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Successful product line design and development often require a balance of technical and market tradeoffs.
Quantitative methods for optimizing product attribute levels using preference elicitation (e.g., conjoint) data
are useful for many product types. However, products with substantial engineering content involve critical
tradeoffs in the ability to achieve those desired attribute levels. Technical tradeoffs in product design must be
made with an eye toward market consequences, particularly when heterogeneous market preferences make
differentiation and strategic positioning critical to capturing a range of market segments and avoiding
cannibalization.
We present a unified methodology for product line optimization that coordinates positioning and design
models to achieve realizable firm-level optima. The approach overcomes several shortcomings of prior
product line optimization models by incorporating a general Bayesian account of consumer preference
heterogeneity, managing attributes over a continuous domain to alleviate issues of combinatorial complexity,
and avoiding solutions that are impossible to realize. The method is demonstrated for a line of dial-readout
scales, using physical models and conjoint-based consumer choice data. The results show that the optimal
number of products in the line is not necessarily equal to the number of market segments, that an optimal
single product for a heterogeneous market differs from that for a homogeneous one, and that the
representational form for consumer heterogeneity has a substantial impact on the design and profitability of
the resulting optimal product line — even for the design of a single product. The method is managerially
valuable because it yields product line solutions efficiently, accounting for marketing-based preference
heterogeneity as well as engineering-based constraints with which product attributes can be realized.
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1. Introduction

Marketplace globalization, the proliferation of niche markets
driven by the heterogeneity of preferences, increased competitive
pressures, and demand for differentiated products have rendered
isolated design and production of individual products essentially
obsolete in many instances. Across industries, standard practice
involves lines of product variants that reduce cost via economies of
scale and scope, reaching multiple market segments and deterring
competitors (Urban & Hauser, 1993; Simpson, 2004). Product line
planning requires care because each product vies not only with
competitors but also with other products in the same line.

The scope and applicability of current methods in product line
optimization have known limitations, both in engineering and in
management science. Engineering-based approaches focus on the
tradeoff between increased commonality among products and the
resulting decreased ability to meet (usually hypothetical and
exogenous) performance targets for each product variant. Most of
these approaches lack data-driven models of market preferences and
consequently focus on reducing cost by increasing part commonality,
designing platforms, or increasing modularity for mass customization.
In contrast, product line optimization methods in the management
science and marketing literatures rarely address product design
details not directly observable by consumers. These approaches
typically presume that any combination of product attributes in a
conjoint study can somehow be attained by engineering designers
post hoc. While this may be so for many simple or well-established
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products, it is questionable for those with even moderately complex
engineering tradeoffs, where value to consumers cannot be balanced
against cost and constraints without the joint consideration of
marketing and engineering factors. Furthermore, existing approaches
have not taken full advantage of recent advances in econometric
modeling of consumer preference heterogeneity, particularly hierar-
chical Bayesian methods, and often require exogenous individual-
level or homogeneous segment-level preference data (see Kaul & Rao,
1995 for a review of the early literature).

In this article,wedevelop anovel, generalmethod fordesigning lines
of products formarketswithheterogeneouspreferenceswhen technical
complexity restricts the attainable space of product attributes. This
method is modular and scalable, able to handle various sorts of product
attributes, and agnostic about optimization methods selected to solve
marketing and engineering subproblems. The method makes powerful
use of formal decomposition and coordination methods via analytical
target cascading to take advantage of the structure underlying the
complete product line design problem to improve computational
efficiency, algorithmic stability, and model organization and coordina-
tion. We proceed by reviewing relevant literature on product line
optimization in the marketing and engineering domains, suggesting
how the proposed approach fills a number of extant gaps. Because the
scopes, perspectives, modeling methods, and objectives differ substan-
tially among product development disciplines (Krishnan & Ulrich, 2001
provide a detailed overview), it is inevitable that some conflicts of
terminology will exist. In this article, we take product positioning to be
the process of choosing values for physical (as opposed to perceptual)
product attributes observed directly by the consumer, whereas product
design involves decisions about the product that are not observed
directly but that nevertheless influence product attributes observed by
the customer.

