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H I G H L I G H T S
c We pose an MINLP model to minimize cost and GHG emissions of electrified vehicles.
c We design PHEVs and BEVs and assign vehicles and charging infrastructure in US fleet.
c Under US grid mix, PEVs provide minor GHG reductions and work chargers do little.
c HEVs are robust; PEVs and work charging potential improve with a decarbonized grid.
c We quantify factors needed for PEVs to enter and dominate the optimal fleet.
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a b s t r a c t

Electrified vehicles can reduce greenhouse gas (GHG) emissions by shifting energy demand from

gasoline to electricity. GHG reduction potential depends on vehicle design, adoption, driving and

charging patterns, charging infrastructure, and electricity generation mix. We construct an optimiza-

tion model to study these factors by determining optimal design of conventional vehicles, hybrid

electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and battery electric vehicles (BEVs)

with optimal allocation of vehicle designs and dedicated workplace charging infrastructure in the fleet

for minimum life cycle cost or GHG emissions over a range of scenarios. We focus on vehicles with

similar body size and acceleration to a Toyota Prius under government 5-cycle driving conditions.

We find that under the current US grid mix, PHEVs offer only small GHG emissions reductions

compared to HEVs, and workplace charging is insignificant. With grid decarbonization, PHEVs and BEVs

offer substantial GHG emissions reductions, and workplace charging provides additional benefits. HEVs

are optimal or near-optimal for minimum cost in most scenarios. High gas prices and low vehicle and

battery costs are the major drivers for PHEVs and BEVs to enter and dominate the cost-optimal fleet.

Carbon prices have little effect. Cost and range restrictions limit penetration of BEVs.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Climate change and energy security are among the most
pressing issues faced by the world and by the US. In the US, the
transportation sector accounted for 28% of GHG emissions in 2009
ll rights reserved.

: þ1 412 268 3348.

cmu.edu (C. Hendrickson),

. Liu),
(US EIA, 2011a) and 71% of petroleum consumption in 2010
(US EIA, 2011b). Passenger vehicles accounted for 9.5% of 2010
US carbon dioxide emissions (US EPA, 2011) and 19% of 2009
nitrous oxide emissions (US EIA, 2011a). Reducing GHG emissions
and petroleum consumption in the personal transportation sector
is crucial to achieving climate and energy goals. Electrified
transportation can help to address both of those issues by shifting
transportation energy use from gasoline to electricity, especially
when that electricity comes from low-carbon generation sources
(Samaras and Meisterling, 2008).

A barrier to widespread adoption of personal electrified vehicles,
especially BEVs, is the ‘‘chickn and egg’’ problem: manufacturers do
not want to make vehicles that have no market, consumers do not
want vehicles that have no refueling infrastructure, and no one wants
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to invest in refueling infrastructure for vehicles that do not exist
(Melaina and Bremson, 2008). Policymakers can help break this cycle
by putting incentives, taxes, and regulations in place. For instance,
the Obama administration has set a target of one million plug-in
electric vehicles (PEVs: including PHEVs and BEVs) on the road by
2015 and has provided incentives to manufacturers and consumers as
well as support for research and development (Office of the Press
Secretary, 2009). However, to promote cost effective GHG reductions,
it is important to understand which outcomes should be incentivized,
and this study is a step towards addressing this issue by analyzing
best possible outcomes.

The Electric Power Research Institute and the National
Resources Defense Council found in a 2007 study that PHEVs
have substantial potential for reducing GHG emissions and air
pollution (EPRI, 2007). However, a 2009 Argonne National Labora-
tory report finds that PEVs are likely to have ‘‘little or no’’ market
penetration by 2050 without government subsidies (Plotkin and
Singh, 2009). They estimate that government subsidies of $7500/
vehicle (a level matched by current policy (American Recovery
and Reinvestment Act of 2009, 2009)) could increase penetration
of PHEVs, leading to a 22% reduction in GHG emissions by 2050
compared to their base case. Other studies have concluded that
GHG reductions from PEVs are not likely to be cost effective in the
near term and that PEVs represent an expensive approach to
reducing GHG emissions (Delucchi and Lipman, 2001; Kammen
et al., 2009; Plotkin and Singh, 2009; Shiau et al., 2010).

Several trade-offs must be considered to determine the best
scenarios to meet cost or GHG emissions goals for electrified
vehicles (which include HEVs, PHEVs, and BEVs). One of the major
design decisions for PHEVs and BEVs is selecting the battery size.
A larger battery pack enables the vehicle to travel a longer
distance on electricity alone (the all-electric range, or AER) with-
out the use of gasoline, which reduces use phase GHG emissions
(also called operating emissions) over the vehicle life under
today’s average grid mix. However, a larger battery pack costs
more initially, has production implications including additional
GHG emissions, and may reduce vehicle efficiency due to its
weight (Delucchi and Lipman, 2001; Shiau et al., 2009). Avail-
ability of charging infrastructure at the workplace and/or in
public locations can enable a longer effective AER with a smaller
battery pack. Availability of such infrastructure also affects charge
timing, which has implications for marginal electricity generation
and resulting emissions (Ferdowsi, 2007; Parks et al., 2007;
Samaras and Meisterling, 2008; Sioshansi et al., 2010). In this
study, we take a limited scope, ignoring charge timing and
focusing on the effect of dedicated workplace charging availabil-
ity on vehicle mix and on battery sizing in vehicle design.

