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Robust Design for Profit
Maximization With Aversion
to Downside Risk From
Parametric Uncertainty
in Consumer Choice Models
In new product design, risk averse firms must consider downside risk in addition to
expected profitability, since some designs are associated with greater market uncertainty
than others. We propose an approach to robust optimal product design for profit maximi-
zation by introducing an a-profit metric to manage expected profitability vs. downside
risk due to uncertainty in market share predictions. Our goal is to maximize profit at a
firm-specified level of risk tolerance. Specifically, we find the design that maximizes the
a-profit: the value that the firm has a (1� a) chance of exceeding, given the distribution
of possible outcomes. The parameter a [ (0,1) is set by the firm to reflect sensitivity to
downside risk (or upside gain), and parametric study of a reveals the sensitivity of opti-
mal design choices to firm risk preference. We account here only for uncertainty of choice
model parameter estimates due to finite data sampling when the choice model is assumed
to be correctly specified (no misspecification error). We apply the delta method to esti-
mate the mapping from uncertainty in discrete choice model parameters to uncertainty of
profit outcomes and identify the estimated a-profit as a closed-form function of decision
variables for the multinomial logit model. An example demonstrates implementation of
the method to find the optimal design characteristics of a dial-readout scale using con-
joint data. [DOI: 10.1115/1.4007533]

Keywords: design for market systems, delta method, logit, design optimization, robust
design, design under uncertainty, discrete choice model

1 Introduction

Over the last three decades, a significant portion of the new
product development (NPD) literature has been dedicated to the
integration of engineering design and marketing processes for dif-
ferentiated markets. Simple models to determine the most profita-
ble characteristics of a single new product [1,2] have progressed
to account for issues such as product-line design and preference
heterogeneity [3–7], competitor reactions [8–10], cost structure
[11,12], distribution channels [9,13–16], choice-set-dependent
preferences [17], and coordination with constrained engineering
design decisions [18–26].

As Hsu and Wilcox [27] argue, the trend toward estimating
marketing models at lower levels of aggregation that are more
structural2 in consumer behavior representation (as opposed to
high-level macro supply and demand equations) has led to models
with many parameters and consequently greater uncertainty of
those parameters. However, despite the advances in NPD meth-
ods, the research has not given much consideration to the intrinsic
parameter uncertainty of the demand models. Demand uncertainty
directly affects the risk of introducing a new product into the mar-
ket, and firms evaluate potential projects not only in terms of
expected return, but also in terms of risk.

The purpose of this work is threefold. First, we define a robust
a-profit metric and propose a general framework to incorporate

demand uncertainty arising from choice model parameter estima-
tion into the design decision process such that it accounts for vary-
ing risk tolerance profiles. Second, we apply the delta method to
approximate the a-profit function in closed-form for multinomial
logit (MNL) choice models to be used efficiently in numerical
optimization routines. Finally, we show how ignoring demand
uncertainty can lead to suboptimal decisions for risk averse firms.

We do not intend to consider all the various sources of demand
model uncertainty [28], and several questions will remain open. In
particular, we assume the discrete choice model is correctly speci-
fied and ignore uncertainty due to model misspecification, and we
assume that the model parameters do not change over time or
from the context in which the data were collected to the context in
which predictions will be made. Nevertheless, the proposed meth-
odology can be useful, and it serves as a step in addressing design
for profit maximization under demand model uncertainty.

This paper begins by discussing the relevant literature on prod-
uct design, pricing under uncertainty and incorporation of firm
risk tolerance in Sec. 2. Section 3 describes the proposed method-
ology for finding optimal designs for varying levels of tolerated
product profit uncertainty and applies it to multinomial logit
demand models. Section 4 presents an example application using
the multinomial logit demand model to determine the optimal
attributes of a dial-readout bathroom scale from the literature for
different levels of risk aversion. Section 5 discusses conclusions,
limitations, and future work.

2 Literature Review

Demand uncertainty is caused by several factors such as prefer-
ence dynamics [29], demand model misspecification [30,31],
choice context [32,33], response variability [34,35], and sampling
errors associated with the estimation procedure [36]. As a result,

1Corresponding author.
2“Econometric models that are based explicitly on the consumer’s maximization

problem and whose parameters are parameters of the consumers’ utility functions or
of their constraints are referred to as structural models.” [52]
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several researchers have considered the impact of demand uncer-
tainty on optimal pricing strategies [29,30,37,38]. However, in
contrast to prices, design decisions are difficult to change post
hoc, especially in durable-goods markets. Products with high
start-up capital costs can have virtually unchangeable characteris-
tics, and producers are incentivized to consider demand uncer-
tainty during the initial stages of the design process (e.g., car
manufacturers invest a significant portion of capital up front in
production equipment, and changing a characteristic such as the
footprint of a car leads to very high costs).

Hazelrigg [39] proposed applying von Neumann-Morgenstern
[40] utility theory as the frame for selecting among competing
design alternatives by taking the firm’s profit (net present value) as
the sole design objective and using a firm-level (single-attribute)
utility function to manage risk of uncertain profit outcomes. This
decision-based design (DBD) framework and its variants have been
explored and implemented in subsequent literature (e.g., Ref. [41]),
some of which has applied discrete choice models to predict
demand as a function of product attributes (e.g., Refs. [19,42]).

The use of firm utility functions to describe risk preference has
advantages. In particular, specifying a utility function over profit
outcomes is a flexible approach, accounting for risk sensitivity
over the entire distribution of outcomes. However, in practice a
firm’s utility function can be difficult to identify. This is in part
because firm preferences do not necessarily satisfy utility axioms
(e.g., ability to express consistent, transitive preferences over all
possible outcomes); managers are not accustom to specifying util-
ity functions or answering lottery questions consistently; and it is
not straightforward to assess uncertainty caused by error and mis-
specification of the firm’s utility function3. Indeed, firm utility
functions in the DBD literature are typically fictitious or left
unspecified (e.g., Refs. [19,43]).