Let us first consider a concrete example, fleshed out in detail in our
application. Fig. 1 depicts a dial-readout bathroom scale with the cover
removed. In themarketplace, consumers observe only external product
attributes such as readability (number size) and weight capacity. For
product positioning, we need not be concerned with how these
attributes are realized but only how consumers respond to them.
However, in order to specify product attribute profiles that are
realizable, it is necessary to account for engineering tradeoffs in the
productdesign. For example, the dial in Fig. 1must be small enough tofit
within the scale housing, so there is a limit to how large numbers on the
dial can be. For a given housing, increasing the size of numbers on the
dial requires reducing the weight capacity, while increasing the weight
capacity requires smaller numbers. Increasing both these consumer
preferred attributes cannot therefore be achieved simultaneously.
Fig. 1. Dial readout scale, internal view.
1.1. Product line optimization literature

Among the earliest conceptualizations for product line optimiza-
tion in the marketing/management literature was that of Green and
Krieger (1985), who posed the product line selection problem as a
binary programming problem involving selection of products from a
candidate set to be included in the line in order to maximize the
seller's (or buyers') welfare. Here, the set of candidate products with
their associated utility values is determined exogenously, and product
demand is predicted using a first choice model, where each individual
is assumed to choose deterministically the alternative with the
highest associated utility. Variants of the original model were later
proposed by Dobson and Kalish (1988) and by McBride and Zufryden
(1988), who offer alternative integer programming techniques and
heuristics for solving the problem. Dobson and Kalish (1993) also
introduce fixed and variable costs for each candidate product.

While these initial methods assumed each product's utility had
been determined exogenously, Kohli and Sukumar (1990) instead
used conjoint part-worths and introduced a single-stage binary
programming formulation to select product lines based on their
attribute levels. Chen and Hausman (2000) made use of choice-based
conjoint analysis, arguably most similar to the choice task consumers
perform in practice and often claimed to be the best method for
extracting individual-level consumer preferences (Green & Krieger,
1996). Chen and Hausman proposed a binary programming formu-
lation solvable by nonlinear programming techniques. Because their
approach requires homogeneous preferences, it cannot be used to
design product lines meeting the disparate needs of most real
consumer populations. Among the more recent contributions are
applications of genetic algorithms (Steiner & Hruschka, 2002, 2003)
and particle swarm algorithms (Tsafarakis, Marinakis, & Matsatsinis,
2010) to locate a population of near-optimal product line designs.
Other approaches have also been proposed to model products
qualitatively in terms of abstract “quality levels”, although these are
primarily used to analyze structural properties rather than offer
computational decision support tools (Krishnan & Zhu, 2006 provide a
recent review).

The bulk of the engineering literature on product line design
focuses on product families and platforms and is generally designed
around stochastic methods or gradient-based constrained nonlinear
programming techniques to handle continuous formulations. The
focus on continuous variables increases applicability for practical
engineering problems, avoids combinatorial complexity found in
many positioning approaches and manages complex relationships
among attainable combinations of product attributes that cannot be
easily handled with attribute discretization. Most models focus on the
tradeoff between increased commonality among products in a line
and the resulting decreases in the ability to meet distinct performance
targets set exogenously for each product variant (see Simpson, 2004;
Simpson, Siddique, & Jiao, 2005 for a review).

One difficulty with integrating models from various product
development disciplines is that the combined model can be large and
complex, causing optimization difficulties. Recent efforts have linked
engineering optimization models to market demand models for single
products (e.g., Guet al., 2002;Wassenaar&Chen, 2003; Li&Azarm, 2000;
Michalek, Feinberg, & Papalambros, 2005). Gu et al. (2002) proposed a
method for maintaining separate models for marketing and engineering
decisions, coordinating them using the collaborative optimization (CO)
technique for multidisciplinary design optimization, although they do
not propose details for modeling and data collection for the marketing
component. Michalek et al. (2005) proposed a similar decomposition
approach using analytical target cascading (ATC) to coordinate market-
ing and engineering models for a single product, assuming consumer
preferences to be homogeneous. They point out a preference for the ATC
approach over CO because ATC is defined for an arbitrary hierarchy of
subsystems, andconvergenceproofs ensure that coordinationwill lead to
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a solution that is optimal for the firm (Li et al., 2008). Shiau andMichalek
(2009a, 2009b) identify equilibria for single-product firms in Nash
competition on price and product design decisions under mixed logit
demand, finding that engineering design decisions are separable from
strategic positioning and retail distribution channels only when
consumer preference parameters are heterogeneous.

