work by 

proposing a disaggregate model of vehicle class purchase 

choice based on consumer characteristics and additional 

vehicle characteristics, such as fuel economy, weight, size, 

number of seats, and horsepower. A wide variety of models 

followed over the next three decades. 

We compare our model specifications to several well-

known models from the automotive demand literature: 

1.) Boyd and Mellman [17] propose incorporating a 

hedonic (random coefficient) demand function as an 

extension of simple logit models. In order to mitigate 

the independence of irrelevant alternatives (IIA) 

property [2], they argue that tastes for vehicle 
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attributes could be allowed to vary over the population 

without explicit inclusion of consumer characteristics. 

Several studies in the design literature have adopted 

this model [11,18–21]. 

2.) Berry et al. [22] propose a canonical model informally 

referred to as the “BLP model” in the econometrics 

literature. It signaled a shift in the treatment of price 

endogeneity with the alternative-specific constant in 

revealed preference data. Related literature includes 

Nevo [23] which dissects the mathematical and 

computational details for researchers who wish to 

estimate BLP-type models. Dubé et al. [24], Knittel and 

Metaxoglou [25], and Skrainka and Judd [26] explore 

numerical estimation issues with structural models 

using the BLP model as an example.  

3.) Brownstone and Train [27] propose several new vehicle 

purchase choice models using the results of a multi-part 

study conducted in Southern California and described 

in Bunch et al. [28]. Related literature includes 

Brownstone et al. [29] which follows up by combining 

revealed preference data with the stated preference data. 

McFadden and Train [30] prove that “Under mild 

regularity conditions, any discrete choice model derived 

from random utility maximization has choice 

probabilities that can be approximated as closely as one 

pleases by a [mixed multinomial logit] (MMNL) 

model,” and uses a model from Brownstone and Train 

[27] as an illustration. 

4.) Whitefoot and Skerlos [11] investigate the effect of fuel 

economy standards on vehicle size and employ a logit 

model with coefficients drawn from the literature. 

It is important to note that we use the preceding literature 

models to inform comparison models of our creation; we do 

not recreate any of them exactly due to limited availability of 

data or specifics about estimation methodologies.  

Other new-vehicle purchase models include [31–38].  

Appendix C summarizes the covariates used in these models. 

These are the covariates used to inform the utility function 

combinations we test.  

Other applications of discrete choice models for vehicle 

demand include predicting variations on vehicle demand in a 

variety of other contexts such as vehicle holdings (decision to 

buy or sell) and vehicle pricing [36,39–42], vehicle purchase 

financing options [43], and used-car and sequential choices 

[44]. Choo and Mokhtarian [45] propose a model based 

entirely on consumer usage and demographic variables. Zhang 

et al. [46] proposes an agent based modeling approach. Greene 

[47] conducts a literature review on consumer willingness to 

pay for fuel economy. 

The engineering community has used discrete choice 

models broadly [3–7,20,48–51], especially in the context of 

product design optimization. Frischknecht et al. [8] 

specifically addresses their use in this context and find that the 

optimal design and resultant product profit are sensitive to the 

choice of model specification. 

3. METHODOLOGY 

Our overall goals are to examine the robustness of 

multinomial logit model predictions over various utility 

function specifications and to compare the predictions across 

the structural specifications of logit, mixed logit and nested 

logit. For conciseness we refer to the multinomial logit model 

as simply the “logit” model, whereas mixed and nested logit 

specifications are explicitly identified as such. We identify a 

universe of covariates informed by the literature and form 

combinations of them such that we have defined all possible 

linear utility function specifications from these covariates. 

(Note that we do not include an alternative specific constant 

and therefore do not use additional covariates as instruments 

to account for endogeneity). We then estimate the logit 

coefficients on US consumer vehicle purchase data from 

2004-2006 and predict market shares for each of the vehicles 

in the US purchase data from 2007. 

Using the metrics described in Section 3.3, we rank the 

predictive power of the models and compare their 

effectiveness across utility function specification for each of 

the metrics. We examine: 

1.) What model would we have selected from 2004-2006 

as the “best” based on goodness-of-fit if we didn’t yet have the 

2007 data? If we had selected that model, how well would we 

have done in predicting 2007? 

2.) Which model estimated from 2004-2006 data predicts 

2007 shares best based on metrics of forecast accuracy, 

regardless of how well it fits the estimation data? 

3.) How well do models estimated on 2004-2006 data 

perform in predicting 2007 data, relative to models fit on 2007 

data? 

For a sub-set of utility specifications we determine to be 

“best” for logit models, we also estimate mixed and nested 

logit models. These models are then compared to the logit 

models on each of the metrics in order to evaluate the effect of 

structural specification. 

3.1 The Data Set 

Our data set draws vehicle attribute information from 

Ward’s Automotive Index [52] and aggregate sales data from 

Polk [53] for vehicle sales during the 2004-2007 period. Other 

studies have used a variety of data sources (including these) as 

well as individual researcher conducted stated preference 

surveys. Our data set is revealed preference data exhaustively 

covering all new vehicle purchases in the United States. We 

use 2004-2006 data for estimation and 2007 for prediction 

because three years of data should be sufficient to predict a 

successive year. 

Our models consider only new vehicle buyers, thus there is 

no outside good (option to not purchase any vehicle). 

Inclusion of an outside good allows a choice model to 

endogenously determine market size. Excluding it models 

only share among the vehicles purchased. We ignore the 

outside good here because it is difficult to define the correct 

market [22] and if the outside good is included, then further 

uncertainty in prediction arises from the need to account for 

macroeconomic conditions. For example, sales volume 

typically drops during a recession. As part of a model to 

predict future US vehicle stock, Greenspan and Cohen [54] 

include variables such as “household formations, the 

unemployment rate, and the prices of new vehicles, repairs 

and gasoline” to estimate new vehicle sales. Nevertheless, our 

model is not insulated entirely from macroeconomic issues. 

For example, if the overall US economy declines in a future 

year, consumers may be more price-sensitive and opt to 

purchase less expensive cars, which affects share predictions 
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through the model’s price coefficient. We are aware that there 

are many factors that drive share which are not included in our 

models, but we are interested in how well a modeler can 

predict when relying primarily on available vehicle attribute 

data. 

Within the intent of addressing research question one, 

“How widely can predictions vary based on how covariates 

enter the utility function or if they are omitted entirely?”, we 

begin by surveying the automotive demand model literature to 

determine the universe of independent variables historically 

used in the discrete choice models. While most of the 

automotive demand literature compares their respective results 

in the context of a few alternate utility function specifications, 

to our knowledge there is no research conducting a 

combinatorial search over possible utility covariates. 

In general there are an infinite number of covariates that 

could be included in a utility function. We only consider new 

light duty vehicle purchases and restrict our attention to 

covariates identified in the automotive demand literature over 

the last fifty years. The universal set of possible utility 

covariates generated by compiling a list of covariates from 

literature is a realistic, finite set. We assume that the utility 

function is linear in parameters, which is a standard 

assumption in almost all logit  models because it ensures that 

the log-likelihood function is concave [2].  

Appendix C summarizes the new car purchase automotive 

demand models. From this list of covariate possibilities, we 

choose which subset should be tested in a comprehensive but 

manageable search. Many of the models include demographic 

or consumer usage covariates, but because Ward’s 

Automotive Index data [52] does not include individual-level 

choices we ignore demographics. For some of the 

demographic information like gender or income an aggregate 

distribution over the US population is available, but because 

we do not know which consumers selected which vehicles, 

sampled consumer attributes are unlikely to accurately 

determine specific individuals’ sensitivity to vehicle attributes. 

There are vehicle attributes we omit because they are not 

available in our data sources:  

 Indirect vehicle attributes like consumer reports ratings 

for handling and safety – These would be unknown at the 

time of prediction. 

