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We pose a reformulated model for optimal design and alloca-
tion of conventional (CV), hybrid electric (HEV), and plug-in
hybrid electric (PHEV) vehicles to obtain global solutions that
minimize life cycle greenhouse gas (GHG) emissions of the
fleet. The reformulation is a twice-differentiable, factorable,
nonconvex mixed-integer nonlinear programming (MINLP)
model that can be solved globally using a convexification-based
branch-and-reduce algorithm. We compare results to a random-
ized multistart local-search approach for the original formula-
tion and find that local-search algorithms locate global
solutions in 59% of trials for the two-segment case and 18% of
trials for the three-segment case. The results indicate that mini-
mum GHG emissions are achieved with a mix of PHEVs sized
for 25–45 miles of electric travel. Larger battery packs allow
longer travel on electrical energy, but production and weight of
underutilized batteries result in higher GHG emissions. Under
the current average U.S. grid mix, PHEVs offer a nearly 50%
reduction in life cycle GHG emissions relative to equivalent
conventional vehicles and about 5% improvement over HEVs
when driven on the standard urban driving cycle. Optimal allo-
cation of different PHEVs to different drivers turns out to be of
second order importance for minimizing net life cycle GHGs.
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1 Introduction

Plug-in hybrid electric vehicles (PHEVs) offer a potentially
promising technology for addressing global warming in the U.S.
transportation sector [1,2]. PHEVs are similar to ordinary hybrid
electric vehicles (HEVs), except the PHEV carries a larger battery
pack that can store energy from the electricity grid and propel the
vehicle partly on electricity instead of gasoline [3]. Under the av-
erage mix of electricity sources in the U.S., vehicles can be driven
with lower operation cost and fewer greenhouse gas (GHG) emis-
sions when powered by electricity rather than by gasoline [4].

Shiau et al. [5] posed an optimization model for conventional,
hybrid, and plug-in vehicle design and allocation of vehicles to

drivers in order to minimize net life cycle cost, greenhouse gas
emissions, and petroleum consumption. Like many optimization
models posed in the mechanical design literature, the resulting
formulation is difficult to solve globally, despite relatively small
dimensionality, because of undesirable properties, including non-
convexity, nonsmoothness, a mixture of discrete and continuous
variables, and integration in the objective function. While small
numbers of discrete variables can be handled through exhaustive
enumeration, if necessary, the resulting nonconvex nonlinear pro-
gramming (NLP) subproblems still present a challenge. We pose a
reformulation of the GHG minimization model presented in Ref.
[5] that can be solved globally using deterministic methods that
offer assurance of global solution quality.

There are three general approaches for solving nonconvex
NLPs: (1) use a local NLP solver to find local solutions and
invoke randomized multistart to seek global solutions [6]; (2) use
a stochastic algorithm such as genetic algorithms or simulated
annealing [7], or (3) use deterministic global optimization meth-
ods. Methods in group (1) and (2) are easy to implement, but they
do not guarantee global solutions in finite time, and comparison of
solutions across cases in sensitivity analysis is subject to uncer-
tainty in attainment of global solutions in each sensitivity case.
Methods in group (3) include gradient-based and derivative-free
algorithms. Derivative-free deterministic global search algorithms
that use partitioning, such as the divided rectangles method, per-
form well only in low dimensional spaces (<10 variables) and can
perform poorly on equality-constrained problems [8]. In contrast,
gradient-based global solvers, such as the branch and reduce opti-
mization navigator (BARON), can produce global solutions for
some significantly larger problems, but they require that objective
and constraint functions be twice-differentiable, factorable alge-
braic functions so that valid convex underestimation functions can
be automatically constructed to produce lower bounds in nodes of
the branch and bound tree [9].

We pose a twice-differentiable, factorable, nonconvex mixed-inte-
ger nonlinear programming (MINLP) reformulation of the PHEV
design and allocation problem that can be solved globally using
BARON. In Sec. 2, we summarize the original model and pose our
reformulation. In Sec. 3, we report solutions for minimumGHG emis-
sions and compare the solution performance to a randomized multi-
start approach with a local NLP solver. We then conclude in Sec. 4.