Recent studies have examined aspects of the product line design
problem and its attendant optimization issues, although without fully
addressing modeling and estimation of preference heterogeneity for
horizontally differentiated products (i.e., those that differ in attributes
valued by various consumer groups) and engineering constraints that
impose tradeoffs in the ability to achieve desirable combinations of
product attributes (e.g., Kokkolaras, Fellini, Kim, Michelena, &
Papalambros, 2002; Li & Azarm, 2002; Belloni, Freund, Selove, &
Simester, 2008; Wang, Camm, & Curry, 2009; Kim & Chhajed, 2002;
Chhajed & Kim, 2004; Fruchter, Fligler, &Winer, 2006). One exception
is the work of Luo (2011), who considers joint engineering and
marketing solutions with consumer heterogeneity using stochastic
algorithms and who additionally addresses “robustness” (whether
products in the line break down under known usage situations). Our
approach addresses a continuous design space, offering improved
computational efficiency and stability, a structure for organizing and
coordinating models from different disciplines, and provable conver-
gence to local minima.1 The proposed ATC approach is preferred over
prior methods when (1) the attribute space is significantly con-
strained by physical restrictions on the engineering design (e.g.,
weight capacity is limited by number size), (2) when the design
decisions and product attributes exist primarily along a continuum
(e.g., number size or weight capacity), and/or (3) when modelers will
develop engineering and market models separately and benefit from
well-defined interfaces for coordination and modularity to support
model additions.

Among themain points of the present paper is simply that, if afirm is
going todesignmultiple products aspart of a line, it needs to understand
not onlywhichmarket niches theywill serve, but alsowhether they can
be realized. That is, despite the advances of recent literature, a number of
key problems remain. Specifically, current approaches to the product
line problem lack coordination with engineering in terms of product
feasibility; do not easily accommodate a sophisticated account of
preference heterogeneity, entail substantial computational problems
and require changes fromthegroundup todealwithnewstructures and
phenomena. Our proposedmethodology resolves each of these issues in
the following sections.

1.2. Proposed methodology

In this article, we propose a comprehensive methodology for
product line design, using ATC to coordinate attribute selection for
each of the products desired by a heterogeneous market while
ensuring they can each be realized by a feasible engineered design.
The proposed approach avoids the combinatorial complexity of
binary/integer formulations in the marketing literature while extend-
ing applicability to continuous formulations and avoiding the need to
assume monotonic preferences. Importantly, our approach allows for
a general representation of consumer tastes through the use of
Bayesian mixture models. The decomposition-based ATC approach
further offers the organizational and computational benefits of
maintaining separate subsystems for positioning and design of each
product in the line, reducing the dimensionality of each subspace and
allowing each subsystem to be efficiently solved in parallel.

We adopt a random utility framework (Train, 2003) for estimating
market demand for the product line, where the utility of each product to
each consumer depends on the product's attributes, the consumer's
1 Luo (2011) tests the “all at once” solution approach against ATC, finding the latter
to offer computational efficiencies.
idiosyncratic preferences for those attributes, and a random error
component. A random utility framework allows for uncertainties due to
factors unobservable to the analyst, and it avoids the discontinuities
intrinsic to a deterministic framework (e.g., Dobson & Kalish, 1988,
1993; Green & Krieger, 1985; Kohli & Sukumar, 1990; Li & Azarm, 2002;
McBride & Zufryden, 1988), enabling the use of efficient gradient-based
nonlinear programming optimization tools. Importantly, a random
utility framework allows for the explicit modeling of consumer taste
distributions or heterogeneity. As our results illustrate, the various
representations available to model taste differences can have a
substantial, and substantive, impact on the final optimal product line
and its profitability, especially if one chooses an overly parsimonious
heterogeneity representation. The impact of preference heterogeneity
on line configuration has not received much attention in the product
line literature. Even though models with continuous and discrete
heterogeneity representations can predict choices almost equally well
(Andrews, Ainslie, & Currim, 2002; Andrews, Ansari, & Currim, 2002),
the resulting optimized product lines from different heterogeneity
representations may be very different.2