We take an alternative approach, instead asking the decision-
maker to specify a single parameter a to represent risk preference
and then conducting parametric studies to help the decision-maker
understand how the optimal design changes with different choices
of a. The main restriction is that we assess the distribution of
profit outcomes at a single critical point, rather than assessing the
entire distribution. However, the advantages include (1) closed-
form solutions that enable efficient optimization; (2) improved
intuition and ease of managerial interpretation and specification;
and (3) ease of parametric study to understand the sensitivity of
design choices to risk preference.

We are interested in uncertain profit outcomes that result from
uncertainty in product demand predictions. Several authors have
addressed product demand uncertainty resulting from variation in
engineering design model parameters (e.g., due to manufacturing
variability or usage conditions) [19,21,36,39]. Two of these publi-
cations also account for uncertainty in the marketing model pa-

rameters: Luo et al. [36] and Besharati et al. [21], and both model
this uncertainty using intervals.

In particular, Luo et al. [36] use the parameter covariance ma-
trix of part-worth utility point estimates to obtain 95% confidence
intervals around the point estimates from the design parameter
best- and worst-case scenarios for a set of product alternatives
under consideration. The greatest utility under the best-case sce-
nario and lowest utility under the worst-case scenario within the
confidence interval are compared to the similarly constructed esti-
mates of utility for competitor products. The highest own-utility is
compared to the sum of the lowest competitor-utilities and vice
versa to construct interval estimates of market shares (these no
longer represent statistical confidence intervals for market share).
They then use pair-wise comparisons to eliminate dominated
alternatives (defined as alternatives that have a best-case market
share worse than an alternative’s worst-case market share, per-
form worse on worst-case performance, and have higher perform-
ance variability). All nondominated designs are then considered
for prototyping and further subjective evaluation.

Besharati et al. [21] use a framework similar to Luo et al. [36],
but they change the optimization criteria arguing that looking for
the best performance on the worst-case condition might be too
conservative. Alternatively, they replace the design objectives of
worst-case performance and performance variability with multi-
objective optimization of nominal performance characteristics.
The marketing model is also treated as a multi-objective optimiza-
tion problem of maximizing nominal market share and minimiz-
ing the market share variance (penalizing both positive and
negative variation) resulting from uncertainty in both engineering
design parameters and part-worth utility estimates. Finally, they
develop a ranking system for pair-wise comparison of designs on
the design and marketing criteria.

Hsu and Wilcox [27] use the estimation error associated with
the parameter estimates to find the stochastic market share predic-
tion in a multinomial logit framework. They use a simulation-
based approach for approximating the distribution efficiently.

Table 1 compares the above papers that consider the uncer-
tainty in demand model parameters as a source of demand uncer-
tainty and positions our contribution against this prior work. We
address variance of profit estimates but do not seek to minimize it
as a means to improve robustness because profit uncertainty is
harmful to a firm only in the negative tail—i.e., when product
demand is less than expected – and we avoid penalizing uncer-
tainty that could lead to higher than expected profits.

We apply an a-profit metric in conjunction with discrete choice
models as a means to incorporate firm risk tolerance into the new
product design optimization process. This allows us to develop a
framework to find optimal product characteristics and price in a con-
tinuous domain, instead of requiring a discrete set of product alterna-
tives; and in contrast to Luo et al. [36] and Besharati et al. [21], we
can treat demand uncertainty as a continuous probability distribution
instead of representing it as an interval. We use the delta method to
derive a closed-form approximation for points on the market share
distribution, since a simulation-based approach such as the one used

Table 1 Papers that consider choice model parameter uncertainty as a source of demand uncertainty

References Treats demand uncertainty as Design attributes Design objective(s)

Hsu and Wilcox [27] Probability distribution of market
share obtained by simulation

NA NA

Luo et al. [36] Interval estimates of market shares obtained
using 95% confidence levels for the utility function

Discrete —Maximize nominal market share
—Minimize performance variance
—Maximize worst-case performance

Besharati et al. [21] Interval estimates of market shares obtained using
95% confidence levels for the utility function

Discrete —Maximize nominal share
—Minimize share variance
—Maximize nominal performance

This paper Probability distribution of market share estimated
by delta method

Continuous —Maximize profit at specified downside
risk tolerance level

3Though it is possible to conduct sensitivity analysis on the parameters defining
the firm’s utility function, misspecification of functional form remains, and interpre-
tation of parametric sensitivity is generally cumbersome.

100901-2 / Vol. 134, OCTOBER 2012 Transactions of the ASME



by Hsu and Wilcox [27], though efficient for estimating the stochas-
tic distribution of a single design, would be computationally expen-
sive and noisy when used as an intermediate function in a numerical
optimization loop. Our framework focuses on demand models
derived from random utility theory, particularly MNL models [44].

The a-profit methodology can be extended to multinomial pro-
bit (MNP) [45], mixed logit (MIXL) [46], and generalized logit
(G-MNL) [47] models; however, any functional forms that require
numerical simulation to compute may be computationally burden-
some and introduce potential numerical issues when embedded
within an optimization loop.

3 The Proposed Methodology

We want to find the characteristics of a new product in order to
maximize a firm’s profit; however, the uncertainty present in the
demand model parameter estimates will result in uncertainty
about predicted market share and resulting predicted profit, which
we model as a distribution of potential profit outcomes for each
design alternative. (A similar framework can also be used for
maximizing alternative objective functions, such as market share.)