 Vehicle and battery maintenance costs- These covariates 

are used primarily when predicting alternative vehicle 

share and they will not vary substantially across 

conventional and hybrid powertrains. 

 Acceleration time (seconds)- We indirectly test inclusion 

of acceleration through functions of horsepower and 

weight. Note that horsepower/weight correlates well with 

0-60 second acceleration time for cars well but poorly for 

trucks. 

 Range- This covariate is used primarily when predicting 

alternative vehicle share and will not vary substantially 

across conventional and hybrid powertrains. A related 

fuel economy covariate is included. 

 Top speed- We use an alternative measure of performance 

through horsepower and weight. 

 Number of seats- We use vehicle class, which is closely 

related to seating. 

 2-year retained value- Like the consumer rating data this 

would not be known at the time of prediction. 

 All alternative-vehicle specific attributes (e.g. dummies 

for hybrid or electric power trains)- These are not relevant 

to our data set which includes conventional vehicles and 

only a limited number of hybrid power trains 

As discussed in the introduction, predicting alternative 

vehicle share is the focus of much current research. Due to the 

restrictions imposed by our data set we do not predict their 

shares in this study, though potential future work would 

include investigating how the findings of this study transfer to 

prediction of vehicles with limited market histories. We would 

expect that the forecasts would typically be less accurate than 

for conventional vehicles because consumers have less 

developed opinions of alternative vehicle technologies [55–

58]. 

The highlighted covariates in Appendix C are those which 

remain after omitting demographic, usage, indirect, and 

unavailable attributes. Some studies group price and fuel 

economy variables into discrete levels of each rather than 

treating them as continuous variables. We consider all 

covariates (except for class and brand dummies) to be 

continuous variables because, unlike controlled conjoint 

experiments, the market data do not fit into a small number of 

discrete levels. Price is always included as a covariate and can 

take either of the forms listed in Table 1; vehicle class 

dummies are also always included. The other highlighted 

covariates in Appendix C can take one of the forms listed in 

Table 1 or can be excluded entirely. A constant is necessarily 

excluded because it does not vary over the data when an 

outside good is not included. Given these covariate options, 

there are 9,000 possible utility specifications for the logit 

model outlined in Table 1. Note that the option “not included” 

means that the covariate is excluded from the utility function 

entirely. 

There is correlation in many of these covariates, Such 

correlations can induce bias in the estimated coefficients if not 

corrected for [59]. However, while this presents difficulties in 

drawing inferences from the coefficients (e.g. willingness-to-

pay) it does not affect the ability to make predictions from the 

model so long as the correlations in the training data would 

also be present in the prediction set. For vehicle markets, this 

is very likely to hold for near-term predictions at least. 

Operating cost includes the macroeconomic variable of 

retail gas price. Though we aim to exclude non-vehicle 

attributes, this covariate was so prevalent in the literature that 

we thought it important to include for comparison. 
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TABLE 1- COVARIATE FORMS TESTED IN UTILITY FUNCTION SPECIFICATIONS 

 Functional form options 

Covariate Option 1 Option 2 Option 3 Option 4 Option 5 

Price  price ($) price + op cost ln(price)  

Operating cost1 not included fuel cost/mile miles/fuel cost miles/gallon gallons/mile 

Acceleration2 not included horsepower/weight (hp/wt) wt/hp exp(c1*(hp/wt)^c2) hp 

Size not included length width length-width length*width 

Style not included (length*width)/height    

Luxury not included dummy if air-conditioning is standard    

Transmission not included dummy if auto. transmission is standard    

Manufacturer3,4 not included dummy for country of origin dummy for brand   

Vehicle class5  dummies for vehicle class    
1 Fuel cost  is average annual gas price [60] in 2004 dollars, adjustment based on the Consumer Price Index [61] 
2 c1= -0.00275 and c2= -0.776 as in the EIA Annual Energy Outlook 2011 [13] 
3 Country of origin includes: United States, Europe, and Asia; excludes United States dummy for identification 
4 Brand includes: Acura, Audi, BMW, Buick, Cadillac, Chevrolet, Chrysler, Dodge, Ford, GMC, Honda, Hummer, Hyundai, Infiniti, Isuzu, Jaguar, 

Jeep, Kia, Land Rover, Lexus, Lincoln, Mazda, Mercedes, Mercury, Mitsubishi, Nissan, Oldsmobile, Pontiac, Porsche, Saab, Saturn, Scion, 

Subaru, Suzuki, Toyota, Volkswagen, Volvo; excludes Acura dummy for identification 
5 Class includes: Compact, midsize sedan, full size sedan, luxury sedan, SUV, luxury SUV, pickup, minivan, van, and sports; van is excluded for 

identification 

.

3.2 Model Estimation 

As discussed previously our utility function is linear in 

parameters: 

  𝒖𝒊𝒋 =  𝐱𝒋
′ 𝛃 + 𝜺𝒊𝒋 (1) 

where uij is the utility of vehicle j for consumer i, xj is the 

attribute vector of vehicle j, β is the vector of model 

parameters to be estimated, and εij is an error term. Following 

standard assumptions, if εij is independently identically 

distributed (iid) and follows a type I extreme value 

distribution, then the probability Pj that a consumer will 

choose vehicle j can be expressed as: 

 𝑃𝑗 =
exp(𝐱𝑗

′𝛃)

∑ exp(𝐱𝑘
′ 𝛃)𝑁

𝑘=1

  (2) 

where N is the number of vehicles in the estimation data set. 

This is the (multinomial) logit formula. The likelihood of the 

estimated parameters L is defined as the probability of 

generating the observed data given the estimated parameter 

values: 

 𝐿(�̂�|𝐱) = ∏ 𝑃𝑘
𝑠𝑘𝑁

𝑘=1  (3)  

where sk is the sales of vehicle k. The maximum likelihood 

estimator of the parameters �̂� is the value of the vector which 

maximizes L. The monotonic transformation ln(L) is typically 

used as the objective function for convenience. For more 

detail on logit models and their estimation see Train [2]. 

The mixed logit, or random coefficients logit, model is 

similar to the logit model except the individual β’s are allowed 

to vary over the population to represent heterogeneous 

consumer preferences. In our case we assume that they are 

independently normally distributed: 

 𝛃~𝑁(𝛍, ∑)  (4) 

where ∑ is a diagonal matrix, and maximum likelihood 

estimates the elements of 𝛍 and ∑ using numerical integration 

[2]. This specification relaxes the IIA restriction. 

Our nested logit specification divides the vehicles into 

groups or nests by vehicle class and fits a logit model to each 

of the classes. We assume that the utility functional form is the 

same for each nest, but in this specification each nest can have 

a different coefficient value for a given attribute.  For 

example, the β for price will be different for midsize cars than 

it is for pickups. However, within a nest β is fixed. A nested 

logit exhibits the IIA property for products within a nest, but 

relaxes the IIA restriction for products in different nests. 

3.3 Evaluation Metrics 

After fitting each of the model specifications, we evaluate 

prediction error using the Kullback-Leibler divergence (KL) 

[62], the equivalent average likelihood (EAL) a cumulative 

distribution of error tolerance (CDFET), and the average share 

error (ASE), and we compare the goodness-of-fit across the 

Akaike Information Criterion (AIC) [63] and the Bayesian 

Information Criterion (BIC) [64]. Each of these metrics is 

described below. It should be noted that the KL divergence, 

EAL, CDFET, and ASE could also be used as goodness-of-fit 

metrics, but we use them only in the context of evaluating 

predictions, which is our primary focus. While the AIC and 

BIC could be used as goodness-of-prediction metrics, they 

were not designed for this purpose nor have the authors ever 

seen them used in this context. We compare models selected 

as best by these metrics to one another and to literature 

informed benchmark models. 