2 Model

The model posed in Shiau et al. [5] partitions the population of
drivers into a finite number of segments i 2 f1; 2;…ng, where
each segment i contains all drivers who travel between si� 1 and si
miles=day. The drivers in each segment i are assigned a vehicle
defined by design variable vector xi. The problem of minimizing
daily life cycle GHG emissions from the fleet is written as

minimize
xi;si8i2 1;…;nf g

Xn
i¼1

ðsi
si�1

fO xi; sð ÞfS sð Þds
� �

subject to g xið Þ � 0; h xið Þ ¼ 0; 8i 2 1;…; nf g
si � si�1; 8i 2 1;…; nf g

where s0 ¼ 0; sn ¼ 1

(1)

where fS(s) is the probability density function in the population of
drivers over the daily driving distance s, fO(xi,s) is the daily life
cycle GHG emissions associated with vehicle xi when driven s
miles=day, and g and h are inequality and equality constraints,
respectively, that ensure the design variables xi define a feasible
vehicle. The design variables for the conventional vehicle (CV)
and the HEV are determined a priori, since their GHG implica-
tions per mile do not depend on the distance driven. In contrast,
GHG emissions from PHEVs depend on the distance driven
between charges, since PHEVs use gasoline if the vehicle is
driven further than its all-electric range (AER). Data from the
National Household Travel Survey (NHTS) [10] are used to
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estimate fS(s)¼ ke�ks, where k¼ 0.0296, assuming one charge per
day. The PHEV design variable vector xi consists of x1¼ engine
size (kW), x2¼motor size (kW), x3¼ battery size (kWh),
x4¼ battery swing (%). Following Shiau et al. [5], the vehicle-spe-
cific daily GHG emissions are calculated as

fO x; sð Þ ¼ sE x; sð Þ
gEðxÞ

vE
gC

þ sG x; sð Þ
gGðxÞ

vG

� �
þ �VEH

hVEH sð Þ
� �

þ 1000x3jvBAT
hBRPL x; sð Þ

� �
(2)

where the three parenthetical terms represent emissions associated
with operation, vehicle production, and battery production, respec-
tively. Specifically, vE¼ 0.752 kg-CO2-eq=kWh, vG¼ 11.34
kg-CO2-eq=gal, vVEH¼ 8500 kg-CO2-eq=vehicle, and vBAT¼ 120
kg-CO2-eq=kWh are life cycle GHG emissions associated with
electricity, gasoline, vehicle production, and battery production,
respectively; gE and gG are the electrical and gasoline efficiency of
the vehicle, respectively; gC¼ 88% is the charging efficiency;
hVEH¼ sLIFE=s is the vehicle life in days, where sLIFE¼ 150,000
miles; hBRPL¼min(hVEH, hBAT) is the effective battery replace-
ment life; hBAT¼ (1000x3)jrEOL=(aDRV(lCDsEþ lCSsG)þ aCHGsE
(gEgB)

�1) is the full battery life; rEOL¼ 20% is the battery end-of-
life criterion; aDRV¼ 3.46� 10�5 and aCHG¼ 1.72� 10�5 are the
coefficients for relative energy capacity fade, based on degradation
data; lCD and lCS are energy processed per mile (kWh=mile) in
charge-depleting (CD) and charge-sustaining (CS) mode, respec-
tively; gB¼ 95% is the battery charging efficiency; j¼ 0.0216
kWh=cell is the Li-ion battery energy capacity; and sE and sG are
the distances traveled on electric power and gasoline power, respec-
tively, so that sE¼ (s)(s � sAER)þ (sAER)(s> sAER) and sG¼ (0)(s
� sAER)þ (s� sAER)(s> sAER) for a vehicle with an AER of
sAER¼ j(1000x3)x4gE for PHEVs and sAER¼ 0 for the CV and
HEV cases. For the PHEV, the quantities gE, gG, lCD, lCS, tCD, tCS,
and uCS are calculated as functions of x using cubic metamodels of
vehicle simulation data points, where tCD and tCS are the time to
accelerate the vehicle from 0 to 60 mph in CD and CS mode (sec-
onds), respectively, and uCS is the level of charge maintenance in
CS mode under an aggressive driving cycle (%). These quantities
are calculated a priori for the CV and HEV cases, as appropriate.
The constraints g consist of tCD(x) � 11 s and tCS(x) � 11 s, to
ensure comparable vehicles, and uCS � 32% to ensure sufficient
engine size.