3.1 General Mathematical Formulation. Our goal is to find
the design whose predicted profit distribution maximizes the a-
profit: the value below which less than an a fraction of the cumu-
lative profit distribution falls. The parameter a is set by the firm to
reflect sensitivity to downside risk (or upside gain), and paramet-
ric study of a reveals the sensitivity of optimal design choices to

firm risk preference. We define the a-profit paj ðb̂;XÞ as the value

of the profit distribution at level a [ (0,1) for product j�f1; 2;…Jg
given the column vector of random variables b̂ � Nð�b;RÞ that
define the choice model parameter estimates and the values of the
n attributes (including price) for each of the J products available

in the market X ¼ x1;…; xj;…; xJ
� � 2 RJ�n. Specifically, if p̂j is

a random variable with cumulative distribution function Fp̂jb̂;XðpÞ
representing the distribution of profit outcomes conditional on b̂

and X, then paj ðb̂;XÞ is the maximum value of pj for which

Fp̂jb̂;XðpÞ � a, i.e., for which Prðp̂j < pjÞ � a (see Fig. 1). If

Fp̂jb̂;XðpÞ is continuous and invertible, then paj b̂;X
� �

¼ F�1
p̂jb̂;XðaÞ.

Our objective is to find the product attributes and price that
maximize the robust profit given the a level that reflects firm sen-
sitivity to downside risk. That is, we seek the robust optimal
new product characteristics xa�j at level a, where xa�j
¼ argmaxxj paj ðb̂;XÞ

� �
; i.e., xa�j is the design that maximizes the

value of profit that the model predicts a (1� a) chance of exceed-
ing. For illustration, Fig. 2 shows the probability density function
of profit for two alternative designs. Design 1 is preferred over
design 2 when optimizing for the expected value of profit. How-
ever, design 1 has more downside risk, and a risk averse firm opti-
mizing for the a-profit with small a would prefer design 2.

Defining for product j the random variable describing the distri-
bution of market share outcomes, ŝj; market share at level a, saj ;
price, pj; variable cost, cj ¼ fVCðxjÞ; fixed cost, Cj, and total
market size, m; we have p̂j ¼ m pj � cj

� �
ŝj � Cj and paj¼ m pj � cj

� �
saj � Cj. Assuming that there is no uncertainty on

product price and costs and that pj> cj:

Pr p̂j < paj

� �
¼ Pr m pj � cj

� �
ŝj < m pj � cj

� �
saj

� �
¼ Pr ŝj < saj

� �
(1)

Therefore

Pr p̂j < paj
� �

� a , Pr ŝj < saj

� �
� a (2)

In the Secs. 3.2–4.3, we will show how to find the robust opti-
mal new product attributes, as defined in this section, for the
MNL demand model, given uncertainty in the estimated
parameters.

3.2 Application to Multinomial Logit Demand Model. We
apply the proposed methodology to the MNL model [44] for sev-
eral reasons: (1) it is among the most simple discrete choice model
specifications, permitting closed-form choice probabilities and
closed-form expressions for alpha profit in our applications; (2) it
is the most widely used discrete choice model broadly and within
the NPD literature specifically [14,48,49], due to its closed-form
choice probabilities and interpretability [50]; and (3) several dis-
crete choice models evolved from MNL, such as MIXL and G-
MNL, and a better understanding of how uncertainty affects NPD
under MNL models may be useful in understanding the effects of
uncertainty under its variants. For the purposes of this paper, we
assume that the model is correct and that the uncertainty arises
from the parameter estimation and not model misspecification.

In a multinomial logit model, given some competitive set of J
products, the predicted market share sj for product j can be com-
puted as

sj vð Þ ¼ evjPJ
k¼1

evk
(3)

where v ¼ v1;…; vJð Þ is the vector of observable utility point esti-
mates of the respective products and the no-choice option (outside
good) is not included.

The utility function is often specified to be linear in parameters:
vk ¼ bTxk, resulting in predicted market share sj(X) for product
j 2 1;…;Nf g :

sj Xð Þ ¼ eb
Txj

PJ
k¼1

eb
Txk

(4)

Ignoring constant fixed costs without loss of generality, in a
multinomial logit demand model the predicted profit pj can be
computed as

Fig. 1 a-profit shown for (a) probability density function of
profit and (b) cumulative distribution function of profit

Fig. 2 Expected profit vs. downside risk: the expected profit
for design 1 is higher than the expected profit for design 2
(p1>p2); however, design 2 has a higher profit at the a-level than
design 1 (pa2>p

a
1)

Journal of Mechanical Design OCTOBER 2012, Vol. 134 / 100901-3



pj Xð Þ ¼ m pj � cj
� �

sj Xð Þ ¼ m pj � cj
� � eb

Txj

PJ
k¼1

eb
Txk

(5)

The classical practice is to use maximum-likelihood methods to
estimate the parameters b in multinomial logit models [27]. Train
[50] notes that the estimates are easily obtained since the log-
likelihood function is concave for linear utility specifications, and
Wooldridge [51] proves that the maximum-likelihood estimator b̂
is asymptotically normally distributed with distribution
b̂ � N �b;R

� �
, where �b is the vector of means and R is the covari-

ance matrix, implying that v̂j � Nð�bTxj; xTj RxjÞ.
The exact distribution of ŝj is unknown, but the delta method

enables analytic approximation of a transformed distribution using
a linear approximation of the mapping function. This frees us
from the computational burden of simulating a market share dis-
tribution for each choice of product attributes in the optimization
loop, as would be required by the method in Hsu and Wilcox [27].
The delta method states that any function of a normally distributed
random variable (in this case the estimated parameters) converges
asymptotically to a normal distribution (see Ref. [51] for proof).
The delta method relies on a Taylor series expansion of the map-
ping function g. If the function of the expected value of the pa-
rameters is gð�bÞ, then g b̂

� �
ffi g �b
� �þrg �b

� �
b̂� �b
� �

where
rg bð Þis a row vector. The mean and variance of gðb̂Þ can be cal-
culated as

E g b̂
� �h i

ffi E g �b
� �þrg �b

� �
b̂� �b
� �h i

¼ g �b
� �

(6)

Var g b̂
� �h i

ffi Var g �b
� �þrg �b

� �
b̂� �b
� �h i

¼ Var g �b
� �þrg �b

� �
b̂�rg �b

� �
�b

h i
¼ Var rg �b

� �
b̂

h i
¼ rg �b

� �
Var b̂
h i

rg �b
� �T

¼ rg �b
� �

Rrg �b
� �T

(7)

As with any linear approximation to a nonlinear function, the
approximation may lead to significant distortion of the function
outside the neighborhood of gð�bÞ.