Goodness-of-prediction metrics 

Kullback-Leibler divergence (KL):  

 𝑲𝑳(𝐏||𝐐) = ∑ 𝒍𝒏 (
𝑷𝒊

𝑸𝒊
) 𝑷𝒊𝒊=𝟏:𝑵  (5)  
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where N is the number of outcomes, Pi is the observed 

probability of realizing outcome i and Qi is the predicted 

probability of outcome i. The Kullback-Leibler distance 

measures the difference between a predicted distribution and 

the true distribution. It represents the information lost when Q 

is used to approximate P, and it is a non-symmetric measure 

(the distance from P to Q is not the same as the distance from 

Q to P) [65]. It can take on any positive real value, and lower 

values of the metric- meaning there is less divergence between 

distributions - are preferred. If the hypothesized model is 

identical to the true model, then the Kullback-Leibler distance 

is zero [66]. It is the measure most closely related to the 

maximum likelihood because the value of the parameters 

which maximize the likelihood will tend towards the 

minimizer of the KL distance [66].  

Equivalent average likelihood (EAL):  

  𝑬𝑨𝑳 = 𝑳
𝟏

𝑵⁄  (6) 

where L is the likelihood and N is the number of outcomes. 

This metric “normalizes” likelihood to a single choice in the 

data by assessing the common likelihood one would have to 

achieve for each data point in order to generate the same net 

likelihood as the model. The EAL can take on real values 

between 0 and 1, and larger values are preferred. 

Note that the KL and EAL metrics will have different 

values for the same model, but they will rank a set of models 

identically (see Appendix D for proof). We provide both 

values in comparison tables so that the reader can get a sense 

of the intuitive meanings of both metrics, but the “KL-best-

model” is always identical to the “EAL-best-model”. 

Error tolerance CDF (CDFET): The absolute error between 

the actual share values and the predicted share values is 

calculated for each model, and the cumulative distribution 

function (CDF) of error is plotted. This can be used to 

compare models on the metric “If I’m willing to accept a share 

prediction error of 0.02%, for example, which model has the 

most predictions with error less than this amount”, or 

inversely “what tolerance band must I be comfortable with in 

order to capture 25% of the predictions the model made”. This 

metric evaluates a model in terms of various risk tolerance 

levels. We use absolute error as opposed to relative error 

because relative error overemphasizes prediction errors for 

vehicles with small market shares. 

Average share error 

  𝑨𝑺𝑬 =
 𝟏

𝑵
 ∑ |𝒔𝒊,𝒂𝒄𝒕𝒖𝒂𝒍 − 𝒔𝒊,𝒑𝒓𝒆𝒅𝒊𝒄𝒕𝒆𝒅|𝑵

𝒊=𝟏  (7) 

 where N is the number of outcomes, sactual is the observed 

share, and spredicted is the share predicted by the model. We 

report this as a summary statistic in the model comparison 

table but do not use it as a basis for “best model” selection 

because it does not holistically capture distribution 

divergence. It will not distinguish between a model with large 

error for one vehicle alternative vs. the same degree of error 

spread out among many vehicle alternatives. 

Goodness-of-fit metrics 

Akaike information criterion (AIC): 

 𝑨𝑰𝑪 = 𝟐𝒍𝒏(𝑳) − 𝟐𝒌 (8) 

where L is the likelihood and k is the number of model 

parameters. AIC can take on the value of any negative real 

number, has no standalone meaning, and is only useful as 

compared to the AIC of other candidate models fit to the same 

data set. Greater values of AIC are preferred.  

AIC is a variation on likelihood but penalizes overfitting. 

When more parameters are included in a function, the 

likelihood necessarily increases so that selecting a model 

based on likelihood will simply yield the model with the most 

parameters. The AIC rewards inclusion of variables that 

improve likelihood significantly, but it penalizes inclusion of 

extra variables that offer less information. Though this is not a 

guarantee that there is no overfitting, it helps to avoid 

selecting models which fit the data well but predict poorly 

[66].  

The AIC is inconsistent for large sample sizes because the 

log-likelihood will increase linearly with the number of 

observations while the penalty term is proportional to the 

number of parameters. Finite sample corrected AIC formulas 

do exist, but there is no proof that they apply to general 

likelihood models as opposed to linear regression and 

autoregressive models [66].  

Bayesian information criterion (BIC):  

 𝑩𝑰𝑪 = 𝟐𝒍𝒏(𝑳) − 𝒍𝒏(𝑵) ∗ 𝒌 (9) 

where L is the likelihood, N is the number of outcomes, and k 

is the number of model parameters. The BIC is similar to the 

AIC but with a stronger penalty for increasing numbers of 

covariates. The BIC corrects the inconsistency in the AIC, but 

the AIC is more efficient. Greater values of BIC are preferred 

[66]. Derivations and consistency proofs for the KL, AIC and 

BIC metrics can be found in [66]. 

4. RESULTS 

Of the 9,000 tested utility function specifications, for 8,927 

(99%) Matlab’s fminunc algorithm converged to likelihood-

maximizing coefficients. 72 returned an exit flag indicating 

possible convergence and 1 failed to converge. Only the 8,927 

models which successfully converged were considered as 

candidate models. The candidate models were ranked from 

best to worst on each of the metric dimensions discussed in the 

evaluation metrics section. There were no models with 

identical values of any metric (no ties). In the following results 

“best models” refer to the models ranked as number one for a 

given metric. 

4.1 Metric Comparison 

The traditional goodness-of-fit metrics- LL/KL/EAL and 

AIC, BIC - select the same “best” model when evaluated on 

the estimation data set. Furthermore they select the same 

model as “best” when applied to the prediction data set, 

though the best estimation model and best prediction model 

are different.  The goodness-of-prediction CDFET metric 

selects distinct models for the best model at the error tolerance 
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bar levels of 25%, 50% and 75%. These three models are also 

distinct from the best estimative and predictive models under 

the AIC, BIC, and KL/EAL criteria.  

Figure 1 is the CDF of the error tolerance for the best 

models. The x-axis is the absolute difference between the 

predicted share and the actual share and the y-axis is the 

proportion of make-model share predictions which have an 

error less than the corresponding value on the x-axis. For 

example, in Figure 1 the point (0.25%, 75%) indicates that 

75% of the share predictions made by the model deviate from 

the observed share by less than 0.25%. The “no info” line is 

calculated by assigning an equal share to all vehicles and 

represents the case where no model is used to inform 

predictions. The class line is the model which includes only 

class dummies. The static line is a model which assumes that 

2007 make-model shares were held constant from their 2006 

values and all vehicles introduced in 2007 received an equal 

proportion of the remaining market. From Figure 1 we can see 

that for low error tolerance levels, all of the best models 

perform similarly (the CDF lines are nearly on top of one 

another) and no model clearly dominates another (lies to the 

left of the other curves over a significant range in the figures). 

The best attribute-driven models outperform no-info 

predictions for more than 80% of vehicles and outperform the 

class only model for all vehicles. This result validates that 

attribute-driven models are predictively superior to making 

random guesses or simple metrics like vehicle class. However, 

all of the attribute driven models are inferior to the static 

model, suggesting that for this data set the best predictor of the 

future is assuming it is identical to the past. 

Figure 2 is the CDF of the error tolerance for the worst 

models, instead of the best. The worst models all perform 

similarly to one another and essentially match the class only 

model. While a model could be posed that predicts worse than 

the no-info model, we do not observe it in our utility 

specifications. Comparing the best and worst model groupings 

to the class only model across the figures reveals that the best 

models do predict at least marginally better than the worst 

models. 

The best models and worst models differ most noticeably 

in their omission of covariates. The best models include some 

form of almost every covariate, whereas the worst models 

omit covariates entirely. For example, the worst model as 

selected by the AIC and KL metrics applied to the estimated 

data only contains the covariates price and class. Conversely, 

if we compare only models that contain some form of price, 

operating cost, acceleration, size covariates and class and 

brand dummies (style, luxury and automatic transmission 

dummies could be excluded), then we see no practical 

difference in the predictive power of the best and worst 

models. The models’ predictive power is robust to attribute 

functional form but is sensitive to the exclusion of attributes. 