Prior studies compare and select among a small set of fixed
vehicle configurations based on selected commercially available
vehicles or a small set of simulated vehicle alternatives (EPRI,
2001; Kammen et al., 2008; Parks et al., 2007; Peterson et al.,
2011; Samaras and Meisterling, 2008; Shiau et al., 2009; Sioshansi
et al., 2010). However, interactions among engine sizing, motor
sizing, and battery sizing can be important in comparing vehicle
characteristics, and optimal battery sizing represents a compro-
mise among drivers with different travel patterns. We follow
Shiau et al. (2010) and pose a mixed-integer nonlinear program-
ming (MINLP) formulation to determine the best configuration of
vehicles in the design space in order to compare the best design of
each conventional vehicle (CV), HEV, PHEV, and BEV model under
acceleration performance constraints that ensure vehicles are
comparable. We further incorporate charging infrastructure deci-
sions that determine which of the PEVs should be only charged at
home vs. charged both at home and at the workplace, given
charging infrastructure costs and production emissions, and we
use driving pattern data to model required BEV ranges and PHEV
electricity and gasoline usage. We then address three questions:
(1) What mix of vehicles can minimize cost or GHG emissions?
(2) What is the cost or GHG reduction potential with and without
workplace charging infrastructure? and (3) What effect does
workplace charging have on optimal vehicle allocation and
battery sizing? We describe our approach in Section 2, present
results for a base case and alternative scenarios in Section 3,
address model limitations and future work in Section 4, and
provide discussion and conclusions in Section 5.
2. Approach

We pose an optimization problem to minimize life cycle cost
or GHG emissions over the personal vehicle fleet by jointly
determining (1) the optimal design of each CV, HEV, PHEV, and
BEV; (2) the optimal allocation of each vehicle design in the fleet
based on annual vehicle miles traveled (VMT); and (3) the
optimal allocation of workplace charging infrastructure to PEVs
in the fleet. Within the fleet, we consider only vehicles of similar
size and acceleration performance to the Toyota Prius. We also
incorporate vehicle design constraints to ensure comparable
acceleration performance and vehicle allocation constraints to
ensure BEVs are assigned only if they have sufficient range to
accommodate the vehicle’s driving distance on most days (base
case 95% of days, as discussed in Section 2.4). This formulation
represents a best-case scenario for minimizing cost or GHG
emissions with these vehicle technologies; market outcomes
would likely deviate.

The general form of the optimization problem that we would
like to solve is

minimize
x ¼ x1 ,x2 ,...,xn½ �

R1
S ¼ 0 f Oðx,SÞf SðSÞdS

minimize lif e cycle cost

or GHG emissions,

subject to
gD

j ðxjÞr0, 8jA J

xjARpj , 8jA J
s:t: design constraints,

where f O x,Sð Þ ¼ min
jA J9gA

j
xj ,Sð Þr0

n o f Ojðxj,SÞ
n o where vehicles are optimally

allocated based on VMT

subject to allocation constraints

ð1Þ

where S is the annual VMT for a specific vehicle in the fleet; fS(S)
is the probability density function of annual VMT over the fleet;
J¼{1,2,y,n} is the set of indices for all vehicle alternatives;
fOj(xj,S) is the equivalent annualized life cycle cost or annualized
life cycle GHG emissions of vehicle j defined by the vehicle design
vector xj when driven S miles per year (daily variation is
discussed later); gD

j (xj) is the vector of vehicle design constraints;
gA

j (xj,S) is the vector of allocation constraints; and pj is the size of
vector xj.

This formulation presents two key difficulties for mathema-
tical optimization: (1) the objective function contains an integral,
and (2) the objective function contains a minimum function,
which has derivative discontinuities. To avoid these difficulties,
we reformulate the problem using numerical integration and
binary selection variables. First, we select a finite upper limit for
the integral SMAX (73,000 mi.) and partition [0,SMAX] into m equal
adjacent bins iA{1,2,y,m}, each of size SMAX/m. We introduce
binary selection variables, aijA{0,1}, for each bin i and vehicle
alternative j that define which vehicle is assigned to each bin
(Sjaij¼1: only one vehicle alternative can be selected for each
bin), and we further partition each bin into K¼SMAX/mD segments
of size D for numerical integration using the midpoints of fO and
FS in each segment, where FS is the cumulative distribution
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function (CDF) of fS. The resulting formulation is

minimize
xj,aij,8jA J,

8iA 1,::,mf g

Xm
i ¼ 1

XiK�1

k ¼ Kði�1Þ

Xn

j ¼ 1

aij

f Oj xj,kD
� �

þ f Oj xj, kþ1ð ÞD
� � !

2

FS kþ1ð ÞDð Þ

�FSðkDÞ

D

0
BBB@

1
CCCA

0
BBBBB@

1
CCCCCAD

subject to

P
jA J

aij ¼ 1, gD
j xj

� �
r0, xjARpj , aijA 0,1f g,

8iA 1,::,mf g, 8jA J

gA
ij xj,aij

� �
r0, 8iA 1,:::,mf g, 8jA JBEV

where D¼ SMAX
mK

ð2Þ

We relax the binary allocation variables aij into the continuous
domain, aijAR, 0raijr1, making this into a nonlinear program-
ming problem to ease computation. For any set of fixed designs
xn
¼[x1,y, xn]n, the optimization formulation in (2) is linear in aij

and totally unimodular, so we expect that the optimal solution set
will always contain a corner solution with integer values for the
allocation variables aij (Nemhauser and Wolsey, 1999).

In our application, the set of vehicle alternatives J is partitioned
into CVs, HEVs, PHEVs and BEVs, so that J¼ JCV [ JHEV [ JPHEV [ JBEV.
The decision variable vector xj¼[xEj, xMj, xBj, xSWj]

T for each vehicle jAJ

includes xE¼gasoline internal combustion engine peak power (kW),
xM¼electric motor peak power (kW), xB¼battery size (number of
cells), and xSW¼ battery swing window (portion of total energy
capacity) for each vehicle j, where xM¼xB¼xSW¼08jAJCV and
xE¼08jAJBEV. The function fOj(xj,S) in the objective function of
Eq. (2) is replaced by either fCj(xj,S), equivalent annualized life cycle
cost in 2010 US dollars (USD2010) per vehicle-year, discussed in
Section 2.1.1, or fGj(xj,S), annualized life cycle GHG emissions in
kilograms of CO2-equivalent (kgCO2e) per vehicle-year, discussed in
Section 2.1.2. The Supplemental information summarizes model
variables, functions, and parameters and defines base case and
sensitivity values.