The quantity of interest ŝj is itself a function of b̂, but
sj 2 ð0; 1Þ, which does not match the domain of the normal distri-
bution. Instead, we select the intermediate function
g bð Þ ¼ ln 1=sj � 1

� � 2 ð�1;þ1Þ so that it has the same domain
as a normal distribution and so that in the case of a monopolistic
single-product firm with an outside good, the approximation leads
to the exact distribution of g bð Þ.

g bð Þ ¼ ln
1

sj
� 1

� 	
¼ ln

PJ
k¼1

eb
Txk

eb
Txj

� 1

0
BB@

1
CCA ¼ ln

X
k2Jnj

eb
T xk�xjð Þ

0
@

1
A
(8)

By the delta method, we know that

g b̂
� �

�a N g �b
� �

;rg �b
� �

Rrg �b
� �T� �

(9)

Since

rg bð Þ ¼

P
k2Jnj

xk � xj
� �

eb
Txk

P
k2Jnj

eb
Txk

(10)

we can approximate the variance of g for any given X. See
Appendix A for details and Appendix B for formulation when an
outside good is present. Because

ŝj < saj , 1

ŝj
� 1

� 	
>

1

saj
� 1

 !
, g b̂

� �
> ln

1

saj
� 1

 !

(11)

we can calculate

Pr ŝj < saj

� �
¼ a , Pr g b̂

� �
> ln

1

saj
� 1

 ! !
¼ a (12)

Normalizing the right hand equation

) Pr
g �b
� �� g b̂

� �
rg �b
� �

Rrg �b
� �T� �1

2

<

g �b
� �� ln

1

saj
� 1

 !

rg �b
� �

Rrg �b
� �T� �1

2

0
BBBB@

1
CCCCA ¼ a (13)

Since

g �b
� �� g b̂

� �
rg �b
� �

Rrg �b
� �T� �1

2

0
B@

1
CA�a N 0; 1ð Þ (14)

The probability expression is the cumulative distribution of a
standard normal, thus

Pr ŝj < saj

� �
¼ a , U

g �b
� �� ln

1

saj
� 1

 !

rg �b
� �

Rrg �b
� �T� �1

2

0
BBBB@

1
CCCCA ¼ a (15)

where U is the cumulative distribution function of the standard
normal distribution. Solving for saj

saj ¼ 1þ exp g �b
� �� U�1 að Þ rg �b

� �
Rrg �b

� �T� �1
2

 ! !�1

(16)

Equation (16) enables a modeler to compute the estimated market
share at the a risk level as a closed-form deterministic function of
the decision variables using only the mean �b and covariance ma-
trix R defining the choice model parameter estimates. Both �b and
R are available from standard estimation procedures. The a-profit
can then be computed as paj ¼ m pj � cj

� �
saj � Cj. In the special

case of a monopolistic single-product firm, this framework leads
to the exact distribution of g(b), since

g b̂
� �

¼ ln e�b̂Txj
� �

¼ �b̂Txj � N ��bTxj;rg �b
� �

Rrg �b
� �T� � (17)

which is identical to the delta method approximation in Eq. (9).
Figure 3 illustrates the mapping for a model with a single parame-
ter showing the normal distribution of the estimated model coeffi-
cient b̂, the resulting distribution of gðb̂Þ, its normally distributed
approximation via the delta method, and the resulting distribution
of ŝj and its (non-normal) approximation via the delta method.

As a result of the delta method formulation, the distribution of
ŝj depends on the variance of gðb̂Þ, which depends on !g.

100901-4 / Vol. 134, OCTOBER 2012 Transactions of the ASME



Because !g is proportional to
P

k2Jnj xk � xj
� �T

eb
Txk , the distri-

bution of ŝj is influenced by the distance of the new product’s
attributes from each of the attributes of existing products. All else
being equal, greater differentiation implies higher uncertainty in
market share predictions for the logit specification.

When an outside good is included in the problem formulation,
the variance of g(b) additionally depends on the differences
between the firm’s product attributes and the reference vector 0
(see Appendix C for details). This is problematic because the ref-
erence level can be arbitrarily chosen. As an example, for a set of
products with a temperature attribute, the variance of g(b) differs
when temperature is measured in Kelvin with reference level 0K
versus measured in Celsius with reference level 273K, even
though a consumer would not perceive a difference in the product.
The form of the logit model imposes a structure of increased
uncertainty with distance from competitor attribute levels, and
these levels are not meaningful with an outside good. For this rea-
son, the method is recommended only for markets with no outside
good, as in the example application.

4 Example Application

In this section, we examine the application of the proposed
method to the optimal design of a dial-readout bathroom scale for
a manufacturer using an engineering model and choice-based con-
joint data from the literature [20]. It is assumed that the manufac-
turer is operating as a single-product firm and that it only
competes with one other product. For consistency with the origi-
nal notation of the example, we use x here to refer to the engineer-
ing design variables that define the product and z(x) to refer to
product attributes observable by the customer.