See Appendix E for selected model coefficients estimates.  

Because it is difficult to understand implications of small 

share variations at the make-model level, we show the vehicle 

class shares predicted by each of the best predictive models 

and each of the worst predictive models as selected by the 

metrics, as well as the no-info and class only models’ 

predicted shares, and compare them to the actual vehicle class 

shares in Figure 3. These are obtained by summing the 

individual vehicle shares over each class. We see that even 

though the AIC/BIC/KL and CDFET metrics select different 

best models, the variation in the share predictions is small at 

the vehicle class level. Furthermore even if the worst models 

are used, at this level of aggregation it does not result in a 

large discrepancy. The biggest difference in class share 

prediction for the best and worst models is between the “Best 

75th percentile” and “Worst 75th percentile” models for the 

pickup class, a difference of about 3.9%. The greatest 

deviation from the actual class share is in the “Best 

AIC/BIC/KL” model for the SUV class with a difference of 

about 4.8%. Comparing the best and worst models to the class 

only model it appears that much of the predictive power in 

these sets is due to the vehicle class dummies as they have 

similar share breakdowns as the class only model. Notably, all 

of the models predict better at the class level than the no 

information model. 

 

 
FIGURE 1-THE METRICS SELECT MODELS THAT 

PREDICT BETTER THAN THE CLASS-ONLY AND NO-
INFORMATION MODELS FOR LOW ERROR TOLERANCES 

 
FIGURE 2- THE WORST MODELS AS SELECTED BY THE 

METRICS PREDICT BETTER THAN THE NO-INFORMATION 
MODEL FOR LOW ERROR TOLERANCES BUT ONLY AS 

WELL AS MODELS WITH CLASS DUMMIES ONLY 
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FIGURE 3- VEHICLE CLASS MARKET SHARE FOR BEST AND WORST MODELS COMPARED TO CLASS ONLY AND  
NO-INFORMATION MODELS AND ACTUAL CLASS MARKET SHARE

4.2 Mixed logit, nested logit, and segment 

specifications 

Using each of the utility functions from the best estimative 

and best predictive logit models, we fit mixed and nested logit 

models as described in the methodology section. Figure 4 

compares results for these structural specifications. Due to 

computational limitations, we did not run all 9,000 utility form 

combinations for the mixed and nested logit structural 

specifications. Rather we used the results from the logit model 

output to inform our tested combinations.   

We see in Figure 4 that the mixed and nested logit 

specifications do not predict market share meaningfully better 

than the logit model. While models with more parameters 

(mixed logit) and models that mitigate the IIA substitution 

pattern (mixed logit and nested logit) have the potential to 

perform better, the cases tested do not appear to offer any 

substantial predictive benefits in this case.  

Appendix F contains plots of actual versus predicted shares 

for the best predictive logit model functional form for (1) a 

model fit to 2006 data used to predict 2007 and (2) a model fit 

directly to 2007 data. We carry out these alternative 

experiments to verify that there was not a fundamental shift in 

consumer attitudes that occurred in 2007 and that our 

prediction quality is not sensitive to the number of years of 

data used to estimate the model. We see no meaningful 

difference in the 2007 prediction quality between the models 

fit to 2004-2006 data, 2006 data only, and 2007 data only. We 

interpret this as confirmation that our results are not artifacts 

of the data set we tested. Additionally, the poor prediction 

quality even when the logit model is fit to the 2007 data itself, 

which is the most informative data set possible for 2007 

predictions, confirms that the major source of error in 

prediction is error in fit. Without data on missing covariates 

that influence choice, such as vehicle aesthetics, it is difficult 

to explain choice behavior at the make-model level with only 

the available covariates. Future work will examine alternative-

specific constants and model calibration to address these 

discrepancies. See Appendix G for mixed and nested logit 

coefficient estimates. 

We repeated the process of fitting the 9,000 utility function 

model alternatives to 2004-2006 midsize vehicles only. When 

the data set is pared to include only midsize vehicles the 2007 

midsize vehicle prediction quality improves significantly (see 

Appendix F). Similarly to the full data set models, the midsize 

models that included all covariates showed no significant 

difference in prediction quality. The improvement in 

prediction quality at the segment level suggests that while 

these models may not be well suited to describing or 

predicting market share for a broad market of products that 

have a wide range of characteristics, they may nevertheless be 

useful for designing vehicles with a narrower portfolio of 

competitors. 

 
FIGURE 4- THE MIXED LOGIT AND NESTED LOGIT 

STRUCTURAL SPECIFICATIONS PREDICT NO BETTER 
THAN THE LOGIT SPECIFICATION WHEN ALL THREE ARE 

FIT USING THE UTILITY FUNCTIONAL FORM FROM THE 
BEST AIC/BIC/KL PREDICTIVE LOGIT MODEL 
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5. CONCLUSIONS 

In the literature review section we posed the questions 

“How widely do predictions vary based on utility function 

specification?” as well as “How can we quantify share 

prediction error, and do different evaluation metrics lead to 

different selections of the ‘best predictive model?’” In 

examining the CDF plots, the vehicle class market share 

predictions, and the actual versus predicted share plots in 

Appendix F there is not much distinction in error between 

models selected based on alternative metrics. Models that 

perform well on each metric also tend to perform well on the 

other metrics, and models that perform poorly on one metric 

also tend to perform poorly on the other metrics. In particular, 

the logit models selected by AIC and BIC metrics (based on 

the fit data) have comparable forecast error to those with the 

best predictive metrics. Share predictions are sensitive to the 

presence of utility covariates but less sensitive to the form of 

those covariates. Furthermore, all of the models are superior to 

the no-information model (which assumes equal share for all 

vehicle alternatives), so that while all models have error, any 

model that we tested is better than random guessing. The 

worst models omitted covariates entirely while there was not 

much difference in prediction quality among models which 

included all of the covariates in a variety of functional forms.  

In the methodology section we posed the questions “What 

model would we have selected from 2004-2006 as the ‘best’ 

based on goodness-of-fit if we didn’t yet have the 2007 data? 

If we had selected that model, how well would we have done 

in predicting 2007?” and “Which model predicts 2007 shares 

best based on metrics of forecast accuracy?” In Appendix E  

the goodness-of-fit selection metrics and goodness-of-

prediction selection metrics used in this paper do not vary 

significantly across the models selected by each. This suggests 

that a goodness-of-fit selection criterion (which is known at 

the time of model estimation) may be sufficient for selecting a 

model for prediction. More work is needed to assess if this 

result can be generalized to different periods and forecast 

horizons. 

We find that with no information (predicting all models 

have equal share of 0.42%), 70% of the share predictions have 

error greater than 0.2% (an error of about 33,000 vehicles sold 

for 2007). In contrast, in the best models 30% of share 

predictions have error greater than 0.2%. The level of 0.2% 

was chosen as an example, and can be evaluated at other 

cutoff points to reflect a designer’s error tolerance. The more 

flexible mixed and nested logit models did not offer 

meaningful improvements for the new vehicle market using 

the types of covariates that have been used in the literature, 

although we only examined mixed logit models with diagonal 

covariance matrices. We caution that these types of models 

may not be well suited to predict vehicle shares for new design 

or policy evaluation [7,9–11] and that these same limitations 

may apply to other product design domains which use discrete 

choice models [4–6]. Reducing the data set to include only 

midsize vehicles improved the predictive capabilities of the 

model. Consequently we would recommend designers 

carefully consider the scope of research questions and test 

predictive accuracy before using choice models to inform 

design decisions.  Access to other vehicle attribute information 

and/or consumer covariates could improve share predictions. 