The design constraint vector gD
j (xj)¼{gD

1 j(xj),g
D
2 j(xj)} ensures that

each vehicle satisfies comparable acceleration performance criteria.
These include a maximum 0–60 miles per hour (mph) acceleration
time tMAX¼11 s for all vehicles, in both gasoline and electric mode: gD

1

j(xj)¼tG(xj)–tMAXr08jAJCV[JHEV [ JPHEV, gD
1 j(xj)¼08jAJBEV, gD

2 j(xj)¼
tE(xj)–tMAXr08jAJPHEV[JBEV, and gD

2 j(xj)¼08jAJCV[JHEV, where tG(xj)
and tE(xj) are the 0–60 mph acceleration time of vehicle xj in gasoline
and electric mode, respectively, as discussed in Section 2.2. We also
incorporate simple bounds 30 kWrxEjr60 kW, 50 kWrxMjr
110 kW, and 200 cells rxBjr1000 cells 8jAJPHEV and xEj¼0 kW,
70 kWrxMjr250 kW, and 200 cells rxBjr9000 cells 8jAJBEV to
avoid extrapolation beyond our simulation data. The battery swing
window constraints are 0.1rxSWjr 0.8 8jAJ\JCV to ensure safe bat-
tery operation and avoid excessive degradation. Finally, the allocation
constraints gA

ij(xj,aij)¼aijfAij(xj)r0, where fAij(xj)¼sf((kþ1)D)–sAER(xj)
8iA{1,y,m}8jAJBEV, and fAij(xj)¼08iA{1,y,m}8jAJ/JBEV ensure that
BEVs are only allocated to vehicles if f percent of days have VMT
lower than the vehicle’s range. We discuss the sAER(xj) function in the
Supplemental Information and the sf function in Section 2.4.

2.1. Objective functions

The function fOj(xj,S) in the objective function of Eq. (2) is
replaced by either fCj(xj,S), equivalent annualized life cycle cost
(USD2010/vehicle-year), or fGj(xj,S), annualized life cycle GHG
emissions (kgCO2e/vehicle-year), depending on the case.

2.1.1. Equivalent annualized life cycle cost

When the goal is to minimize equivalent annualized life cycle
cost, the function fOj(xj,S) in the objective function of Eq. (2) is
replaced with fCj(xj,S) (USD2010/vehicle-year), defined as

f Cj xj,S
� �

¼

cVjþrvVj|fflfflfflfflfflffl{zfflfflfflfflfflffl}
base vehicleproduction

þcE xEj

� �
þrvE xEj

� �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
engineproduction

þcM xMj

� �
þrvM xMj

� �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
motorproduction

0
BBBBB@

1
CCCCCAf A9P rN,lV Sð Þð Þ

þ cB xBj

� �
þrvBj

� �
xBjkBj|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

battery production

0
B@

1
CAf A9P rN,lV Sð Þð Þ

þ cCþrvC

� �
qCj|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

chargerproduction

0
BB@

1
CCAf A9P rN,lC Sð Þð Þ

þ
pGþrvG

� �
SG xj,S
� �

ZG xj

� �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
gasoline usage

0
BBBB@

1
CCCCA

f A9P rN,lV Sð Þð Þ

f A9P rAG,lV Sð Þð Þ

þ
pELECþrvELEC

� �
SE xj,S
� �

ZE xj

� �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
electricity usage

0
BBBB@

1
CCCCA

f A9P rN,lV Sð Þð Þ

f A9P rAE,lV Sð Þð Þ
ð3Þ

where cVj is the cost of producing the base vehicle excluding
engine, motor, and batteries; r is the carbon price in dollars per
kgCO2e (zero in the base case); vVj is the GHG emissions from
production of the base vehicle excluding engine, motor, and
batteries; cE(xEj) is the cost of engine production; vE(xEj) is the
GHG emissions from engine production; cM(xMj) is the cost of
motor production; vM(xMj) is the GHG emissions from production
of the motor; fA9P(r,n)¼r(1þr)n((1þr)n–1)�1 is the capital recov-
ery factor; rN is the nominal discount rate; lV(S)¼SLIFE/S is the life
of the vehicle, including the engine and motor (and, for simplicity,
the battery), in miles; SLIFE is 150,000 miles; cB(xBj) is the cost per
kWh of battery production; vB is the GHG emissions per kWh of
battery production; kB is the battery cell energy capacity
(0.0216 kWh/cell for the lithium ion batteries in the PHEVs and
BEVs and 0.00774 kWh/cell for the nickel metal hydride pack
(NiMH) in the HEV); cC is the cost of charger production; vC is the
GHG emissions of charger production; qCj is the number of
chargers allocated to vehicle j (treated as separate design types
to avoid adding a binary vehicle design decision variable); lc is the
charger life in years, which we assume is equal to the life of the
vehicle; pG is the gasoline price in dollars per gallon; vG is the life
cycle GHG emissions from gasoline consumption per gallon,
including both production and combustion; SG(xj,s) is the annual
distance for which the vehicle is powered by gasoline (charge
sustaining mode); ZG(xj) is the vehicle 5-cycle combined gasoline
efficiency in miles per gallon (mpg); pELEC is the electricity price
per kWh; vELEC is the life cycle GHG emissions from electricity
consumption per kW; SE(xj,s) is the annual distance for which the
vehicle is powered by electricity (charge depleting mode); ZE(xj) is
the vehicle 5-cycle combined electrical efficiency in mi./kWh;
rAG¼(1þrN)(1þrNG)�1

�1 is the adjusted gasoline price growth
rate, where rNG is the nominal gasoline price growth rate,
accounting for inflation and other factors affecting gasoline
prices; rAE¼(1þrN)(1þrNE)�1

�1 is the adjusted electricity price
growth rate, where rNE is the nominal electricity price growth
rate, accounting for inflation and other factors affecting gasoline
prices (see Supplemental Information for a description of the
adjusted growth rates). We focus on the all-electric control
strategy (in which PHEVs travel the entire AER distance in charge
depleting mode without using gasoline), and we ignore PHEVs
with blended control strategies. In Eq. (3), the motor, battery,
charger, and electricity terms drop out for CVs; the charger and
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electricity terms drop out for HEVs; and the engine and gasoline
terms drop out for BEVs. We also ignore battery degradation and
replacement. We discuss cost functions and parameters below in
this section and GHG functions and parameters in Section 2.1.2.
We discuss vehicle fuel efficiency functions ZG(xj) and ZE(xj) in
Section 2.2 and driving pattern functions fS(s), SE(xj,s), and SG(xj,s)
in Section 2.4.