4.1 Demand Side. Using the data from Michalek et al. [20],
a conjoint survey was administered to 184 respondents. Each re-
spondent was presented with 50 choice sets, consisting of three
hypothetical analogue bathroom scales represented by the con-
sumer attributes weight capacity, platform aspect ratio (ratio of
length to width), platform area, gap between weight interval tick
marks (readability), number size (weight reading), and price. In
each choice set, the respondents selected which one of the three
scales they would purchase or if they would not purchase any of the
three (outside good option). The full data set consists of 184
respondents� 50 choice set responses per person for a total of 9200
choices—enough to identify logit model parameters with high cer-
tainty. We compare these highly certain results to a smaller data set
of 250 choice observations, where the 50 choice set responses from
five of the 184 respondents are randomly selected4.

In the conjoint survey the six explanatory variables were pre-
sented to respondents at five discrete levels spanning the space of
values under consideration (Table 2).

In order to select an appropriate utility function form specifica-
tion, we begin by estimating a part-worth model. By visual

inspection we choose an appropriate polynomial for each (linear
in model parameters but not necessarily in attributes—see Appen-
dix D for plots). Area and price are assumed linear while all other
attributes are modeled as quadratic. If this model is misspecified,
there will be additional uncertainty associated with model predic-
tion, but we assume here correct specification and focus on uncer-
tainty of parameter estimates due to missing data. Using the
maximum-likelihood method for coefficient estimation, we obtain
the results in Table 3. The attributes have been scaled for optimi-
zation stability and efficiency.

In the case of n¼ 250 choice observations, the constant,
capacity, capacity2, aspect ratio, aspect ratio2, and price are statis-
tically significant at the 0.01 level and number size is significant
at the 0.05 level. The resulting utility curves for E[b] are plotted
on top of the utility curves resulting from 500 draws of b from the
multivariate normal distribution in Appendix D.

The information matrix obtained from the maximum-likelihood
optimization problem is shown in Table 4. In the case of
maximum-likelihood estimators, the information matrix is also

Fig. 3 Illustration of probability distribution functions and their approximations
using the delta method

Table 2 Product characteristic and price levels

Desc. Metric Unit Levels

Capacity Weight causing a 360 deg
dial turn

Lbs 200 250 300 350 400

Aspect ratio Platform length divided
by width

— 6/8 7/8 8/8 8/7 8/6

Area Platform length times width in.2 100 110 120 130 140
Gap Distance between 1-lb

tick marks
in. 2/32 3/32 4/32 5/32 6/32

Number size Length of readout number in. 0.75 1.00 1.25 1.50 1.75
Price US dollars $ 10 15 20 25 30

Note: Source—Michalek et al. [20].

Table 3 Multinomial logit model coefficients

n¼ 250 n¼ 9200

Product attribute z Coef. Std. Error t-stat Coef. Std. Error t-stat

Constant �21.49 4.24 �5.07 �12.95 0.59 �22.08
Capacity/100 5.16 1.51 3.42 2.94 0.21 13.92
(Capacity/100)2 �0.76 0.24 �3.10 �0.45 0.03 �12.95
Aspect ratio 15.74 5.62 2.80 10.42 0.81 12.93
(Aspect ratio)2 �8.22 2.72 �3.02 �5.44 0.39 �14.00
Area/100 0.50 0.67 0.74 0.05 0.10 0.50
Gap*10 2.46 1.50 1.64 2.43 0.22 10.87
(Gap*10)2 �0.77 0.58 �1.31 �0.80 0.09 �9.14
Number size 5.42 2.49 2.18 4.84 0.36 13.62
Number size2 �1.48 0.95 �1.57 �1.49 0.14 �10.82
Price/10 �0.71 0.14 �5.20 �0.79 0.02 �39.51

4Results vary depending on which respondents are drawn.
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the variance-covariance matrix R of the estimators b̂ (see Ref.
[51] for proof).

4.2 Supply Side. Following Michalek et al. [20], a scale is
represented by 14 engineering design decision variables x, which
map to the product attributes z observed by the consumer. Price is

included directly as a consumer attribute. Tables 5 and 6 list these
variables and the x to z mapping functions. A vector of engineer-
ing design parameters y, which is used in the mapping and optimi-
zation constraint functions, is included in Table 7.

The marginal cost to the manufacturer per scale is taken as $3.
Manufacturing equipment and economies of scale are omitted for
simplicity, as cost modeling is not the focus of this paper (see
Michalek et al. [20] for a discussion of cost considerations in this
problem).

4.3 Optimization Results. The new scale is optimized
according to the following formulation:

maximize paj ¼ m pj � cj
� �

saj � Cj

with respect to design decision variables xj
subject to g(xj):
g1 � g20: Simple bounds given in Table 5
g21 : x12 � x14 � 2y1
g22 : x12 � x13 � 2y1 � x7 � y9

Table 4 Coefficient variance-covariance matrix for n5 250 estimation data points

b_const b_cap. b_cap^2 b_asp b_asp^2 b_area b_gap b_gap^2 b_num b_num^2 b_price

b_const �17.97 3.89 �0.63 15.56 7.45 �0.68 �0.98 0.36 �4.48 1.66 �0.02
b_cap. �3.89 2.27 �0.37 0.30 �0.13 0.07 0.01 0.00 0.45 �0.17 0.00
b_cap^2 0.63 �0.37 0.06 �0.06 0.03 �0.01 0.00 0.00 �0.07 0.03 0.00
b_asp �15.56 0.30 �0.06 31.57 �15.23 �0.02 �0.84 0.31 �0.15 0.08 0.00
b_asp^2 7.45 �0.13 0.03 �15.23 7.42 0.02 0.42 �0.16 0.00 �0.02 0.00
b_area �0.68 0.07 �0.01 �0.02 0.02 0.45 0.02 �0.01 0.07 �0.03 0.00
b_gap �0.98 0.01 0.00 �0.84 0.42 0.02 2.24 �0.86 0.00 0.01 0.00
b_gap^2 0.36 0.00 0.00 0.31 �0.16 �0.01 �0.86 0.34 0.02 �0.01 0.00
b_num �4.48 0.45 �0.07 �0.15 0.00 0.07 0.00 0.02 6.19 �2.34 �0.02
b_num^2 1.66 �0.17 0.03 0.08 �0.02 �0.03 0.01 �0.01 �2.34 0.90 0.01
b_price �0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 �0.02 0.01 0.02