The proposed product line designmethodology entails four stages:
first, consumers choose among products in a conjoint setting; second,
heterogeneous preference coefficients in the model are estimated;
third, demand models are formulated by interpolating preference
coefficients using splines; and fourth, ATC coordinates optimization
over the space of feasible product designs to yield optimal product
attributes. The first three stages are viewed as preprocessing for the
ATC model, as shown schematically in Fig. 2, with symbols defined
later in the text (see also Appendix A). In the context of the illustrative
example in Fig. 1, these three preprocessing stages concern the
product positioning, i.e., determining consumers' preferences for
weight capacity and number size. Then, given these preferences, ATC
coordinates product positioning and design so that the dial (whose size
is limited by weight capacity and number size) is small enough to fit
inside the scale housing until firm level goals (typically, concerning
profitability) are achieved. We proceed by defining the ATC method-
ology in Section 2, conditional on a model to predict demand; next, we
describe alternative discrete choice model specifications for demand
prediction in Section 3; and finally, we demonstrate the methodology
with an application to dial-readout scales using models and data from
the literature (Michalek et al., 2005) in Section 4 and discuss results and
their marketing implications in Section 5.
2. ATC coordination of product positioning and design

ATC requires a mathematical or computational model of each
subsystem, and in practice, these can be numerous. Themodeler's task
is to organize the various subsystem models into a hierarchy where
each element in the hierarchy represents a (sub)system that is
optimized to match targets passed from the parent (super)system
while setting targets that are attainable by subsystem child elements
(Kim, Michelena, Papalambros, & Jiang, 2003). In our application, the
joint product line positioning and design problem is decomposed into
two types of interrelated subsystems or subproblems: (1) a product
positioning subproblem that sets product attribute targets for each
product in the line and (2) a set of product design subproblems, one
for each product in the line, that each aims to achieve its targets
subject to constraints. It has been shown that iteratively solving ATC
subproblems under specific coordination strategies will converge to
directly influence one another; and (4) production can be scaled up or down to suit
demand. As such, our formulation is well-suited to stable, differentiated durables and
is less appropriate for commodities or rapidly developing product classes.
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the solution of the joint problem under typical conditions (Li et al.,
2008). In the present case, market positioning and the engineering
design of each product in the line can be solved separately and in
parallel, producing a solution that is optimal for the joint problem. In
practice, the joint problem can be far more difficult to formulate and
solve, sometimes impractically so, due to high dimensionality, scaling
difficulties, and the need for modeler expertise in all core disciplines.

In general, ATC can accommodate an arbitrarily large hierarchy,
where parent elements set targets for child elements. For example, the
methodology has been demonstrated for large hierarchical systems
such as vehicle design (Kim, Rideout, Papalambros, & Stein, 2003) and
architectural design (Choudhary,Malkawi, & Papalambros, 2005). In the
product line case, each design in the line can bedecomposed into a set of
subsystems and components, or additional marketing models could be
included, say, for promotion and distribution. We focus on the case of a
singlemarketingmodel for product positioning and a set of engineering
models for design of each product. A schematic depiction of the process
appears in Fig. 3 (all symbols are introduced and discussed in detail
below). The positioning subsystem involves the determination of
the price and (target) product attributes for the full product line to
Fig. 3. ATC formulation of the product positioning and engineering design product develop
product attributes (zMj ) for all products in the line that maximize profit (Π) with a relaxatio
The engineering design subproblem (bottom) is to find values for design variables (xj) th
subproblem, given engineering design constraints g and h.
maximize a knownobjective function,which canbeprofit or someother
measure of interest to the firm, while each design subsystem requires
determining a feasible design— one conforming to known constraints—
that exhibits product attributes as close as possible to the targets set in
the positioning subsystem.Decomposition into the ATC structure can be
evenmore important in the product line case than in the single product
case because including engineering models for the design of multiple
products in a single optimization statement creates a high-dimensional,
highly constrained space; in contrast, with ATC decomposition of the
line, the space of each individual product design remains unchanged as
newproducts are added to the line. Another chief organizational benefit
of ATC is that it segregates models by discipline: marketers can build
positioning models based on, for example, conjoint analysis and new
product demand forecasting; engineers can formulate models for
product design and production; and other functional groups can focus
on what they know how to dowell. No functional area need become an
expert in modeling the others because ATC coordinates models with
well-defined interfaces. The following sections lay out the design and
positioning subsystems, as explicitly illustrated in Fig. 3. A summary of
the various symbols used appears in Appendix A.
ment problem. The market positioning subproblem (top) is to find the price (pj) and
n function (π) to manage deviation from values achievable by engineering design (zEj ).
at minimize deviation from the product attribute targets (zMj ) set in the positioning

image of Fig.�2
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2.1. Market positioning subsystem

The market positioning objective is to maximize profit Π with
respect to the price pj and the vector of product attribute targets zMj
for each product j in the product line j={1,2,…,J}. Although firms can
specify arbitrarily sophisticated profit functions based on their
experience, internal accounting and historical demand, we use a
simple profit (Π) formulation here — revenue minus cost — so that