Vehicle production costs and equations are derived from a
2009 Argonne National Laboratories report (Plotkin and Singh,
2009). Base case values come from their literature review predic-
tions for 2015 and other cases are used for sensitivity analysis. All
costs have been converted to USD2010 using the Consumer Price
Index (US DOL, 2010). Resulting battery costs are in the range of
$380–570/kWh rated capacity. Other details of vehicle cost
parameter values appear in the Supplemental Information. Char-
ger production cost cC is $1500 in the base case. This represents
the approximate average cost of a Level 2 charger including
installation (240 V AC, up to 3.3 kW (Morrow et al., 2008)).

Gasoline and electricity prices and price growth rates come
from the EIA Annual Energy Outlook 2011 (US EIA, 2011c). We use
EIA’s high oil price case as our base case because their reference
case is generally optimistic. The base case gasoline price pG is
$2.22 per gallon, the 2009 US sales-weighted average price for all
grades. The nominal gasoline price growth rate, rNG, including
inflation and other factors, is 5.2%. Details of other cost para-
meters appear in the Supplemental information.

2.1.2. Annualized life cycle GHG emissions

When the goal is to minimize annualized life cycle GHG
emissions, the function fOj(xj,S) in the objective function of Eq. (2)
is replaced with fGj(xj,S) (kgCO2e/vehicle-year), defined as

f Gj xj,S
� �

¼
vVj

lV Sð Þ|ffl{zffl}
base vehicle production

þ
vE xEj

� �
lV Sð Þ|fflfflfflffl{zfflfflfflffl}

engine production

þ
vM xMj

� �
lV Sð Þ|fflfflfflfflffl{zfflfflfflfflffl}

motor production

þ
vBjxBjkBj

lV Sð Þ|fflfflfflfflffl{zfflfflfflfflffl}
battery production

þ
vCqCj

lC Sð Þ|fflffl{zfflffl}
charger production

þ
vGSG xj,S

� �
ZG xj

� �|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
gasoline usage

þ
vELECSE xj,S

� �
ZE xj

� �|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
electricity usage

ð4Þ

where all parameters have been previously defined. In Eq. (4), the
motor, battery, charger, and electricity terms drop out for CVs; the
charger and electricity terms drop out for HEVs; and the engine
and gasoline terms drop out for BEVs. Parameter values appear in
the Supplemental information.

This equation represents a hybrid life cycle assessment (LCA)
approach to calculating the annualized life cycle GHG emissions
of personal vehicles. Values for the GHG emission parameters
come both from Economic Input–Output LCA (EIO-LCA) and from
process-based LCAs. The hybrid approach to LCA for applications
such as emissions from personal vehicles is supported in the
literature (Suh et al., 2004) and in standards (BSI, 2011). The
scope of this LCA is cradle-to-gate GHG emissions plus the use
phase, but excluding end-of-life.

2.2. Vehicle performance models

To estimate the electrical ZE(xj) and gasoline ZG(xj) efficiencies
and the acceleration performances tG(xj) and tE(xj) of vehicle j

defined by design variables xj, we utilize Argonne National
Laboratory’s Powertrain System Analysis Toolkit (PSAT) vehicle
simulation software (ANL, 2008) and construct a metamodel fit to
a discrete set of simulation points in the design space xj to find
the US Environmental Protection Agency (EPA) 5-cycle combined
highway and city efficiency and 0–60 mph acceleration time for a
range of vehicle designs. We use the 2004 Toyota Prius model
(with a power-split or series-parallel HEV powertrain) as the
baseline vehicle and our HEV model. We construct our PHEV
model by substituting Li-ion batteries for the Prius NiMH bat-
teries, increasing the pack size, and increasing the SOC range for
regenerative braking. One kilogram of structural weight is added
to the vehicle per kilogram of battery, engine, and motor to
support the weight of those components (Shiau et al., 2009). We
base our CV model on a scaled Honda Civic powertrain (engine,
gearbox, and final drive), adjusted to have a Toyota Prius vehicle
body for fair comparison to the HEV, PHEV, and BEV (Shiau et al.,
2010). Our BEV model has a generic BEV drive train modified to
use the same body, motor, and batteries as the PHEV. We ignore
the possibility of using different battery designs on BEVs vs.
PHEVs. The error for all metamodels is within 0.5 s, 0.03 miles
per gallon equivalent (mpge), and 0.06 mi./kWh over the set of
data points used for fitting. Further details of the vehicle designs,
vehicle simulation models, metamodel construction, and AER
calculations appear in the Supplemental information.

2.3. Charging infrastructure scenarios

We consider the following two charging scenarios: (1) only
Level 2 home charging (240 V AC, up to 3.3 kW (Morrow et al.,
2008)), and (2) Level 2 home charging with additional dedicated
workplace Level 2 charging: we do not consider additional
charging methods such as DC fast charging, battery swapping,
smart charging, or vehicle to grid power. The Level 2 charger is
represented by a single cost parameter that includes equipment
and installation and by a single production emissions factor (see
Supplemental information for details).

We implement these two charging scenarios in the model by
partitioning JPHEV and JBEV each into two subsets JPHEV¼ JPHEV(1)

[JPHEV(2) and JBEV¼ JBEV(1)[JBEV(2), where the numbers indicate
1 charger (home) or 2 chargers (homeþwork). Each 2-charger
partition is identical to the corresponding 1-charger partition
(equal design variables) except that qC¼2 instead of 1. This allows
each vehicle design to be assigned to some drivers with one
charger and also to other drivers with two chargers. Allocation of
charging infrastructure in this model refers to whether each PEV
is allocated with or without workplace charging.

2.4. Driving patterns

To find the CDF FS(S) for annual VMT, we use data on the
weighted annual distance traveled (based on odometer readings)
of each vehicle in the US from the 2001 National Household
Travel Survey (NHTS) (US DOT, 2003). The resulting histogram is
shown in Fig. 1. This distribution accounts for the variability in
average daily VMT across the US vehicle fleet (across vehicles),
but does not account for variability in VMT of each vehicle across
days (within vehicle). NHTS data do not contain information on
within-vehicle variability, since each household was only sur-
veyed on one day. We use detailed trip data collected for 133
vehicles in Minnesota in 2004–2005 to estimate this variability
across days (Sierra Research, 2005). Since the average annual VMT
is similar across the two data sets (11,800 mi. in NHTS odometer
readings (US DOT, 2003) and 11,900 mi. in the Minnesota data set
(Sierra Research, 2005)), we believe the Minnesota data set is
reasonably representative for providing an estimate of US within-
vehicle variability.