Table 5 Engineering and marketing design variables

Variable and description Lower bound Upper bound

Marketing variables
z1 Weight capacity 200 lbs 400 lbs.
z2 Aspect ratio 0.75 1.33
z3 Platform area 100 in.2 140 in.2

z4 Tick mark gap 1/16 in. 3/16 in.
z5 Number size 0.75 in. 1.75 in.
p Price $5.00 $35.00

Engineering variables
x1 Length from base to force on long lever 0.125 in. 21 in.
x2 Length from force to spring on long lever 0.125 in. 21 in.
x3 Length from base to force on short lever 0.125 in. 24 in.
x4 Length from force to join on short lever 0.125 in. 18.175 in.
x5 Length from force to joint on long lever 0.125 in. 18.175 in.
x6 Spring constant 1.00 lb./in. 200 lbs./in.
x7 Distance from base edge to spring 0.50 in 12 in.
x8 Length of rack 1.00 in. 16.2 in.
x9 Pitch diameter of pinion 0.25 in. 24 in.
x10 Length of pivot’s horizontal arm 0.50 in. 1.9 in.
x11 Length of pivot’s vertical arm 0.50 in. 1.9 in.
x12 Dial diameter 1.00 in. 25 in.
x13 Cover length 5.55 in. 19 in.
x14 Cover width 7.4 in. 25 in.

Note: Adapted from Michalek et al. [20].

Table 6 Product attributes as a function of engineering design
variables

Product attribute z f(x)

z1 (capacity)
4px6x9x10 x1 þ x2ð Þ x3 þ x4ð Þ
x11 x1 x3 þ x4ð Þ þ x3 x1 þ x5ð Þð Þ

z2 (aspect ratio) x13/x14
z3 (platform area) x13*x14

z4 (tick mark gap) p*(x12/z1)
z5 (number size) 2 tan

py11
z1

� �
x12
2
� y10ð Þ

1þ 2
y12

tan py11
z1

Note: Adapted from Michalek et al. [20].

Table 7 Optimization problem parameters

Name Description Value Units

y1 Gap between base and cover 0.30 in.
y2 Minimum distance between spring and base 0.50 in.
y3 Internal thickness of scale 1.90 in.
y4 Minimum pinion pitch diameter 0.25 in.
y5 Length of window 3.00 in.
y6 Width of window 2.00 in.
y7 Distance between top of cover and window 1.13 in.
y8 Number of lb measures per tick mark 1.00 lb
y9 Horizontal distance between spring and pivot 1.10 in.
y10 Length of tick markþ cap to number 0.31 in.
y11 Number of lbs that number length spans 16.00 lb
y12 Aspect ratio of number (length/width) 1.29 —
y13 Minimum allowable distance of lever at base to centerline 4.00 in.

Note: Adapted from Michalek et al. [20]
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g23 : x4 þ x5ð Þ � x13 � 2y1
g24 : x5 � x2
g25 : x7 þ y9 þ x11 þ x8 � x13 � 2y1
g26 : x8 � x13 � 2y1ð Þ � x12

2
þ y7

� �� x7 � y9 � x10
g27 : x1 þ x2ð Þ2� x13 � 2y1 � x7ð Þ2þ x14�2y1

2

� �2
g28 : x1 þ x2ð Þ2� x13 � 2y1 � x7ð Þ2þy213
where

saj ¼ 1þ exp g �b
� �� U�1 að Þ rg �b

� �T
Rrg �b

� �� �1
2

� 	� 	�1

g bð Þ ¼ ln
X
k2Jnj

eb
T xk�xjð Þ

0
@

1
A

cj ¼ 3 zðxkÞ ¼ 200 0:75 140 0:1875 1:75 5½ 	 (18)

MATLAB’s fmincon function was used to solve the problem, and the
results are summarized in Table 8. In this example, we define the
competitor product as comprised of a set of selected attributes
from their respective feasible intervals. Consumers choose to buy

Table 8 Optimal product characteristics for several a-levels (n5 250)

Market share (%) Normalized profit ($)

a
z1 Cap
(lbs)

z2 Asp.
ratio

z3 Area
(in.2)

z4 Gap
(in.)

z5 Num.
size (in.)

p Price
($) saa E[ŝ]b paa

paa for argmax
(E[p̂]) E[p̂]b

10% 272 1.05 140 0.115 1.35 20.89 29.4 46.7 5.26 4.79 8.36
20% 277 1.06 140 0.113 1.34 22.32 32.5 44.6 6.28 5.96 8.61
30% 280 1.06 140 0.112 1.32 23.49 34.8 42.8 7.12 6.92 8.76
40% 282 1.06 140 0.111 1.32 24.61 36.6 41.0 7.92 7.81 8.87
50% 284 1.06 140 0.110 1.31 25.77 38.4 39.2 8.73 8.69 8.93
60% 286 1.06 140 0.110 1.31 27.04 40.0 37.3 9.62 9.62 8.96
70% 288 1.06 140 0.109 1.30 28.55 41.7 35.0 10.67 10.65 8.95
80% 289 1.07 140 0.109 1.30 30.55 43.6 32.2 12.02 11.88 8.86
90% 292 1.07 140 0.108 1.29 33.81 46.0 27.8 14.18 13.59 8.56
Max E[p̂]b 285 1.06 140 0.110 1.31 27.47 — 36.7 — — 8.97

aCalculated using the delta method approximation.
bCalculated using Monte Carlo simulation.