2.1 MINLP Reformulation. The original model formula-
tion (Eq. (1)) involves integration, discrete decisions (vehicle
type, not shown in Eq. (1)), and piecewise-smooth functions
with derivative discontinuities due to AER and battery life. To
solve the problem globally, we pose a factorable, algebraic non-
convex MINLP reformulation that can be solved using a con-
vexification-based branch-and-reduce algorithm implemented in
general algebraic modeling system (GAMS)=BARON [11].
First, the exponential distribution form for the NHTS data fit
fS(s) allows the integral in Eq. (1) to be simplified in terms of
two algebraic formulae: the cumulative density function FS

FS sið Þ ¼
ðsi
0

fS sð Þds ¼ 1� e�ksi (3)

and the truncated expected value function FE

FE sið Þ ¼
ðsi
0

sfS sð Þds ¼ 1

k
� e�ksi si þ 1

k

� �
(4)

with these formulae the integral in Eq. (1) collapses to an
explicit form. While it is also possible to eliminate the integral
through numerical integration by discretizing the domain, the
proposed formulation allows use of fewer discrete variables and
achieves higher resolution. However, extension of the approach

to minimize a discounted cost objective is nontrivial, since the
integration variable appears in the discounting formula. We next
introduce four sets of binary variables to convert the problem to
a twice-differentiable MINLP. The first binary variable set til
identifies the vehicle type l [ {1,2,..,L} for each segment i, where
til [ {0,1} Vi,l and Rltil¼ 1 Vi. Here, we consider three vehicle
types l [ {1,2,3} for CV, HEV, and PHEV, respectively, and
write the objective function as a binary-weighted functionP

l(tl)(fl(xl, s)).
The second binary variable set zij [ {0,1} Vi,j handles one of the

derivative discontinuities by identifying in which of three regions
j [ {1,2,3} on the s-axis each segment i is located, relative to sAER
(Rjzij¼ 1 Vi).

(1) in region 1, sAER � si ) (zi1)(sAER(xi) – si-1) � 0;
(2) in region 2, si� 1 � sAER � si ) (zi2)(si� 1 – sAER(xi)) � 0

and (zi2)(sAER(xi) – si) � 0;
(3) in region 3, sAER � si ) (zi3)(si – sAER(xi)) � 0.

While these bilinear functions, representing a disjunction, pose
constraint qualification problems for NLP solvers that could be
addressed through reformulation [12,13], our use of the solver
BARON involves internal handling of these constraints through con-
vexification and outer approximation with cutting planes, removing
constraint qualification concerns. The third binary variable set qio
o [ {1,2,3} and Roqio¼ 1 Vi identifies the relative conditions
between battery life hBAT and vehicle life hVEH. The estimated bat-
tery life sBAT¼ shBAT, in miles. If s � sAER, this expression reduces
to sBAT¼ (1000x3)jrEOL=(aDRVlCDþ aCHG(gEgB)

�1). For s> sAER,
sBAT is monotonically increasing and asymptotically approaches
s1BAT¼ (1000x3jrEOL)=(aDRVlCS) as s!1. Given the shape of
sBAT (s1BAT> s0BAT), we can identify four possible relationships
between sBAT and vehicle life sLIFE:

(a) if sLIFE � s1BAT, then sBAT< sLIFE Vs;
(b) if s1BAT> sLIFE> s0BAT, then sBAT and sLIFE intersect at

sT¼ sLIFEsAER(aDRV(lCD� lCS)þ aCHG(gEgB)
�1)/(1000x3

jrEOL� aDRVlCSsLIFE), sBAT< sLIFE for 0 � s< sT, and
sBAT> sLIFE for s> sT

(c) if sLIFE¼ shBAT, then sBAT¼ sLIFE for 0 � s � sAER, and
sBAT> sLIFE for s> sT or

(d) if sLIFE< shBAT, then sBAT> sLIFE for all s.