We represent the variability in daily driving distance for each
vehicle in two separate ways. In both cases we remove days in
which the vehicle was not driven, leaving an average of D¼243.8
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driving days per year (we observed no clear trend in D vs. annual
VMT S, so D is assumed constant across S; Sierra Research, 2005).

First, we enforce a BEV range allocation requirement for each
bin on S by computing the length of the 95th percentile longest
driving-day distance traveled for each vehicle in the Minnesota
data set. We fit a curve to these data to produce s95%(S)¼2.62
(S/d)þ40.3 miles, where d¼365 day per year, and we permit BEV
allocation to a bin only if the AER is greater than the greatest 95th
percentile distance for that bin (implying that driving and char-
ging behavior or household vehicle allocation would need to
change on the remaining 5% of driving days to avoid full battery
depletion, which we ignore). We also perform sensitivity analysis
by instead constraining allocation of BEVs to satisfy only the
average driving distances of each bin m(S).

Secondly, to estimate the portion of VMT that a PHEV is driven
using gasoline vs. electric power, we require an estimate of the
distribution of daily driving distances for each bin of vehicles. The
shape of the distribution of daily distance driven in the Minnesota
data set varies from vehicle to vehicle, including unimodal and
multimodal distributions. However, for simplicity and tractability,
we assume a family of exponential distributions. This model
specification provides a useful approximation of the general trend
in daily variability while offering a closed form CDF to facilitate
estimation of the portion of miles driven beyond a PHEV’s all-
electric range. To estimate this relation, we fit a curve through the
mean driving-day distance: m(S)¼1.110(S/d)þ13.33 and define a
family of exponential distributions that follow m(S), with CDF of
FV
s s,Sð Þ ¼ 1�exp �s=m Sð Þ

� �
, where s is a random variable indicat-

ing distance driven on a particular day.
Fig. 2 shows both of these functions, along with the 95th

percentile of the family of exponential distributions, for compar-
ison. The 95th percentile found from the exponential assumption
deviates somewhat from the linear fit, and our use of the linear fit
as the BEV allocation constraint is more optimistic toward
electrification. The 95th percentile found from the exponential
distribution is shown only for comparison.

Using the exponential fit, we calculate SG(xj,S), the annual
distance powered by gasoline, and SE(xj,S), the annual distance
powered by electricity

SE xj,S
� �

¼ S 1�exp
�qCjsAER xj

� �
m Sð Þ

 ! !

SG xj,S
� �

¼ S exp
�qCjsAER xj

� �
m Sð Þ

 !
ð5Þ
We assume here that the presence of workplace charging will
provide a charging opportunity sufficient to effectively double the
AER. In this sense, ‘‘workplace charging’’ can represent any
dedicated (guaranteed) daytime charging opportunity away from
home (since it requires a second charger) that occurs at a distance
between the AER and the halfway point of the day’s driving
distance. This assumption is optimistic for estimating the benefits
of PHEVs and of workplace charging, since daily distance varia-
bility typically reflects trips taken to locations other than the
workplace, rather than variable distance to the workplace, so it is
likely that a workplace charging opportunity may not occur in the
specified distance range. We ignore workplace charging for the
purpose of calculating the BEV range constraint, since the 5% of
longest days that make the allocation constraint binding are
unlikely to be normal commute days with dedicated charging
available. Because we use the same driving cycle for all drivers,
we also do not account for the correlation between driving
distance and driving style (and therefore efficiency).

2.5. Allocation method

Fig. 3a shows an example plot of fOj(xj,S)/S (either GHG emissions
or cost per mile) vs. annual VMT (S) for two hypothetical vehicles.
At any point along the S-axis, the lowest vehicle curve represents the
best vehicle for a driver with annual VMT of S. Fig. 3b shows
fOj(xj,S)fS(S), the fleet-weighted value per vehicle-year and the inte-
grand of the objective function in Eq. (1). The area under each vehicle
curve in Fig. 3b represents the total objective function value if all
vehicles in the fleet were of the corresponding design and charging
scenario. In each graph, the horizontal axis is divided into two bins,
and the best vehicle is allocated in each bin. The area under the
resulting piecewise smooth curve defined by the thicker lines
represents the total objective function value if the two vehicles are
allocated optimally.

2.6. Scenarios and sensitivity analysis

We solved the optimization model for several scenarios and
performed sensitivity analysis on the key model parameters. For
each objective function (cost or GHGs), the base case is the least
restricted scenario, in which all vehicle types are included for a
total of 6 designs (CV, HEV, 2 PHEV designs, and 2 BEV designs)
with both home and workplace charging available. We also
considered scenarios with fewer vehicle designs (such as PHEVs
only) and scenarios restricted to home charging only.

We performed sensitivity analysis on several major parameters in
both the cost and GHG objective functions. For all parameters, we
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Table 1
Summary of base case and sensitivity cases.

Base case Sensitivity cases

Electricity

grid mix

US average Nuclear, natural gas, integrated gasification combined cycle

plant with carbon capture and sequestration (IGCC-CCS),

coal

Potential

vehicle

fleet

Fleet of CV, HEV, 2 PHEVs, 2 BEVs CV only, HEV only, 2 PHEVs only, 2 BEVs only

Charging

potential

Home, homeþwork Home charging only

BEV range

constraint

Range Z 95% of daily VMT Range Z average daily VMT

Gas price $2.22/galþ5.2%/year $3, $3.25, $4, $5, $6, $7, $8/galþ5.2%/year

Electricity

prices

$0.12/kWhþ1.9%/year $0.06, $0.30/kWhþ1.9%/year

Vehicle and

battery

costs

Plotkin and Singh 2015 literature review (LR2015)

estimates ($380–$570/kWh rated capacity for batteries)

Plotkin and Singh 2045 lit review (LR2045) estimates

($190–$350/kWh for batteries), 2030 program goals

(PG2030) ($130–$180/kWh for batteries)