6. LIMITATIONS 

Our investigation is a first step in a larger goal of 

characterizing prediction uncertainty in discrete choice 

models. We are concerned primarily with utility function 

specification using vehicle attributes in the context of 

multinomial logit, (diagonal) mixed logit, and nested logit 

models. All of our models have error resulting from 

misspecification and missing information. For example, we 

use manufacturer suggested retail price (MSRP) data to 

represent vehicle price, even though transaction prices tend to 

be lower due to negotiation. We also lack information on 

attributes that are important in some vehicle classes (like 

towing capacity for trucks), and we lack information and 

quantification of some key purchase drivers, such as 

aesthetics. We lack individual-level choice data with 

consumer covariates, such as demographics or usage variables 

[9], which can help explain choice behavior and improve 

predications when predictions of future population covariates 

are available. Nevertheless, such limitations are common in 

choice models used to assess the vehicle market or guide 

design choices, and our aim is to better understand the 

implications of these choices and the accuracy of resulting 

models. More research is needed to assess a wider scope of 

modeling alternatives, such as methods for handling price 

endogeneity (instrumental variables), model calibration (with 

alternative-specific constants), alternative estimation methods 

(e.g.: generalized method of moments, Bayesian methods), 

alternative heterogeneity specifications (e.g.: latent class 

models, full covariance mixed logit models, mixture models, 

and generalized logit models that account for scale and 

coefficient heterogeneity [67]).  

The framework of our study uses random utility discrete 

choice models that treat consumers as rational utility 

maximizers whose utility function can be partly observed by 

the modeler. While this is a popular approach to modeling 

consumer choice, there are key criticisms of its basic 

assumptions. For instance, Axsen and Kurani discuss how 

preferences change over time [68]  and change with cultural 

symbolism [55] and social interactions [69]. Furthermore, 

MacDonald et al. suggest that consumers’ preferences for  

attributes do not exist a-priori but rather that products are 

evaluated on a case by case basis [56]. Morrow et al. [10] and 

others have suggested that vehicle choice behavior may be 

better represented by a consider-then-choose model where 

consumers do not maximize their utility over the universe of 

available choices but rather screen all choices to narrow them 

down to a reasonable subset over which utility maximization 

applies. And more broadly, the Lucas critique warns against 

use of aggregated historical data to predict outcomes in 

counterfactual future scenarios [70]. More disaggregated 

modeling of individual-level behavior may mitigate these 

effects.  
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APPENDIX A 

Predictions of new vehicle market shares over the next 40 

years vary wildly. 

 

Figs. 5-8 plot predictions in vehicle market shares from 

five selected studies (EIA Annual Energy Outlook 2011 [13], 

CET Electric Vehicles in the United States- A model with 

Forecasts to 2030 [71], PNNL Plug-in Hybrid Electric Vehicle 

Market Penetration Scenarios [72], EPRI Environmental 

Assessment of PHEVs [73], and ORNL Future Potential of 

Hybrid and Diesel Powertrains in the US Light-Duty Vehicle 

Market [74]). The point estimates represent the base case and 

the error bars represent the range of predictions over 

sensitivity cases (if any). Because of the myriad of 

assumptions and variations in methodology, these predictions 

are not shown on the same plot as to avoid inviting 

comparisons of comprehensive future vehicle market 

landscapes; each prediction should be viewed as a singular 

data point that a report proposes may be realized at the 

moment in time shown. 

 

 

FIGURE 5 – CONVENTIONAL VEHICLE (CV) SHARE OF 
ANNUAL NEW VEHICLE PURCHASES 

 

FIGURE 6 – HYBRID ELECTRIC VEHICLE (HEV) SHARE OF 
ANNUAL NEW VEHICLE PURCHASES 

 

 

 

 

FIGURE 7 – PLUG-IN HYBRID ELECTRIC (PHEV) SHARE 
OF ANNUAL NEW VEHICLE PURCHASES 

 

 

FIGURE 8 – ELECTRIC VEHICLE (EV) SHARE OF ANNUAL 
NEW VEHICLE PURCHASES 

 
Note: Abbreviations key- (EIA) Annual Energy Outlook 2011 [13]; (CET) 

Electric Vehicles in the United States- A model with Forecasts to 2030 [71]; 

(PNNL) Plug-in Hybrid Electric Vehicle Market Penetration Scenarios [72]; 
(EPRI) Environmental Assessment of PHEVs [73]; (ORNL) Future Potential 

of Hybrid and Diesel Powertrains in the US Light-Duty Vehicle Market [74] 
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APPENDIX B 

Comparison of predictive and explanatory vehicle demand literature 

  
Author type Goal Study 

Author (Individual or Institute) Year 

A
c
a
d

e
m

ic
 

G
o

v
e
rn

m
e
n
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O
th

e
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re
s
e
a
rc

h
 

(s
e
e
 n

o
te

 1
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C
o

n
s
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m
 

E
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n

a
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ry
 

P
re

d
ic

ti
v
e
 

R
e
p

ro
d

u
c

ib
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fr
o

m
 

d
o

c
u

m
e
n

ta
ti

o
n

 

P
e
e
r-

re
v
ie

w
e
d

 
jo

u
rn

a
l 

p
u

b
li
c
a
ti

o
n

 

U
s
e
s
 d

is
c
re

te
 

c
h

o
ic

e
 m

o
d

e
l 

Lave and Train [16] 1979 x 
   

x 
 

x x x 

Boyd and Mellman [17] 1980 
   

x x 
 

x x x 

Berry et al. [22] 1995 x 
   

x 
 

x x x 

Dagsvik et al. [31] 1996 
 

x 
  

x 
 

x 
 

x 

McCarthy [34] 1996 x 
   

x 
 

x x x 

Brownstone and Train [27] 1999 x 
   

x 
 

x x x 

Electric Power Research Institute [75] 2001 
  

x 
 

x 
   

See note 2 

Choo and Mokhtarian [45] 2004 x 
   

x 
 

x x x 

Oak Ridge National Laboratory [74] 2004 
 

x 
   

x x 
 

x 

Greene et al. [33] 2005 
 

x 
  

x 
 

x x x 

Electric Power Research Institute [73] 2007 
  

x 
  

x 
  

See note 2 

Train and Winston [37] 2007 x 
   

x 
 

x x x 

National Research Council of the National 

Academies [76] 
2008 

  
x 

  
x 

   

Pacific Northwest National Laboratory [72] 2008 
 

x 
   

x 
  

See note 3 

Center for Entrepreneurship and Technology 

(UC Berkeley) [71] 
2009 x 

    
x 

   

Dagsvik and Liu [32] 2009 
 

x 
  

x 
 

x x x 

Lin and Greene [77] 2009 
 

x 
   

x x See note 4 x 

Vance and Mehlin [38] 2009 x 
   

x 
 

x 
 

x 

Frischknecht et al. [8] 2010 x 
   

x 
 

x x x 

Argonne National Laboratory [78] 2011 
 

x 
  

x 
 

x 
 

x 

Electric Power Research Institute [79] 2011 
  

x 
  

x 
   

Energy Information Administration [13] 2011 
 

x 
   

x x 
 

x 

Musti and Kockelman [80] 2011 x 
   

x 
 

x x x 

Zhang et al. [46] 2011 x 
   

x 
 

x x x 

Whitefoot and Skerlos [11] 2012 x 
   

x 
 

x x x 

Note: 1.) Independent research agencies may receive government funding; 2.) Report indicates that model was “choice based market model” but is not explicit about 

model type; 3.) Model is an extension of the ORNL 2004 [74] report, so it is at least partially based on choice modeling but extension methodology is not explicitly 

described; 4.) Published in conference proceedings 
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APPENDIX C 

 Literature discrete choice model survey 

 

Demand covariates 

Lave 

1979 

[16] 

Boyd 

1980 

[17] 

Berry 

1995 

[22] 

Dagsvik 

1996 

[31] 

Mc-

Carthy 

1996 

[34] 

Brown

-stone 

1999 

[27] 

ORNL 

2004 

[74] 

ANL 

2005 

[81] 

Greene 

2005 

[33] 