Fig. 4 CDF of profit distribution illustrating that different
designs are preferred for a5 0.10 versus a5 0.90 and maximum
expected profit for coefficients estimated using n5 250 data
points

Table 9 Engineering characteristics for the a5 10% and a5 90% optimal products

Variable and description a¼ 0.1 a¼ 0.9 Exp. value Lower bound Upper bound

Marketing variables
z1 Weight capacity 272 292 285 200 lbs 400 lbs.
z2 Aspect ratio 1.05 1.07 1.06 0.75 1.33
z3 Platform area 140 140 140 100 in2 140 in2

z4 Tick mark gap 0.12 0.11 0.11 0.0625 in. 0.1875 in.
z5 Number size 1.35 1.29 1.31 0.75 in. 1.75 in.
p Price 20.89 33.81 27.47 $5.00 $35.00

Engineering variablesa

x1 Length from base to force on long lever 6.19 5.60 5.82 0.125 in. 21 in.
x2 Length from force to spring on long lever 5.87 6.53 6.28 0.125 in. 21 in.
x3 Length from base to force on short lever 13.84 6.73 13.81 0.125 in. 24 in.
x4 Length from force to join on short lever 3.70 4.25 3.61 0.125 in. 18.175 in.
x5 Length from force to joint on long lever 2.40 2.17 2.45 0.125 in. 18.175 in.
x6 Spring constant 48.66 11.74 20.27 1 lb/in. 200 lbs./in.
x7 Distance from base edge to spring 0.50 0.50 0.50 0.50 in 12 in.
x8 Length of rack 6.11 6.16 6.19 1.00 in. 16 in.
x9 Pitch diameter of pinion 0.69 1.50 1.91 0.25 in. 24 in.
x10 Length of pivot’s horizontal arm 0.91 1.24 0.83 0.50 in. 1.9 in.
x11 Length of pivot’s vertical arm 1.32 1.10 1.38 0.50 in. 1.9 in.
x12 Dial diameter 9.95 10.03 10.00 1.00 in. 25 in.
x13 Cover length 12.15 12.23 12.20 5.55 in. 19 in.
x14 Cover width 11.53 11.45 11.48 7.4 in. 25 in.

aOptimal engineering variables are nonunique. See Ref. [20] for discussion. Adapted from Michalek et al. [20]
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the new scale or the existing product on the market. A single-
competitor market could represent the choice a consumer faces at
a store that stocks only two options due to shelf-space limitations,
and the two-option scenario mitigates issues with independence
from irrelevant alternatives (IIA) restrictions to substitution pat-
terns [50].

Because optimization results are independent of the constants
for fixed cost C and market size m we report the normalized profit,
defined as sj(pj� cj), which represents profit for a market size of
one and fixed cost of zero. Profit for other values of these con-
stants can be computed from the normalized profit post hoc. It
should be noted that determining the correct market size is nontri-
vial and a subject of study in the marketing discipline.

Table 8 reveals that as the firm moves away from a risk neutral
position (max E[p̂]), either becoming more risk averse (lower a-
values) or more risk seeking (high a-values), the expected value
of profit decreases. The firm is sacrificing the expected value of
profit in order to improve profit at the a-level (e.g., to reduce
downside risk for small a). The table also shows the results of
maximizing the expected value of profit (labeled max E[p̂])
using a numerical simulation of the profit distribution with
50,000 draws from the beta distribution (predrawn to improve ef-
ficiency and stability). Note that the optimal solution using the
expected value of the coefficients �b (equivalent to setting
a¼ 50% in Table 8; see Eq. (16)) has lower expected profit
than the solution that maximizes expected profit. Note also
that the product optimized for any given pa has greater profit at
that a level than the product optimized for E[p̂] (labeled
argmax(E[p̂])).

The advantage of the proposed delta method approach over a
simulation-based approach is illustrated in the example. While it
takes approximately 1min to find the optimal solution for a given
a-level (using multistart with 20 random starting points); it takes
approximately 30min to find the solution that maximizes the
expected profit using a function that calculates the average profit
based on 50,000 values predrawn from the distribution of the
coefficients using the same 20 starting points.

Figure 4 shows the cumulative profit distribution for xa�j at
a¼ 10% and 90% and the optimal solution maximizing the
expected profit. The optimal design for a¼ 10% has lower profit
at a¼ 90% and vice versa. Thus, the optimal design depends on a
firm’s sensitivity to risk. A risk averse firm would prefer the
design resulting in the solid-line a¼ 10% curve because thernpe
is less loss associated with downside risk (where loss and upside
are measured relative to expected value and not in absolute dol-
lars). A risk seeking firm would prefer the design resulting in the

dotted-line a¼ 90% curve because it has the greatest upside
potential (fatter tails). The dashed “Max Expected Profit” curve is
the preferred design of a risk neutral firm. Optimal design attrib-
utes are listed in Table 9.

When more data are used to estimate the beta coefficients and
the uncertainty decreases, the optimal product solutions for vari-
ous levels of a converge to the same design. This is because the

Fig. 5 CDF of profit distributions illustrating that a5 0.10 and
a5 0.90 designs converge to the expected value design as data
increase using n5 9200 data points

Fig. 6 Comparison of simulated and approximated g function

Fig. 7 (a) and (b) Comparison of simulated and approximated
market share

100901-8 / Vol. 134, OCTOBER 2012 Transactions of the ASME



distributions of profit become tighter about the mean and demand
uncertainty reduces. In Fig. 5, the a¼ 10%, 90%, and max
expected optimal product profit distributions lie on top of one
another. This highlights the fact that our approach deals only with
uncertainty of model parameter estimates. Any remaining uncer-
tainty in model misspecification, context variation, respondent
representativeness, or other sources of demand uncertainty are not
captured here, and additional choice data are sufficient to reduce
parametric uncertainty to near zero.