Charger

costs

$1500 installed $0, $475, $500, $2500

Discount

rate

5% 0%, 10%

CV efficiency 25 mpg 32 mpg

CO2 price $0/kgCO2e $0.02, $0.1/kgCO2e ($20, $100 per metric ton CO2

equivalent (tCO2e))
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identify a base case representing a reasonable current value, based
either on recent historical values or near-future projections. For most
parameters we also identify a low and high value representing
bounds on the likely variation of that parameter in the next several
decades. For some parameters, such as gas price, we also examine a
range of values to identify critical points. Table 1 summarizes
assumptions for our base case and sensitivity cases, and details of
sensitivity cases can be found in the Supplemental information.
3. Results

In this section, we describe the results obtained from the
optimization formulation defined in Eq. (2). First in Section 3.1,
we show lifecycle cost and GHG emission results for several
example vehicle designs, disaggregated to illustrate the contri-
buting factors. Then in Section 3.2, we present lifecycle cost and
GHG emissions results for several scenarios in which vehicles are
optimally designed and allocated, including sensitivity analysis.
Further results are available in the Supplemental information.
3.1. Cost and GHG emissions breakdown

Fig. 4 shows a breakdown of the contributing factors to (a) life
cycle cost and (b) GHG emissions for example vehicles of each
type. These factors also correspond to terms in Eqs. (3) and (4).
For illustration purposes, the example vehicle designs shown in
Fig. 4 have been optimized for minimum cost when that vehicle
design is allocated across the entire fleet. Further details on these
vehicles are shown in Table SI5 scenarios 25 and 26 and Table
SI6scenarios 33 and 34. In order to obtain a feasible solution with
a BEV allocated to the entire fleet, the range constraint was
reduced to mean travel distances instead of 95th percentile
longest distances. The PHEV and BEV are shown with one charger
allocated. Results will vary for different vehicle designs.
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As shown in Fig. 4a, allocating BEVs (with a 235-mile AER) to
the entire population is significantly more costly than any of the
other vehicle types, mainly due to battery costs. The large battery
pack used here is needed to provide enough range for the average
daily travel of all driving bins, but smaller battery packs could be
used when allocating vehicles to a subset of driving bins, as will
be shown in the following sections. CVs have the largest gasoline
cost, but the gasoline cost savings from switching to HEVs or
PHEVs (with a 13-mile AER) are partially offset by motor, battery
and charger costs. HEVs are least expensive overall. Although base
vehicle, engine, and motor costs vary across vehicle types,
differences in gasoline and battery costs drive comparisons.
Fig. 4b shows that more GHG emissions occur when CVs are
allocated across the entire fleet than when HEVs or PHEV13s are
allocated, and most emissions are from gasoline production and
combustion. HEVs have significantly lower emissions from gaso-
line, and some additional emissions from motor and battery
production. Our results agree with the literature both on the
range of overall emissions from CVs and HEVs and on their
relation to each other: in this study HEVs produce 37% less life
cycle GHG emissions than CVs. Samaras and Meisterling (2008)
find that HEVs produces 30% less life cycle GHGs than CVs, and
Shiau et al. (2010) find that HEVs produce 44% less. PHEVs
provide further reductions in GHG emissions from gasoline, but
they are offset by an increase in emissions from electricity. BEVs
have more GHG emissions than the other vehicle types. Most BEV
emissions are from electricity and battery production. Although
both the cost and GHG emissions of the chargers are small,
including them allows us to model trade-offs between producing
additional chargers and electrifying additional miles.

3.2. Optimal design and allocation

Results are summarized in two figures: Fig. 5 shows selected
results for minimizing annualized life cycle GHG emissions, and
Fig. 6 shows selected results for minimizing equivalent annual-
ized life cycle cost. Further results, including more details for each
of the cases shown, are included in the Supplemental information.
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For both objective functions, the base case is shown first. The base
case is the least restrictive scenario, allowing the CV design, the
HEV design, up to 2 PHEV designs, and up to 2 BEV designs to be
allocated with home charging only or with home and workplace
charging. The base case uses the base case parameter estimated
defined in the approach section and tabulated in the Supplemen-
tal information, including average US grid mix and energy prices.
Following the base case, each sensitivity analysis scenario is
defined by the major differences from the base case.

Figs. 5 and 6 show the vehicle allocations at each optimal
scenario. The lower x-axis indicates the cumulative percentage of
vehicles, and the upper x-axis indicates the corresponding annual
VMT of that portion of the fleet. The upper and lower x-axes are
related to each other by the distribution of annual VMT across the
fleet, shown in Fig. 1. Within each bar, the vehicle designs are
indicated, e.g. P46(2), where P stands for ‘‘PHEV’’, 34 indicates the
AER, and ‘‘(2)’’ indicates that workplace charging is allocated in
addition to home charging. So, for example, the first bar in Fig. 5
shows that in the base case for GHG minimization, a PHEV with
an AER of 26 miles is allocated to the first 60% of vehicles that
drive up to 14,600 miles per year, and a PHEV with an AER of 23
miles is allocated to the remaining 40% of vehicles with longer
annual VMTs. Since this scenario allows workplace charging to be
allocated and it is not allocated, we know that the GHG reduction
from a second charge (and therefore more electrified miles) is not
enough to offset the production GHGs of the second charger. The
PHEV with the smaller range is allocated to the vehicles with
longer distances because for those vehicles the charge-sustaining
mode efficiency matters more, and larger battery packs increase
production emissions and reduce efficiency due to weight.

The other cases shown in Fig. 5 are as follows: forcing all
vehicles to be BEVs requires large battery packs to satisfy range
constraints (even when we require BEV range to satisfy only the
average day, shown here, rather than the 95th percentile day),
and net GHGs are increased. When charged with coal electricity,
GHG benefits of PEVs disappear, and a PHEV3 minimizes GHGs
for the fleet. This is practically an HEV, but our model selects a
PHEV with the shortest possible range (smallest permitted PHEV
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battery pack size and swing) because the PHEV is slightly
more efficient in charge sustaining mode than our HEV model.
Optimizing the HEV design is beyond the scope of this paper, but
if it were allowed, it is likely that an optimized HEV would exist
that is more efficient than this PHEV3, and coal electricity would
therefore remove PEVs from the GHG-optimal fleet. When char-
ging with natural gas or from an integrated gasification combined
cycle plant with carbon capture and sequestration (IGCC-CCS),
we observe allocation of larger capacity PHEVs with work-
place charging. Marginal dispatch electricity associated with
PEV charging will vary by location and charge timing, but the
grid scenarios examined here provide a bounding analysis over a
wide range of grid GHG intensities.