Train 

2007 

[37] 

Dagsvik 

2009 

[32] 

Vance 

2009 

[38] 

Frischk-

necht 2010 

[8] 

EIA 

AEO 

2011 

[13] 

Musti 

2011 

[80] 

Zhang 

2011 

[46] 

White-

foot 

2012 

[11] 

Price                                   

price 

 

x 

 

x 

  

x x x x 

   

x x 

 

x 

price +  

fuel cost/50000mi 
 

x 
               

ln(income-price) 
  

x 
              

price/ln(income) 

     

x 

           
levels of price 

               
x 

 
income-price/month 

          
x 

      
price/income x 

   
x 

    
x 

 
x x 

    
(price/income)^2 x 

                
2 year retained value 

         
x 

       
Operating cost                                   

fuel cost/mi (cost/km) x 
   

x x x x 
   

x 
 

x 
   

mi/fuel cost (km/cost) 
  

x 
              

mpg (L/km) 
 

x 
 

x 
             

1/mpg 
         

x x 
 

x 
   

x 

levels of mpg 
               

x 
 

levels of miles/charge 
               

x 
 

NPV of fuel savings 
        

x 
        

Maintenance cost                                   

repair rating 
 

x 
               

battery replacement $ 
       

x 
     

x 
   vehicle and battery maintenance 

$ 

      

x 

     

x 

   
Acceleration                                   

hp (kw) 

    

x 

    

x x x 

     
hp/wt 

  

x 

   

x 

  

x 

  

x 

   

x 

wt/hp 

 

x 

               
f(hp/wt) 

             

x 

   
known seconds 

     

x 
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Demand covariates 

Lave 

1979 

Boyd 

1980 

Berry 

1995 

Dagsvik 

1996 

Mc-

Carthy 

1996 

Brown

-stone 

1999 

ORNL 

2004 

ANL 

2005 

Greene 

2005 

Train 

2007 

Dagsvik 

2009 

Vance 

2009 

Frischk-

necht 2010 

EIA 

AEO 

2011 

Musti 

2011 

Zhang 

2011 

White-

foot 

2012 

Other performance                                   

handling rating 
 

x 
               

range 
     

x 
           

1/range 
      

x x 
     

x 
   

top speed 
   

x 
 

x 
 

x 
         

Size                                   

length 
    

x 
            

width 

         

x 

       
length-width 

         
x 

       
length*width 

  
x 

        
x x 

   
x 

(len*wid)^2-2*len*wid 
            

x 
    

luggage space relative CV 
   

x 
 

x 
     

x 
   

# of seats x 
         

x 
      

Constant                                   

constant 
  

x 
   

x 
          

Intangibles                                   

style: 

(length+width)/height 

 

x 

               
luxury: noise rating 

 

x 

               luxury: dummy A/C 
standard 

  

x 

              
safety: dummy crash-test rating 

   

x 

            quality: consumer satisfaction 

rating 
   

x 
            quality: reliability 

rating 

         

x 

       transmission: dummy 
auto is standard 

         

x 

       
Manufacturer                                   

indicator of country of 

origin 

    

x 

    

x 

 

x x 

    
indicator of firm 

    
x 

    
x 

       
Power train                                   

indicator for power source(s) 
  

x 
 

x 
    

x 
 

x x x x 
 pollution relative to 

CV 

     

x 
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Demand covariates 

Lave 

1979 

Boyd 

1980 

Berry 

1995 

Dagsvik 

1996 

Mc-

Carthy 

1996 

Brown

-stone 

1999 

ORNL 

2004 

ANL 

2005 

Greene 

2005 

Train 

2007 

Dagsvik 

2009 

Vance 

2009 

Frischk-

necht 2010 

EIA 

AEO 

2011 

Musti 

2011 

Zhang 

2011 

White-

foot 

2012 

Vehicle class                                   

class indicator like 

compact, sedan, etc. x 

   

x x x 

 

x x 

 

x x 

 

x x 

 sub class indicator like 
small, standard, luxury x 

     

x 

          
External environment                                   

fuel availability: indexed to CV 

     

x x 

     

x 

   
fuel availability: proportion of stations that can refuel 

  

x 

           fuel availability: dummy for can refuel at 

home 
     

x 
     

x 
   make-model availability relative 

to CV 

            

x 

   fraction vehicles equipped to be home or reserve 
power 

    

x 

         policy incentive (HOV lane exemption, rebate, etc.) or penalty 

(tax) 
   

x x 
  

x 
     

Usage                                   

commute 
     

x 
           

household size x 
    

x 
      

x 
 

x 
  number of household 

vehicles x 

             

x 

  
population density 

    

x 

       

x 

 

x 

  
geographic location 

    

x 

            
vehicle miles traveled x 

                
Demographics                                   

age x 

  

x x 

    

x 

    

x 

  
gender 

   

x 

          

x 

  
education x 

    

x 

           income (not interacted 
with price) x 

             

x 

  
Transaction                                   

search process 

    

x 

    

x 

       
financing 

         

x 

       

Data source SP RP RP SP SP SP RP 

RP/S

P RP SP SP RP RP N/A SP SP N/A 

Note: for “N/A” data sources expert elicitations or literature surveys were used; SP stands for “stated preference” and RP stands for “revealed preference”, CV stands for conventional vehicle, HOV 

stands for high occupancy vehicle (carpool)
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APPENDIX D 
The Kullback-Leibler and Equivalent Average Likelihood 

Metrics will rank models identically 

If we write KL from Equation 5 and EAL from Equation 6 

as in Equation 10 we can see that it consists of a constant k 

which is a function of the data itself less the natural log of the 

EAL. Since this is a monotonic transformation, both will result 

in the same rankings. 

 𝑲𝑳(𝑷||𝑸) = ∑ 𝒍𝒏 (
𝑷𝒊

𝑸𝒊
) 𝑷𝒊𝒊=𝟏:𝑵  (5) 

   

 𝐸𝐴𝐿 = 𝐿
1

𝑁⁄  (6) 
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APPENDIX E 
Estimated coefficients and evaluation metrics for selected models 

with discussion 

For each of the covariates listed in the coefficient table, a 

numerical value in the row indicates that the covariate was 

included in the utility function and the value is the coefficient 

estimate; the blank covariate rows for each model indicate that 

the covariate was not included in the specification. The “brand 

dummies included” row contains an “x” if the 36 brand 

dummies were estimated, but they are not listed for brevity. 

The magnitude of the covariates was generally on the order of 

one. All of the coefficients were statistically significant at the 

two-tailed α=0.01 level. 

Price- The price coefficients for all of the model specifications 

was negative as expected. 

Operating cost- Two of the models returned a negative 

coefficient sign for “mi./fuel cost”. We would initially expect 

this coefficient to be positive, meaning consumers prefer 

greater values of the covariate or to be able to drive more 

miles for less money. However, the negative signs occur only 

when the price form also includes the operating cost. The 

operating cost coefficient acts as a modifier in this case, and 

the coefficients must be viewed together, not separately, for 

interpretation. 

The positive coefficient for “gal./mi.” in the case of the 

“Best AIC/BIC/KL predictive model” is also unexpected as it 

indicates that consumers prefer lower fuel economy. This is 

potentially related to consumer preference for larger cars, but 

we partially control for that with the inclusion of class 

dummies and a size covariate, both of which are present in this 

model. It also may be related to the preference for higher 

performance. We partly control for this with the inclusion of 

acceleration metrics, but the simple hp/wt metrics may not 

capture all performance issues important to the consumer that 

are negatively correlated with fuel economy (such as towing 

capacity, 0-60mph acceleration time, 0-30mph time, 30-

60mph time, top speed, all-wheel drive, etc.). 

Acceleration- All of the signs are as expected for all of the 

acceleration forms (f(hp/wt) monotonically increases as the 

ratio of hp/wt increases). 