Π = ∑J
j = 1 pj−cVj

� �
qj−cIj

� �
;

where pj is the (retail) price of product j, cVj is the unit variable cost of
product j, c Ij is the investment cost for product j, which represents all
costs of setting up amanufacturing line for product j, and qj is quantity
of product j sold (demand), which is a function of the product
attributes zMk and price pk of all products k∈ {1,2,…, J}. We presume
that product commonalities enabling investment cost sharing and
improving economies of scale do not exist, so each new product
design requires new manufacturing investment, although this can
readily be relaxed, given appropriate cost-specific information. In
general, cVj and c Ij can be considered functions of market conditions
or engineering decisions, although in the example, they are taken as
constants. Alternative models for calculating the quantity of product j
sold (qj) for each product jwill be developed in Section 3. To account for
the need to match product attribute targets zMj with the attributes of
realizable engineering designs zEj , the consistency condition zMj−zEj=0 is
relaxed and moved into the objective function using a consistency
constraint relaxation π(zMj−zEj). This relaxation can be handled in a
variety of ways (see Li et al., 2008 for a review of approaches and
mathematical properties), and we adopt the augmented Lagrangian
approach with diagonal quadratic approximation, described below.
Finally, the positioning subsystem for a single-producer scenario,
conditional on a model for demand, is written as

maximize
pj ;z

M
j ∀j∈ 1;…; Jf g

∑
J

j=1
pj−cVj

� �
qj−cIj−π zMj −zEj

� �� �

whereqj = SPj pk; z
M
k ∀k∈ 1;2;…; Jf g

� �

where S is the (exogenous) market size and Pj is the share of choices for
product j. In Section 3, we address how conjoint analysis, discrete choice
modeling and Bayesian (MCMC) methods can be used to represent the
functional relationship between Pj and the variables zM and p for
positioning a product line. The market positioning subsystem is
summarized in the top part of Fig. 3.

2.2. Engineering design subsystems

Conceptually, the objective of each engineering subsystem
involves finding a feasible design that exhibits product attributes
matching the targets set by the market positioning subproblem as
closely as possible, which is schematically depicted in the bottom part
of Fig. 3. Here, the vector of product attributes zEj for product j
represents a set of objective, measurable aspects of the product, which
are observable by the customer and result from engineering design
decisions. In each engineering design subsystem j, a search is
conducted with respect to a vector of design variables xj, which
represents decisions made by the designer that are not directly
observable by consumers but that affect the attributes that consumers
do observe, i.e., zEj. An engineering analysis simulation response
function r(xj) is used to calculate attributes zEj as a function of xj.
The design variable vector xj is restricted to feasible values by a set of
constraint functions g(xj)≤0 and h(xj)=0, and so values for product
attributes zEj =r(xj) are implicitly restricted to values that can
be achieved by a feasible design. While construction of x, r(x), g(x)
and h(x) to represent a particular product is necessarily case-specific,
general principals and guidelines are well established in the literature
(Papalambros & Wilde, 2000; Ravindran, Ragsdell, & Reklaitis, 2006).
Each engineering design subsystem minimizes the consistency
constraint relaxation function, which works to minimize deviation
between the positioning targets zMj set by marketing, which are held
constant in each engineering design subsystem, and the attributes
achieved by engineering zEj . The engineering optimization problem
for product j can then be written as

minimize
xy

π zMj −zEj
� �

subject to g xj
� �

≤0;h xj
� �

= 0;

where zEj = r xj
� �

:

2.3. Complete ATC formulation

Fig. 3 summarizes the mathematical description of the complete
formulation, showing the flow of the ATC-based product line
optimization model for a single producer, where the number of
products in the line J is determined through a parametric study: i.e., J
is held fixed during optimization, separate optimization solutions are
found for each value of J∈ {1,2,…}, and the value of J that produces the
solution with the highest profit is selected. In this way, we determine
not only the optimal designs of products in a given line but the
optimal line size as well.

As stated above, coordination of the subsystems can be handled
through a variety of approaches for relaxing the consistency constraint
zMj−zEj=0. Here, we use the augmented Lagrangian approach with
diagonal quadratic approximation for improved stability and computa-
tional efficiency, where π(zMj−zEj)=λT(zMj−zEj)+||w •(zMj−zEj)||22, λ is
the Lagrange multiplier vector, w is a weighting coefficient vector, • is
the Hadamard product (i.e., (A•B)i=AiBi), and the quadratic term is
linearized at each iteration to enable separability of the subsystems for
parallel processing (Li et al., 2008). The coordination procedure is as
follows.