4.4 Assessing the Delta Method Approximation in the
Case Study. In order to check the quality of the delta method
approximation, we compare the distribution obtained for the opti-
mal design found at a¼ 10% using a Monte Carlo simulation vs.
the delta method.

First, we take 50,000 draws of the coefficients using the covari-
ance matrix obtained in the logit estimation. We use these simu-
lated draws to find a simulated distribution of the g function (Eq.
(9)) and compare it with the delta method approximation. Using
the g function distribution, we can also compute the market share
distribution since ŝj ¼ ð1þ egðb̂;XÞÞ�1

.
Figures 6 and 7 show, respectively, the comparisons of the

simulated g function and market share distributions with those
obtained by the delta method. The delta method approximation
yields high accuracy in this example.

Table 10 shows the simulated market share at the a-levels esti-
mated in the case study using the delta method. The delta method
error is small (less than 0.1% for all alpha levels).

5 Conclusions

Uncertainty in consumer choice model predictions implies
uncertainty about the profit a given product design would gener-
ate. We propose a method for incorporating discrete choice model
parameter uncertainty in the design decision problem and for
determining the optimal design of a product given a specified
level of risk tolerance. In the proposed method, the modeler speci-
fies the level of sensitivity to downside risk by setting a�ð0; 1Þ.
Specifically, paj is defined as the value below which a fraction of
the profit distribution p̂j lies, and the design is optimized to maxi-
mize paj , rather than the expected value of profit. We apply the
delta method to derive an estimated closed-form function for paj in
the case of the multinomial logit model. The closed-form function
enables the optimization problem to be computationally efficient,
and it is preferable over methods requiring a simulation-based
approach when applicable.

We demonstrate the method in a simple scale design
example, where the delta method is shown to yield a close

approximation to the true distribution. We find that the
optimal solution varies with a, and the optimal solution designed
for one a-level may be significantly less profitable at another
a-level. Thus, optimal design choices depend on risk preference.
In the example, the delta method allows the optimization prob-
lem to be solved an order of magnitude faster than using
simulation.

6 Limitations and Future Work

The proposed methodology addresses only the uncertainty of
model parameter estimates caused by missing data; therefore, it is
useful primarily in situations with limited data where model speci-
fication can be assumed to be correct, such as some conjoint
experiments. Further, the relationship between uncertainty due to
missing data and the resulting implications for downside risk of
design alternatives can be sensitive to model specification
assumptions, such as utility function form and error term specifi-
cation. For example, the multinomial logit specification exhibits
the independence of irrelevant alternatives property, which
restricts substitution patterns [50].

The derived approximation for the multinomial logit model can
be applied assuming any utility function linear in coefficients
(e.g., Uj¼ b1Xjþ b2Yj

2þ b3XjYjþb4logXj); therefore, it applies to
a wide range of utility function specifications. While the a profit
approach can be applied to alternative demand model specifica-
tions (e.g., probit, mixed logit), the closed-form approximation of
the delta method applies only to the logit model. Future work may
expand the method to be used with other choice models (e.g.,
mixed logit) and address other sources of uncertainty, such as
model misspecification.

The delta method approximation was reasonably accurate for
the presented case study; however, accuracy will vary with prob-
lem details, so similar validation simulations are needed to assess
the accuracy of the approximation when applying the method to
different data or functional forms.

Nomenclature

c ¼ variable cost
C ¼ fixed cost
Fp ¼ cumulative distribution function of profit estimate
g ¼ mapping function for delta method
j ¼ product index
J ¼ number of products
m ¼ market size
n ¼ number of attributes per product
pj ¼ price of product j
sj ¼ point estimate market share for product j
ŝj ¼ random variable market share estimate for product j
saj ¼ market share of product j at risk level a
v ¼ vector of point estimates of utility for all products
�j ¼ point estimate observable utility for product j
v̂j ¼ random variable observable utility estimate for product j
xj ¼ column vector of attributes for product j

xa�j ¼ optimal product attributes at level a
X ¼ matrix of attributes for all products
a ¼ profit risk tolerance parameter
b ¼ column vector of choice model parameter point estimates
b̂ ¼ random column vector of choice model parameter estimates
�b ¼ mean of b̂ distribution
R ¼ covariance matrix of b̂ distribution
pj ¼ point estimate of profit for product j
p̂j ¼ random variable profit estimate for product j
paj ¼ profit of product j at a level a
U ¼ standard normal cumulative distribution function

Table 10 Accuracy of the delta method at different alpha levels
in the case study

Market share at a level (%)

a (%) Estimated by delta method Simulated (50,000 draws) Error

10 29.4 29.4 0.03
20 32.5 32.4 0.08
30 34.8 34.7 0.03
40 36.6 36.6 0.01
50 38.4 38.3 0.03
60 40.0 39.9 0.08
70 41.7 41.7 0.07
80 43.6 43.6 0.05
90 46.0 46.0 0.02
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Appendix A: Derivation of $g for a Multinomial Logit

Model With No Outside Good
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Appendix B: Derivation of g(b) and $g for a
Multinomial Logit Model With Utility of the

Outside Good Normalized to 0
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Appendix C: Demonstration that the Variance

of g(b) is Affected by the Distance of the Products’

Attributes From the Reference Level Only

When an Outside Good Option is Present

Let x0 be an arbitrary constant vector, yj¼ xjþ x0, and
yk¼ xkþ x0
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Appendix D: Part-Worth and Polynomial Utility Functions From the Conjoint Survey for n¼ 250 Respondents

Fig. 8 (a)–(f) Utility levels
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