The four conditions are illustrated in Fig. 1.

Fig. 1 Four conditions for the battery and vehicle VMT curves
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Given hBAT(s), these conditions can be represented by three
cases:

(1) in case 1 (o¼ 1), s1BAT � sLIFE (hBAT< hVEH) Vs
) (qi1)(hBAT(1) – hVEH) � 0 and hBRPL¼ hBAT

(2) for case 2 (o¼ 2), hBAT intersects hVEH at a point sT
) (qi2)(hVEH – hBAT(1)) � 0 and (qi2)(hBAT(0) – hVEH) �
0, so hBRPL¼ hBAT for s � sT, hBRPL¼ hVEH for s � sT and

(3) for case 3 (o¼ 3), shBAT � sLIFE (hBAT � hVEH) Vs
) (qi3)(hVEH – hBAT(0)) � 0 and hBRPL¼ hVEH.

The fourth binary variable set yik identifies in which region sT
lies when qi2¼ 1 (o¼ 2). The three conditions k [ {1,2,3} on the
binary variable set yik are:

(1) in region 1 (k¼ 1), sT(xi) � si� 1 ) (qi2)(yi1)(sT(xi) – si� 1)
< 0;

(2) in region 2 (k¼ 2), si� 1 � sT � si ) (qi2)(yi2)(si� 1

– sT(xi)) � 0 and (qi2)(yi2)(sT(xi) – si) � 0; and
(3) in region 3 (k¼ 3), sT(xi) � si ) (qi2)(yi3)(si – sT(xi)) � 0.

The combinations of j, k, and o result in 27 cases. For each seg-
ment i and for each of the cases j [ {1,2,3} k [ {1,2,3} o [ {1,2,3},
the integral in Eq. (1) reduces to a twice-differentiable closed
form factorable algebraic expression Fijko(xil, si� 1, si) using Eqs.
(3) and (4). The population-weighted operation GHG emissions
FOP for segment i are

FOPi ¼
ðsi
si�1

sE x; sð Þ
gEðxÞ

vE
gC

þ sG x; sð Þ
gGðxÞ

vG

� �
fS sð Þds

¼
X3
j¼1

zijFOPij xil; si�1; sið Þ

where FOPi1 ¼ vG
gGi

FE sið Þ � FE si�1ð Þð Þ

þ sAERi
vE

gEigC
� vG
gGi

� �
FS sið Þ � FS si�1ð Þð Þ

FOPi2 ¼ vE
gEigC

FE sAERið Þ � FE si�1ð Þð Þ

þ vG
gGi

FE sið Þ � FE sAERið Þð Þ

þ sAERi
vE

gEigC
� vG
gGi

� �
FS sið Þ � FS sAERið Þð Þ

FOPi3 ¼ vE
gEigC

FE sið Þ � FE si�1ð Þð Þ (5)

The population-weighted vehicle production GHG emissions
FVEH for segment i are

FVEHi ¼
ðsi
si�1

vVEH
hVEH sð Þ

� �
fS sð Þds

¼ vVEH
sLIFE

FE sið Þ � FE si�1ð Þð Þ
(6)

and the population-weighted battery production GHG emissions
FBAT for vehicle i are

FBATi ¼
ðsi
si�1

1000x3jvBAT
hBRPL x; sð Þ

� �
fS sð Þds

¼
X3
j¼1

X3
k¼1

X3
o¼1

zijyikqioFBATijko xil; si�1; sið Þ
(7)

where the 27 FBATijko terms fall into six cases:

Case (1a): hBRPL¼ hBAT and sAERi � si� 1

FBAT1ai ¼ vBAT
rEOL

aDRVwCSi FE sið Þ � FE si�1ð Þð Þ
"

þ sAERi aDRVwCDi þ aCHG gEigBð Þ�1 � aDRVwCSi

� �

� FS sið Þ � FS si�1ð Þð Þ
#

(8)