Further details for each case, such as the overall cost and GHG
emissions, as well as additional cases appear in the Supplemental
Information. These cases show that (1) workplace charging offers no
GHG benefits under the average U.S. grid mix, but under decarbo-
nized grid scenarios workplace charging is allocated, providing
optimistically up to 21% additional GHG reductions when the work-
place charge occurs at the halfway point of daily distance for each
vehicle each day. Under more realistic conditions, the benefit of
workplace charging would be lower, suggesting that availability of
dedicated workplace charging is not a significant factor in reducing
overall life cycle GHG emissions unless combined with significant
levels of grid decarbonization; (2) under decarbonized grid scenarios,
greater penetration of vehicles with larger battery packs are observed
in GHG-minimized solutions, including BEVs, and GHG emissions are
reduced substantially; however, costs increase; (3) availability of
workplace charging in decarbonized grid scenarios affects the vehicle
design by allowing some PHEVs to have smaller AERs and by reducing
the allocation of larger capacity BEVs in favor of smaller capacity BEVs
and more large capacity PHEVs; and (4) even when charged with
zero-emission electricity, BEVs are not GHG-minimizers for the entire
fleet; minimizing GHGs, even if the grid were entirely decarbonized
and cost were not a factor, would involve continued use of gasoline
(and/or other liquid fuels not studied here).

Fig. 6 shows that in the base case, the cost-minimizing solution
is to assign HEVs to all vehicles. When restricted to allocating
PHEVs, they are low capacity, with 12–14 miles AER. When
restricted to allocating BEVs, battery packs are large, even when
constraining their range to meet only average trip requirements
rather than 95th percentile, and costs increase substantially.
Gas prices above $3.25/gal (with 5.2% growth rate) are required
to bring PHEVs into the minimum cost solution, and prices as high
as $7/gal (with 5.2% growth rate) are required for PHEVs to almost
entirely replace HEVs, and these prices are still not high enough for
BEV penetration. Lower vehicle and battery costs that meet DOE
2030 program goals (including optimistic battery costs of $134–
176/kWh) are sufficient for a small penetration of PHEVs but must
be combined with $4.5/gal gasoline (with 5.2% growth rate) to
trigger allocation of PHEVs predominately. Charger costs below
$475 are needed to encourage PHEV penetration, and if chargers
are free, PHEVs (with workplace charging) are allocated to about
40% of vehicles. While some households can charge a vehicle at
120 V with little or no installation cost, most households will incur
at least some equipment, installation, and/or inspection cost before
being able to charge at Level 2 (240 V), and Level 2 charging is
necessary to charge large battery pack vehicles overnight. Low
discount rates drive greater adoption of PHEVs, although consu-
mers are known to use high discount rates in practice (Horne et al.,
2005; Mau et al., 2008). Carbon taxes do little to encourage
adoption of PHEVs unless high carbon prices ($100 per metric
ton CO2 equivalent (tCO2e)) are combined with decarbonized
electricity. Studies have indicated that a reasonable range for a
carbon price is $20/tCO2e to $100/tCO2e (Interagency Working
Group on Social Cost of Carbon, United States Government, 2010;
IPCC, 2007), although some have argued that higher prices are
justified (Kopp and Mignone, 2011). Prices on the order of $100/
tCO2e would induce major changes in the electricity sector before
doing much to promote vehicle electrification.

Further details for each case, such as the overall cost and GHG
emissions, as well as additional cases appear in the Supplemental
Information. These cases show that (1) HEVs are an optimal or near-
optimal solution for minimizing cost across many scenarios, including
our sensitivity analysis cases with low or base case gas prices, high
discount rates, high charger costs, and reduced vehicle and battery
prices to the LR2045 levels; (2) cases that lead PEVs to dominate the
fleet include $7/gal gasoline (with 5.2% growth rate), $6/gal gasoline
(with 5.2% growth rate) combined with $100/tCO2e carbon prices,
or $4.50/gal gasoline (with 5.2% growth rate) combined with DOE
2030 targets for low vehicle and battery costs.

This analysis finds the fleet with the minimum equivalent
annualized life cycle cost overall, not the minimum cost to
consumers, so no government incentives such as tax credits are
considered. Tax credits are still costs incurred by the government
and the tax payer if not by the consumer.

These findings are robust to the definition of the CV and HEV
models. We find similar results when the CV efficiency increases to as
high as 32 mpg, as shown in scenario 19. In the base case the HEV is
58% more efficient than the CV (43 mpg and 25 mpg, respectively),
and when the CV reaches 32 mpg the HEV is only 34% more efficient.
Real-world HEVs tend to be around 48% more efficient than the same
model CV, which falls within the range of our sensitivity analysis and
does not change our base case results (Ford Motor Company, 2011).

In a future with low-emission electricity, low vehicle and battery
costs, and higher gasoline prices, we may expect high penetration of
BEVs for lower-distance vehicles and PHEVs for higher-distance
vehicles. However, in near-term scenarios, HEVs and low-range
PHEVs are preferable for both cost and GHG reduction. Because HEVs
are the cost-minimizing solution, and because GHGs from HEVs are
also within 3% of the GHG-minimizing solution under today’s US grid
energy mix, we find that the cost-minimized base case solution has
only 3% more GHG emissions than the GHG-minimized base case
solution and costs 12% less (see Tables SI5 and SI6).

Relative to the base case solution for minimizing GHGs, GHG
emissions would increase by 63% if all vehicles were CVs of compar-
able size and acceleration performance, by 3% if all vehicles were
HEVs, by 0% if all vehicles were PHEVs (see Table SI5), and by 36% if
all vehicles were BEVs with only enough range to support the average
trip (BEVs with enough range to support the 95th percentile trip
require battery capacity larger than our model permits for long
distance vehicles). In practice, range anxiety may cause consumers
to demand even greater range from BEVs than the 95th percentile
distance (and almost certainly more than the mean) in the absence of
widespread, convenient, rapid public charging infrastructure, since
accommodation of the 95th percentile longest daily driving range still
leaves 18–19 days each year where daily driving distance exceeds
vehicle range. It is also possible that consumers will change their
driving patterns to accommodate BEVs with shorter ranges than we
have assumed, especially since the majority of US households have
multiple vehicles (US DOT, 2003), but it would take significantly
reduced range requirements to make BEVs competitive across the
entire fleet. Neubauer et al. (2012) present one alternate method of
treating BEV range restrictions based on adapting driving patterns.
4. Limitations and future work

Several important assumptions and model limitations should
be understood to support appropriate interpretation of results.
Key assumptions include vehicle driving and charging patterns,
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vehicle design options and size class considered, and electricity
generation mix. We discuss each in turn.