Size- A size covariate is included in all but one of the best 

models, and it only appears in the form (length*width). The 

positive sign indicates that consumers prefer larger cars when 

vehicle class is controlled for. 

Style- Larger values of the covariate represent cars which are 

relatively lower to the ground as compared to their footprint, 

e.g. a sports car would be expected to have a larger value of 

this covariate than a sedan. The best models give mixed 

estimations on the sign of the coefficient. 

Luxury (A/C dummy) and transmission (standard auto 

dummy)- When included these coefficients are small, though 

statistically significant, so the impact of either on the utility is 

minimal. 

Manufacturer- All of the best models include the 36 brand 

dummies. Even AIC and BIC rank models with these 

additional covariates included despite the metrics’ penalties 

for overfitting. 

Class- Class dummies were necessarily included in all of the 

model specifications, meaning there was no combination 

tested that did not include them. The van dummy was omitted 

for identification, so all of the class coefficient estimates 

represent the utility consumers derive from choosing a vehicle 

in the respective class over a van. For all of the literature and 

best models, the coefficients on SUV, luxury SUV and pickup 

are always positive, whereas for other classes they are of 

mixed sign. 
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Table E.1- Coefficient estimates for selected logit models 

      Literature informed models 
Best estimation 

set fit Best prediction set fit 

    Covariate units 
BM-A 
like BM-B/C like BLP-like 

Whitefoot-
like AIC/BIC/KL/EAL AIC/BIC/KL/EAL 

CDFET 
25th 

percentile 

CDFET 
50th 

percentile 

CDFET 
75th 

percentile 

Cost to consumer                       
PRICE                       

price 
 

10k $ -0.38 
  

-0.47     -0.42 -0.47 
 price+$/50000mi 

 
10k $ +10k $/50k mi   -0.28 

  
-0.44 -0.40 

  
-0.34 

ln(price) 
 

ln(10k $)   
 

-1.65 
 

    
   Operating                       

$/mi 
 

$/10 mi   
   

    
   mi/$ 

 
10 mi/$   

 
7.46 

 
-5.67   

  
-7.37 

mpg 
 

10 mi/gal 0.03 
   

    
   gal/mi 

 
gal/10 mi   

  
-48.09   27.15 -39.61 

  Performance                       
Acceleration                       

hp/wt 
 

hp/10 lbs   
 

1.50 1.46 1.04   
 

0.92 
 wt/hp 

 
10 lbs/hp -0.48 -0.40 

  
    

   f(hp/wt) 
 

exp(hp/wt)   
   

  2.76 
   hp 

 
hp   

   
    0.00 

 
0.00 

Size                       
Physical                       

length 
 

ft   
   

    
   width 

 
ft   

   
    

   length-width 
 

ft   
   

    
   length*width 

 
100 sq-ft   

 
5.69 6.42 8.45 5.20 7.80 4.78 

 Intangibles                       
Style                       

(length*width)/height 
 

100-ft 23.21 22.68 
  

-19.87   -17.85 
 

15.55 
Luxury                       

a/c std 
 

1   
 

0.11 
 

0.00   
   Transmission                       

automatic std. 
 

1   
   

0.02   -0.11 
  Manufacturer                       

geographical (US, Asia, Europe) 
  

  
   

    
   Europe 

 
1   

   
    

   Asia 
 

1   
   

    
   brand dummies included 

 
1   

   
x x x x x 

Class dummies                       
compact 

 
1 -0.28 -0.46 1.30 1.35 2.78 2.04 2.59 2.26 0.72 

fullsize 
 

1 -0.95 -1.18 0.92 0.60 2.04 1.15 2.01 1.27 -0.29 
luxury sedan 

 
1 -1.15 -1.51 0.86 0.67 2.68 1.90 2.64 1.98 0.17 

luxury SUV 
 

1 0.54 0.37 1.30 1.43 1.65 1.34 1.57 1.37 0.66 
midsize 

 
1 -0.22 -0.44 1.63 1.44 2.88 2.04 2.86 2.17 0.55 

minivan 
 

1 0.00 -0.23 0.90 0.68 1.23 0.92 1.28 1.10 0.24 
pickup 

 
1 0.67 0.56 1.44 1.39 1.85 1.52 1.83 1.54 0.87 

sports 
 

1 -1.80 -2.05 0.40 0.33 1.84 0.89 1.70 0.85 -1.17 
SUV 

 
1 0.33 0.10 1.51 1.45 2.09 1.76 2.08 1.83 0.69 

Total number of covariates     13 12 14 13 52 49 51 48 49 
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Table E.2- Metrics for selected logit models 

      Literature informed models 
Best estimation 

set fit Best prediction set fit 

Metric 

Min. value 
over all 
models 

Max. value over all 
models BM-A like 

BM-B/C 
like BLP-like 

Whitefoot-
like AIC/BIC/KL/EAL AIC/BIC/KL/EAL 

CDFET 
25th 

percentile 

CDFET 
50th 

percentile 

CDFET 
75th 

percentile 

ESTIMATION SET 
  

  
   

  
    AIC (10e7) -5.2524 -4.9917 -5.1950 -5.2024 -5.1688 -5.1509 -4.9917 -5.0064 -4.9970 -5.0053 -5.0300 

BIC (10e7) -5.2524 -4.9917 -5.1950 -5.2024 -5.1688 -5.1509 -4.9917 -5.0064 -4.9970 -5.0053 -5.0300 
KL 0.1933 0.4572 0.3991 0.4066 0.3726 0.3545 0.1933 0.2082 0.1987 0.2071 0.2320 
EAL 0.0049 0.0064 0.0052 0.0052 0.0053 0.0054 0.0064 0.0063 0.0064 0.0063 0.0061 

ASE 0.0020 0.0031 0.0029 0.0029 0.0028 0.0028 0.0020 0.0021 0.0021 0.0021 0.0022 
PREDICTION SET 

  
  

   
  

    KL 0.2499 0.5016 0.4294 0.4287 0.4112 0.3921 0.2644 0.2499 0.2742 0.2641 0.2892 
EAL 0.0046 0.0059 0.0049 0.0049 0.0050 0.0051 0.0058 0.0059 0.0058 0.0058 0.0057 

ASE 0.0024 0.0033 0.0030 0.0030 0.0030 0.0029 0.0025 0.0024 0.0025 0.0024 0.0025 
CDF cutoff 

  
  

   
  

    Within 25% 0.0004 0.0010 0.0007 0.0007 0.0007 0.0007 0.0004 0.0004 0.0004 0.0005 0.0004 

Within 50% 0.0011 0.0022 0.0019 0.0020 0.0019 0.0016 0.0013 0.0012 0.0012 0.0011 0.0013 

Within 75% 0.0026 0.0043 0.0037 0.0038 0.0038 0.0036 0.0031 0.0030 0.0029 0.0029 0.0026 

Within 100% 0.0251 0.0365 0.0345 0.0342 0.0296 0.0284 0.0264 0.0269 0.0273 0.0271 0.0280 

 

1.) Boyd and Mellman A (BM-A) includes price, gal/mi, repair rating, (len+wid)/hei, hp/wt, noise rating and handling rating; Boyd and Mellman B (BM-B) includes price + fuel cost/50000 miles, 

repair rating, (len+wid)/hei, hp/wt, and noise rating, Boyd and Mellman C (BM-C) is the same as BM-B but also includes a handling rating; BLP includes a constant, ln(income-price), hp/wt, len*wid, 

a dummy for air conditioning as a standard feature, miles/fuel cost, and an alternative specific constant; Whitefoot includes price, gallons/mile, hp/wt, len*wid and an alternative specific constant 

2.) The AIC, BIC, KL, and EAL metrics select the same model “best model” so they are included as one column in the table 

3.) All coefficients are statistically significant at the α=.01 level 

4.) US geographical dummy is excluded for identification 

5.) Van dummy is excluded for identification 

6.) There are 36 brand dummies so for conciseness the coefficient estimates are not included in this table, but an "x" in the "brand dummies included" row indicates that they were estimated as part of 

the model; the Acura brand dummy is excluded for identification 

7.) The boxed metrics indicate the metric value when it was the selection criterion for the model 
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APPENDIX F 

Actual versus predicted shares for the best AIC/BIC/KL 

predictive logit model for the entire data set and for the 

midsize vehicle segment only 

 

In all of the figures the solid line represents the space 

where the predicted share would be identical to the actual 

share. In Figure 9 - Figure 11 the offset dotted lines represent 

a prediction error of +/- 0.2% and in Figure 12 the offset 

dotted lines represent a prediction error of +/-2%. Note that 

Figure 9 - Figure 11 use the utility function form from the best 

AIC/BIC/KL predictive model estimated on all 2004-2006 

data. Figure 12 uses the utility function form from the best 

AIC/BIC/KL predictive model estimated on midsize vehicle 

only 2004-2006 data. 