Case (1b): hBRPL¼ hBAT and si� 1 � sAERi � si

FBAT1bi ¼ vBAT
rEOL

�
aDRVlCDi þ aCHG gEigBð Þ�1

� �

FE sAERið Þ � FE si�1ð Þð Þ þ aDRVlCS FE sið Þ � FE sAERið Þð Þ

þ sAER aDRVlCDi þ aCHG gEigBð Þ�1 � aDRVlCSi
� �

FS sið Þ � FS sAERið Þð Þ
#

(9)

Case (1c): hBRPL¼ hBAT and si � sAERi

FBAT1c ¼ vBAT
rEOL

aDRVlCDi þ aCHGg
�1
Ei

� �
FE sið Þ � FE si�1ð Þð Þ (10)

Case (2a): hBRPL¼ {hBAT, hVEH} and sAERi � si� 1

FBAT2ai ¼ vBAT
rEOL

aDRVlCSi FE sTið Þ � FE si�1ð Þð Þ
�

þ sAERi aDRVlCDi þ aCHG gEigBð Þ�1 � aDRVlCSi
� �

� FS sTið Þ � FS si�1ð Þð Þ
	

þ 1000x3jvBAT
sLIFE

FE sið Þ � FE sTið Þð Þ (11)

Case (2b): hBRPL¼ {hBAT, hVEH} and si� 1 � sAERi � si

FBAT2bi ¼ vBAT
rEOL

�
aDRVlCDi þ aCHG gEigBð Þ�1

� �

� FE sAERið Þ � FE si�1ð Þð Þ

þ aDRVlCSi FE sTið Þ � FE sAERið Þð Þ
þ sAER aDRVlCDi þ aCHG gEigBð Þ�1 � aDRVlCSi

� �

� FS sTið Þ � FS sAERið Þð Þ
#

þ 1000x3jvBAT
sLIFE

FE sið Þ � FE sTið Þð Þ (12)

Case (3): hBRPL¼ hVEH

FBAT3i ¼ 1000x3jvBAT
sLIFE

FE sið Þ � FE si�1ð Þð Þ (13)

Table 1 presents the summary of the discrete conditions with cor-
responding hBRPL and the components in the total cost function.
Among the o¼ 2 cases, three are infeasible because sT> sAER is
required when sT exists.
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The complete MINLP formulation is

minimize
xil ;til;zij ;yik ;qio ;si
8i2 1;…;nf g

8l;j;k;o2 1;2;3f g

Xn
i¼0

X3
l¼1

X3
j¼1

X3
k¼1

X3
o¼1

tilzijyikqioFijko xil; si�1; sið Þ

subject to xLBl � xil � xUBl ; tCDi � 11; tCSi � 11; uCSi � 32%;X3
l¼1

til ¼ 1;
X3
j¼1

zij ¼ 1;
X3
k¼1

yik ¼ 1;
X3
o¼1

qio ¼ 1; si�1 � si;

zi1ð Þ sAERi � si�1ð Þ � 0; zi2ð Þ si�1 � sAERið Þ � 0;

zi2ð Þ sAERi � sið Þ � 0; zi3ð Þ si � sAERið Þ � 0;

qi1ð Þ s1BATi � sLIFE
� � � 0; qi2ð Þ s0BATi � sLIFE

� � � 0;

qi2ð Þ sLIFE � s1BATi
� � � 0; qi3ð Þ sLIFE � s0BATi

� � � 0;

qi2ð Þ yi1ð Þ sTi � si�1ð Þ � 0; qi2ð Þ yi2ð Þ si�1 � sTið Þ � 0;

qi2ð Þ yi2ð Þ sTi � sið Þ � 0; qi2ð Þ yi3ð Þ si � sTið Þ � 0;

til; zij; yik; qio 2 0; 1f g; si 2 R; xil 2 Rpl ;

8i 2 1;…; nf g; 8l; j; k; o 2 1; 2; 3f g
where s0 ¼ 0; sn ¼ 1; sAERi ¼ 103ti3j xi3½ �3 xi3½ �4gEi;

s0BATi ¼
103 xi3ð Þ3jrEOL

aDRVlCDi þ aCHGgEi�1
; s1BATi ¼

103 xi3ð Þ3jrEOL
aDRVlCSi

;

sTi ¼ sLIFEsAERi aDRV lCDi � lCSið Þ þ aCHGgEi
�1ð Þ

103 xi3ð Þ3jrEOL � aDRVlCSisLIFE

gEi ¼
X

l
tilf1l xilð Þ; gGi ¼

X
l
tilf2l xilð Þ;

tCDi ¼
X

l
tilf3l xilð Þ; tCSi ¼

X
l
tilf4l xilð Þ;

lCDi ¼
X

l
tilf5l xilð Þ; lCSi ¼

X
l
tilf6l xilð Þ;

uCSi ¼
X

l
tilf7l xilð Þ;