1. Initialize all variables.
2. Solve the market positioning subproblem and each engineering

design subproblem in parallel using an NLP solver.
3. Updateλusing themethodofmultipliersλ(κ+1)=λ(κ)+2w(κ)•w(κ)•

(zMj (κ)−zEj(κ)) and update w using w(κ+1)=γw(κ) with γN1 as
needed to provide stability and reduce duality gaps, where (κ)
represents the iteration number.

4. If converged, stop, else return to step 2.

3. Models of product demand

Green and Krieger's comparative study of alternative conjoint
methods for eliciting consumer preferences concluded that choice-
based conjoint offers the best method for the extraction of individual-
level consumer preferences (Green & Krieger, 1996). We used it as
follows. Respondents are presented with a series of questions or
“choice sets” t={1,2,…,T}. In each choice set t, the respondent is
presented a set of product alternatives j∈J t, with attributes set at
discrete levels and systematically varied. The resulting data are each
respondent's observed choices in each choice set:Φijt, whereΦijt=1 if
respondent i chooses alternative j in choice set t and Φijt=0
otherwise. These data {Φijt} are then used to estimate the parameters
of the choicemodel for the positioning subsystem, as illustrated in Fig. 2.

In the random utility choice model, individuals i={1, 2,…, I}
derive from each product j={1, 2,…, J} some utility value uij that is
composed of an observable, deterministic component vij and an
unobservable random error component εij, so that uij=vij+εij. Each
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individual will choose the alternative that gives rise to the highest
utility (i.e., alternative j is chosen by individual i if uijNuik for all k≠ j).
The deterministic utility νij derived by individual i from product j is
written as

vij = ∑Z
ζ=0∑

Ωζ

ω=1βjζωδjζω;

where the binary dummy δjζω=1 indicates alternative j possesses
attribute ζ at levelω, and βiζω is the part-worth coefficient of attribute
ζ at level ω for individual i, which is estimated from the conjoint
choice data Φ. The model thus accords with the typical main-effects
conjoint set-up dominant in the literature, although interaction
effects may also be included as needed. In δjζω the elements of the
product attribute vector zMj are enumerated ζ={1, 2,…Z}, and price p
is included in δjζω and labeled as element ζ=0. Each product attribute
ζ is either intrinsically discrete or is discretized into Ωζ levels, ω={1,
2,…Ωζ}; thus, it does not presume linearity with respect to the
underlying continuous variables. For an alternative approach to
discrete attributes, see Luo (2011).3

The probability Pij that alternative j is chosen by individual i
depends on the assumed error distribution. The most common
distributions for εij are the normal and double exponential, resulting
in the standard probit and logit models, respectively (Train, 2003).4

We index the “no choice option” (the outside good) as alternative 0,
with error εi0 and observable utility vi0 for individual i, where vi0=0;
∀i for identification. The inclusion of an outside good allows overall
demand contraction when the set of products offered fails to match
the market's preferences well.

The representation of differences in consumer tastes, as given by
βi, where βi contains the elements βiζω, can be expected to be
important in product line optimization, as heterogeneity in prefer-
ences should give rise to differentiated product offerings. Failure to
correctly model this heterogeneity can lead to biased parameter
estimates, inaccurate predictions (Rossi, Allenby, & McCulloch, 2005;
Andrews, Ansari, & Currim, 2002; Otter, Tuchler, & Fruhtwirth-
Schnatter, 2004) and, consequently, suboptimal product line designs.
Furthermore, when heterogeneity is not adequately accounted for, it
is well-known that the independence from irrelevant alternatives
(IIA) problem is exacerbated (Train, 2003). We therefore specify a
very general continuous distributional form for βi by using a mixture
of normal distributions (Lenk & DeSarbo, 2000). The approach
assumes that there are a finite number of groups or segments in
which individuals are similar — though, importantly, not identical —
with respect to their preferences and tastes. To be more specific, we
have

βi∼∑
B
b=1sbN θb;Λbð Þ;

where sb is the fraction of the market in “segment” (or mixing
component) b∈{1,…,B}. Here, θb is the vector of means and Λb is a full
variance–covariancematrix. Thismodel provides aflexible specification
3 For quantitative attributes that exist in a continuous space, it is appropriate to
measure preference at discrete points and optimize over a continuous space using
interpolation. Moreover, when constraints restrict feasible combinations of attributes,
it is sometimes the case that none of the combinations of discretized attributes is
feasible (this is true in the case study presented in this paper). Interpolation is critical
in these situations. For categorical attributes (e.g., brand name), decomposition can be
used in conjunction with global MINLP search algorithms (Khajavirad & Michalek,
2009), or stochastic approaches can be used (Luo, 2011).