 
FIGURE 9 – PREDICTION ACCURACY (3 YR): ACTUAL 

VERSUS PREDICTED 2007 SHARE FOR THE BEST 
AIC/BIC/KL PREDICTIVE LOGIT MODEL ESTIMATED ON 

2004-2006 DATA 

 
FIGURE 10 – PREDICTION ACCURACY (1 YR): ACTUAL 

VERSUS PREDICTED 2007 SHARE FOR THE BEST 
AIC/BIC/KL PREDICTIVE LOGIT MODEL ESTIMATED ON 

2006 DATA 

 
FIGURE 11 – MODEL FIT: ACTUAL VERSUS PREDICTED 

2007 SHARE FOR THE BEST AIC/BIC/KL PREDICTIVE 
LOGIT MODEL ESTIMATED ON 2007 DATA 

 

FIGURE 12 – PREDICTION ACCURACY (3 YR, MIDISZE): 
ACTUAL VERSUS PREDICTED MIDSIZE VEHICLE 2007 

SHARE FOR THE BEST AIC/BIC/KL MIDSIZE PREDICTIVE 
LOGIT MODEL ESTIMATED ON 2004-2006 DATA 
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APPENDIX G 

Selected results from mixed and nested logit model estimation 

The evaluation metrics are compared for logit, mixed logit, 

and nested logit models fit to 2004-2006 data and used to 

predict 2007 data.  The columns designated “Est.” represent 

the model fit using the utility functional form from the logit 

model with the best AIC/BIC/KL metrics calculated from the 

estimation data. Similarly, the columns designated “Pred.” 

represent the model fit using the utility functional form from 

the logit model with the best AIC/BIC/KL metrics calculated 

from the prediction data. The “estimation set” metrics are the 

metrics evaluated for each model on the 2004-2006 estimation 

data and the “prediction set” metrics are the metrics evaluated 

for each model on the 2007 prediction data. 

Table G.1- Logit, mixed logit and nested logit metric 

comparison 

  Logit Mixed logit Nested logit 

Metric Est. Pred. Est. Pred. Est. Pred. 

ESTIMATION SET            
AIC (10e7) -4.9917 -5.0064 -4.9911 -5.0063 -4.9916 -5.0070 
BIC (10e7) -4.9917 -5.0064 -4.9911 -5.0064 -4.9916 -5.0070 
KL 0.1933 0.2082 0.1927 0.2081 0.1932 0.2087 
EAL 0.0064 0.0063 0.0064 0.0063 0.0064 0.0063 
ASE 0.0020 0.0021 0.0020 0.0021 0.0020 0.0021 
PREDICTION SET 

     KL 0.2644 0.2499 0.2641 0.2500 0.3123 0.2764 
EAL 0.0058 0.0059 0.0058 0.0059 0.0056 0.0058 
ASE 0.0025 0.0024 0.0024 0.0023 0.0026 0.0025 

 

For the estimated coefficients shown, all models estimated 

use the utility function form from the best AIC/BIC/KL 

predictive model estimated on all 2004-2006 data, with a 

slight structural modification in the nested logit model. We 

have chosen the vehicle classes as the nests and they are 

incorporated by means of the λ parameter in Eq. 11 as opposed 

to representing them as class dummies in the utility function: 
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 (11) 

 

where j indexes the products, v is the observed utility of each 

product, the N represent nests, and the λ are the nest specific 

parameters to be estimated. In this formulation, no class needs 

to be excluded for identification. Any attribute coefficient for 

a given nest can be found by dividing the nominal mean 

nested logit coefficient in the table by the nest’s “class 

dummy”. This modified coefficient is comparable to the logit 

and mixed logit mean coefficients. 

 

 

Table G.2- Estimated coefficients for logit, mixed logit and 

nested logit models 

  Logit Mixed logit 

Nested 

logit 

  Mean Mean St. dev. 

Nominal 

mean 

Physical 

attributes         

price+$/50000mi -0.40 -0.40 0.00* -0.67 

gpm 27.15 26.57 1.20 60.50 

f(hp/wt)1 2.76 2.87 0.28* 3.37** 

length*width 5.20 5.19 1.04 7.76 

Class dummies         

compact 2.04 2.04 

 

1.76 

fullsize 1.15 1.16 

 

1.45 

luxury sedan 1.90 1.92 

 

1.80 

luxury SUV 1.34 1.35 

 

1.57 

midsize 2.04 2.06 

 

1.83 

minivan 0.92 0.93 

 

1.30 

pickup 1.52 1.53 

 

1.38 

sports 0.89 0.89 

 

1.47 

SUV 1.76 1.77 

 

1.54 

van 

   
0.50 

Brand dummies         

Audi -1.02 -1.02 

 

-1.80 

BMW 0.62 0.62 

 

0.88 

Buick 0.06 0.07 

 

-0.08 

Cadillac -0.17 -0.17 

 

-0.39 

Chevrolet 0.78 0.79 

 

1.01 

Chrysler 0.44 0.45 

 

0.53 

Dodge 0.65 0.66 

 

0.93 

Ford 1.14 1.14 

 

1.70 

GMC 0.11 0.11 

 

0.27 

Honda 1.08 1.08 

 

1.58 

Hummer -0.53 -0.52 

 

-0.87 

Hyundai 0.04 0.05 

 

-0.13 

Infiniti -0.41 -0.41 

 

-0.81 

Isuzu -2.08 -2.08 

 

-3.25 

Jaguar -1.50 -1.50 

 

-2.55 

Jeep 1.03 1.03 

 

1.34 

Kia -0.38 -0.38 

 

-0.79 

Land Rover -0.48 -0.48 

 

-0.87 

Lexus 0.11 0.12 

 

0.20 

Lincoln -0.69 -0.69 

 

-1.07 

Mazda -0.29 -0.28 

 

-0.59 

Mercedes 0.80 0.79 

 

1.14 

Mercury -0.54 -0.53 

 

-1.01 

Mitsubishi -0.84 -0.83 

 

-1.56 

Nissan 0.28 0.29 

 

0.30 

Oldsmobile -1.08 -1.05 

 

-1.91 

Pontiac 0.01 0.02 

 

-0.16 

Porsche 0.64 0.63 

 

1.03 

Saab -1.17 -1.18 

 

-2.12 

Saturn -0.07 -0.06 

 

-0.23 

Scion -0.34 -0.34 

 

-0.81 

Subaru -0.17 -0.15 

 

-0.41 

Suzuki -1.38 -1.37 

 

-2.58 

Toyota 0.80 0.81 

 

1.16 

Volkswagen -0.15 -0.15 

 

-0.52 

Volvo -0.80 -0.80   -1.35 

Note: All parameters are significant at the α=0.01 level except 

starred parameters 

*Not significant 

**Significant at the α=0.10 level 
1 f(hp/wt)=exp(c1*(hp/wt)^c2) where c1= -0.00275 and c2= -

0.776 as in the EIA Annual Energy Outlook 2011 [13] 