Fijko xil; si�1; sið Þ ¼
ðsi
si�1

fO xi; sð ÞfS sð Þds (14)

where the expression for Fijko reduces to a twice-differentiable alge-
braic expression in each case, as defined in Table 1, f11¼ f12¼ 0,
f21¼ 29.5 mpg (CV), f22¼ 60.1 mpg (HEV), f31¼ f32¼ 0,
f41¼ f42¼ 11 s, f51¼ f52¼ f61¼ f62¼ 0, f71¼ f72¼ 1, and fm3(xil) are
defined using cubic metamodels for PHEVs (l¼ 3 and ti3¼ 1). The
notation [xi3]3 and [xi3]4 refers to the design variable vector x for seg-
ment i vehicle type 3 (PHEV), vector element 3 and 4, respectively.

3 Results and Discussions

We consider three driver segment scenarios, n¼ 1, 2, and 3, and
solve the MINLP model (Eq. (14)) using BARON to obtain global

solutions. The optimal vehicle type, design and allocation ranges
for each case are summarized in Table 2. The first two data columns
show the performance values of CV and HEV, for reference.

For the single-segment case, we found that a PHEV36 has the
lowest lifecycle GHG emissions, where the notation PHEVx is
used to designate a PHEV with a battery pack sized for x miles of
all-electric travel. GHG emissions from the HEV scenario are
about 44% lower than the CV scenario, and GHGs from the
PHEV scenario are 5% lower than HEVs. For the two-segment
case, the optimal solution is to allocate a PHEV40 to drivers who
can charge every 87 miles or less (92% of drivers and 74% of ve-
hicle miles traveled (VMT) per day) and allocate a smaller-range
PHEV25 to drivers who charge less frequently. This optimal allo-
cation of two vehicles reduces daily GHG emissions by only an
additional 0.1% compared to allocating all drivers a PHEV36.
The solution of three-segment case similarly produces small addi-
tional GHG reduction. A significant reduction in GHG emissions
is achieved by allocating PHEVs to drivers rather than HEVs or
CVs, and there is only a marginal additional gain from optimal
allocation in the two- and three-segment cases.

Assigning all drivers high-AER PHEVs can significantly reduce
petroleum consumption, but this is not necessarily the best solu-
tion for minimizing GHGs because reducing the number of
underutilized batteries in these vehicles reduces the emissions
associated with battery production as well as the emissions associ-
ated with reduced vehicle efficiency caused by carrying heavy
batteries. While the largest group of vehicles travel short distances
each day, the majority of the GHG emissions are produced by
those vehicles that travel between about 25 and 45 miles=day. We
further tested the single-segment case with a low carbon electric-
ity mix scenario 218 kg-CO2-eq=kWh [4]. The optimal solution
shows a large-capacity PHEV87 (upper bound) is best to reduce
GHG emissions to 4.53 kg-CO2-eq per vehicle per day, 69%
lower than CV and 45% lower than HEV.

To compare the solution performance of the randomized multi-
start method with global solutions, we use 1000 random starting
points uniformly distributed in the design variable domain with
the MATLAB SQP solver fmincon to minimize GHG solutions using
Eq. (1) rather than Eq. (14). The integral in Eq. (1) is approxi-
mated by trapezoidal numerical integration, and each combination
of vehicle type ordering (e.g., CV-PHEV, HEV-PHEV, etc.) is
solved separately, so that the resulting formulation is a nonconvex
NLP for each combination of vehicle types (the remaining deriva-
tive discontinuities in some of the functions were not observed to
cause numerical problems when using finite difference methods).
The solution quality is evaluated using relative error |F�F*|=F*,
where F is the objective value found by the local solver in each