First, assuming that workplace charging is available for all
vehicles and allows a charge exactly halfway through daily travel
is optimistic for PHEVs, although GHG reduction potential is
marginal even under this optimistic assumption except in decarbo-
nized grid scenarios. Assuming that home charging is available
for all vehicles may also be optimistic. Additionally, we use the EPA
5-cycle combined city and highway drive cycle to calculate effi-
ciency for all vehicles and do not account for the correlation
between driving distance and driving cycle characteristics. Benefits
of electrified vehicles can be substantially larger in city traffic
conditions than in highway conditions (Karabasoglu and Michalek,
2011), and longer driving distances are likely to involve a greater
portion of highway travel, where conventional vehicles are more
competitive. We also do not account for other factors such as
heating and air conditioning use that can affect vehicle energy use
differently for electric vehicles. We would expect these factors to
make PHEVs and BEVs somewhat less attractive. We also do not
account for any changes in driving behavior that occur alongside
electrification, such as households with multiple vehicles adjusting
their driving habits to accommodate short-range BEVs in their
household fleets.

A second important set of assumptions is the space of design
options, such as the use of a single scaled engine design, similar to the
Toyota Prius to model each electrified powertrain alternative. In
particular, we do not examine advancements to ICEs that improve
fuel economy, such as direct injection, low friction lubricants, variable
valve timing, etc. (NHTSA, 2008), and we do not optimize the design
of the PHEV control strategy or include PHEVs with blended control
strategies due to complexity in modeling the control variable space
(Bradley and Frank, 2009). Additionally, we do not account for
degradation requiring replacement of batteries and chargers prior to
the end of vehicle life. Battery degradation will tend to affect smaller
battery packs more severely than large packs because processed
energy is spread over a larger number of cells in a larger pack,
although the thin-electrode design of high-energy cells used in small
battery packs may counteract this tendency (Fuller et al., 1994; Li
et al., 2011; Wang et al., 2011). If battery life is shorter than vehicle
life, it will make PHEVs and BEVs less competitive on both cost and
GHGs than this analysis suggests. We do not include vehicle main-
tenance costs, which may differ by vehicle type. We also consider
only vehicles similar in body size to the 2004 Toyota Prius—vehicles
well-suited for electrification. The full fleet includes many larger
vehicles that are less likely to be electrified in the near term due to
cost, range, and technical issues.

Third, while we do consider a wide range of possible electricity
generation scenarios, we vary these independently in the sensitivity
analysis and do not consider the effect that vehicle allocation might
have on marginal grid mix. If assigning vehicles with larger battery
packs leads to greater charging demand, it may have systematic
effects on the electricity grid mix that vary by region and time and
would be expected to change in future scenarios with high penetra-
tion of electrified vehicles (EPRI, 2007; Parks et al., 2007; Sioshansi
et al., 2010). Marginal electricity associated with charging PHEVs at
night may often be more coal-heavy than regional averages, although
night charging, and the use of smart chargers that control charge
timing, may also support integration of renewables. The impacts of
carbon prices on the electric grid are exogenous to our model, so
electricity generation scenarios and carbon prices are also varied
independently. Across regions and assumptions, grid implications
should be bounded by our sensitivity scenarios.

This formulation represents a best-case scenario for minimiz-
ing cost or GHG emissions with these vehicle technologies;
market outcomes would likely deviate, and we do not attempt
to predict firm or consumer behavior.
5. Conclusions

We pose an optimization model to minimize annual life cycle
GHG emissions and cost from the personal vehicle fleet by selecting
(1) engine, motor, battery size, and battery swing window for mid-
size conventional, hybrid, plug-in hybrid, and battery electric vehi-
cles and (2) allocation of those vehicles and of home and workplace
charging stations to the vehicle fleet based on annual VMT. Results
indicate best-possible scenarios for cost and GHG reductions given
existing driving patterns, rather than likely market outcomes.

We find, in agreement with the literature, that without sufficient
grid decarbonization plug-in vehicles do not offer substantial GHG
emissions reductions compared to HEVs. GHG reductions improve
with low-carbon electricity. Thus, grid decarbonization is needed to
make plug-in vehicles a relevant means of reducing GHG emissions
beyond grid-independent HEVs. Compared to CVs, HEVs offer cost
and emissions reductions in almost all scenarios and are an optimal
or near-optimal solution for minimizing cost across many scenarios.

We further find that under the current US electricity genera-
tion mix, workplace charging availability provides no GHG emis-
sions benefit in the optimized solution, but workplace charging
does provide additional benefits of optimistically up to 21% in
combination with low-carbon electricity. Workplace charging
availability changes the GHG-minimized vehicle allocation
slightly, allocating smaller capacity PHEVs and BEVs. Gas prices
above $3.25/gal (plus 5.2% per year) cause PHEVs to appear in the
minimum cost solution, but for plug-in vehicles to dominate over
HEVs, either gas prices of $7/gal (plus 5.2% per year) or gas prices
of $4.5/gal (plus 5.2% per year) in combination with low vehicle
and battery costs (DOE 2030 program goal levels, including
battery costs under $200/kWh) are needed. High carbon prices
(over $100/tCO2e) do little to drive plug-in vehicles to appear in
the cost-minimizing solution.

We find that BEVs are restricted by range requirements from
being a significant part of the minimum cost or GHG solutions. Even
when range requirements are dramatically reduced, requiring BEV
range adequate for only the average trip rather than the 95th
percentile trip, a fleet of entirely BEVs is much more expensive and
GHG-intensive than the other vehicle types, and BEVs are not GHG-
minimizers for the full fleet even when charged with zero-emissions
electricity. BEVs enter the GHG-optimal fleet only for short-range
vehicles and only in cases with grid decarbonization.
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