4 Each error distribution confers distinct advantages for the problem at hand:
normal errors (probit) offer conjugacy in Bayesian MCMC estimation, allowing all
Gibbs draws and avoiding Metropolis steps, but require numerical integration in the
product line optimization phase; Gumbel errors (logit) require Metropolis steps in
Bayesian estimation but entail closed-form expressions for gradients used in
optimization. Amemiya (1985) shows that very large samples are required to
distinguish results produced by the Gumbel and normal error specifications and
suggests a way to translate between coefficient estimates to take advantage of the
former's optimization advantages and the latter's estimation efficiencies.
that combines both discrete and continuous heterogeneity and includes
several well-known heterogeneity models as special cases: (i) when
B=1 the well-known standard random-effects model arises, which, in
combination with Bayesian estimation, enables individual-level esti-
mates by pooling information among individuals via “shrinkage” (Rossi
et al., 2005); (ii)whenΛb=0 for all b∈{1,…,B}, the standard latent class
or finite mixture model arises (Kamakura & Russell, 1989), and
individuals within a segment b are assumed to have identical
preferences θb; and (iii) when Λb=0 and B=1, it is assumed that all
individuals have the same preference parameters θ1. The last,
homogeneous case (iii) is overly restrictive for markets with heteroge-
neouspreferences, anddemandmodels that assumehomogenous tastes
can be expected to perform poorly in terms individual specific part-
worth recovery and market predictions. Andrews, Ainslie, and Currim
(2002); Andrews, Ansari, and Currim (2002) suggest that models with
continuous (case i) and discrete (case ii) representations of heteroge-
neity recover parameter estimates and predict choices about equally
well, except when the number of choices J is small, in which case
discrete heterogeneity (ii) outperforms the continuous model (i). We
examine whether the optimized product lines conditional on each of
these models produce similar results.

For the general case, model parameters are estimated via standard
Markov Chain Monte Carlo (MCMC) techniques (Gelman, Carlin,
Stern, & Rubin, 2003; Rossi et al., 2005).5 We generally specify
conjugate priors, and the full conditional distributions for the MCMC
sampler can be derived straightforwardly (e.g., Lenk & DeSarbo,
2000). In order to choose the number of mixture components B in the
mixture representation for βi, we use the Deviance Information
Criterion (DIC) statistic proposed by Spiegelhalter, Best, Carlin, and
van der Linde (2002). DIC is particularly suited to complex
hierarchical (Bayesian) models because the DIC statistic determines
the “effective number of parameters” entailed by the model
specification itself, unlike measures such as AIC.

Once the model parameters are estimated, we compute market
demand for the positioning subproblem (Fig. 3) in three steps: First,
we generate a large set of βi (say i=1,…,ID) from the hierarchical
model {sb, θb, Λb} that describes the mixture distribution.6 Second, we
use natural cubic splines (Boor, 2001) to flexibly interpolate βi for
intermediate values of product attributes and price. Because all the
levels in our conjoint application are made explicit, are modest in
number and donot vary across respondents, there is noneed to resort to
complex methods designed to deal with latent knot configurations,
although such methods are available in the Bayesian choice modeling
literature (Kim, Menzefricke, & Feinberg, 2007). Specifically, natural
cubic spline functions Ψiζ are fit through the discrete part-worth
coefficientsβiζω for each i and ζ,whereω={1,2,…,Ωζ} to interpolate the
deterministic component of utility.7 Indexing attributes as ζ=1,…, Ζ
and price as ζ=0, the interpolated value of the observable component
of utility is

v̂ij = Ψi0 βi0ω;pj
� �

+ ∑Z
ζ=1Ψiζ βiζω; z

M
jζ

� �
;

where zMjζ indicates the ζth element of the vector zMj. These
interpolated v̂ij give rise, through the random utility specification, to
5 We are indebted to Peter Lenk for sharing both his GAUSS code and his expertise.
6 Estimating the model provides a set of draws from the posterior distribution of

βiζω for each survey respondent. One could then estimate market demand using this
specific set of individuals. We take a Bayesian perspective and use the hyperpara-
meters describing the mixture distribution (after the MCMC chain has converged), as
these can be viewed as ‘giving rise’ to the individual-level βi values. Specifically, an
arbitrarily large sample of new βi values from this distribution can be drawn to
describe the market.