Table 1 Discrete conditions for the piecewise-smooth PHEVobjective function

o j k hBRPL Total GHG function Fijko

1 s1BATi � sLIFE 1 sAERi � si� 1 Fi1k1¼FVEHiþFOPi1þFBAT1ai

2 si� 1 � sAERi � si hBAT Fi2k1¼FVEHiþFOPi2þFBAT1bi

3 si � sAERi Fi3k1¼FVEHiþFOPi3þFBAT1ci

2 s0BATi � sLIFE � s1BATi 1 sAERi � si� 1 1 sTi � si� 1 hVEH Fi112¼FVEHiþFOPi1þFBAT3i

2 si� 1 � sTi � si {hBAT, hVEH} Fi122 ¼FVEHiþFOPi1þFBAT2ai

3 si� sTi hBAT Fi132¼FVEHiþFOPi1þFBAT1ai

2 si� 1 � sAERi � si 1 sTi � si� 1 Infeasible
2 si� 1 � sTi � si {hBAT, hVEH} Fi222¼FVEHiþFOPi2þFBAT2bi

3 si � sTi hBAT Fi232¼FVEHiþFOPi2þFBAT1bi

3 si � sAERi 1 sTi � si� 1 Infeasible
2 si� 1 � sTi � si Infeasible
3 si � sTi hBAT Fi332¼FVEHiþFOPi3þFBAT1ci

3 s0BATi � sLIFE 1 sAERi � si� 1 Fi1k3¼FVEHiþFOPi1þFBAT3i

2 si� 1 � sAERi � si hVEH Fi2k3¼FVEHiþFOPi2þFBAT3i

3 si � sAERi Fi3k3¼FVEHiþFOPi3þFBAT3i
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multistart and F* is the global solution. The results are presented
in Fig. 2. All multistart points reached feasible solutions. For the
single-segment model, and all multistart solutions reached the
global optimum. For the two-segment case, 59% of the multistart
solutions reach the global optimum within 10�6. For the three-
segment case, the global solution is found 18% of the time. At an
18% success rate, achieving 99.95% probability of finding the
global minimum in each of ten sensitivity scenarios would require
50 randomized multistart runs per scenario. Using different NLP
solvers or multistart randomization may affect the percentages, but
results suggest that when the number of segments and decision vari-
ables increase, the probability of random starting points reaching
global solution decreases. In this problem, local minima identified
are all within 1% of the global minimum; however, variations of
the problem could generate global minima of lower quality, and
comparison across vehicle type cases and sensitivity cases could be
affected if global solutions are not identified for every case.

4 Conclusions

We reformulate an optimization model to determine globally
optimal vehicle design and allocation of conventional, hybrid, and
plug-in hybrid vehicles to drivers in order to minimize life cycle
GHG emissions. The reformulation is a twice-differentiable fac-
torable algebraic nonconvex MINLP that can be solved globally
using convexification with a branch-and-reduce algorithm imple-
mented in GAMS=BARON. We find that minimum life cycle
GHG emissions can be achieved with PHEVs sized for �25–45
miles of electric travel. The results indicate that moving drivers

from conventional vehicles to HEVs or PHEVs implies significant
reductions in life cycle GHGs, but optimal allocation of different
PHEV designs to different drivers is of second order importance.
While larger battery packs may be better for reducing petroleum
consumption, larger packs do not necessarily result in lower
GHGs, and the best solution is a combination of midsized packs
that reduce GHGs associated with production and weight of
underutilized batteries. Grid decarbonization makes larger battery
packs more competitive for GHG reduction.

Adoption of PHEVs will depend critically on cost. We examine
cost and petroleum consumption objectives in a companion paper
[5] and examine sensitivity of minimum cost and GHG solutions
to variation in parameters such as battery prices, fuel and electric-
ity prices, electricity grid mix, and carbon allowance prices. In
comparing a randomized multistart approach to deterministic global
optimization, we find that the probability of randomized multistart
finding global solutions is relatively high for this problem, although
it decreases as the number of segments and the number of sensitivity
cases increase. The global MINLP framework presented here pro-
vides confidence in comparing solutions across sensitivity scenarios.
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