7 It is possible to use piecewise linear interpolation as an alternative to cubic splines;
however, piecewise linear formulations are non-smooth in the continuous space,
requiring a mixed integer formulation and solution approach that will often produce
corner solutions at the discrete levels measured in the conjoint task.
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expected individual choice probabilities Pij that are computed using
either a logit or a probit distribution for the errors. Finally, the
individual choice probabilities are used to compute market demand
for each product, qj (Fig. 3). Calculating market demand for product j
involves multiplying the probability Pij, by the market potential S for
each individual i=1,…, ID, and averaging the resulting quantities
across the individuals. Market potential is assumed to be exogenously
determined through pre-market forecasting techniques (Lilien,
Kotler, & Moorthy, 1992).

4. Empirical application

In demonstrating the methodology, we adapt a product topology
model for dial-readout bathroom scales developed previously for a
simple single-product, homogeneous market example by Michalek
et al. (2005) for comparison. This example was originally posed for
the design of a single product under the assumption that consumer
preferences are homogeneous. While expedient, neither assumption
accords well with managerial practice. Furthermore, as we will see,
even in those rare cases where a firm does seek to enter the market
with a single product, the presumption of homogeneity is trouble-
some; in fact, the single-product solution obtained in Michalek et al.
(2005) is substantially changed once any form of preference
heterogeneity is allowed.

The inherent modularity of the proposed methodology for product
line design circumvents the need to build a joint model of the full
product line for each case J={1,2,…}. Instead, a model of only a single
product need be developed, and a duplicate can be created for each
product j constituting the line,8 as illustrated in Fig. 3. It is important
to note that the design space x for this product does not map one-to-
one with the attributes z communicated to consumers, which comes
about because the engineering design model specifies some product
attributes as functions of interactions among design variables; that is,
different designs may exhibit identical product attributes, as observed
by the customer. A manager could enact any number of criteria post
hoc to choose from among such a continuum, or detailed cost data and
preferences for commonality could drive selection of a single
engineering design among the set of possibilities, although we do
not pursue such strategies here.

The conjoint attributes came from amajor scale manufacturer who
had conducted extensive marketing research into what consumers
care about. From this list, “decorative” attributes were removed, ones
that were not part of the engineering model, had no cost implications
and could be switched-out postproduction (e.g., color or packaging).
The product attributes z “seen” by consumers are weight capacity z1,
aspect ratio z2, platform area z3, tick-mark gap z4, number size z5, and
price p. For the conjoint study, the range of values for each attribute
was captured by five (discrete) levels. Each respondent (n=184)
made choices from 50 consecutive sets in a choice-based conjoint
task, identical across respondents, each with three options (plus “no
choice”), implemented through aweb browser. Interestingly, with the
ATC approach, it is neither necessary nor practical to pre-restrict
choice sets to include only realizable products as long as unrealizable
product attribute specifications describe product profiles that are
meaningful to the respondent. The goal of the conjoint task is the
effective and unbiased measurement of consumer preference drivers.
Infeasible combinations of product attributes are implicitly avoided
during optimization through coordination with the engineering
design subsystem.

The demand/profit function requires (exogenous) estimates of
several quantities, which are based here on manufacturer and
publicly-available figures: cVj =$3 cost per unit, cIj =$3 million for
initial investment, and market size S=5million, the approximate
8 All models and results are available from the authors upon request.
yearly US dial-readout scalemarket. Being completely exogenous, these
values are easily altered. The special cases of discrete mixture (Λ=0)
and homogeneous (B=1, Λ=0) models are straightforward to
estimate using maximum likelihood techniques (Train, 2003). For the
mixture of normal distributions, estimates from a classical mixture of
probitswere used as starting values, and the Gibbs samplerwas iterated
until a stationary posterior was obtained. To mitigate autocorrelation,
the data were thinned by retaining every 10th draw after a burn-in of
50,000 iterations. Convergence was examined through iteration plots;
posterior marginals revealed no convergence problems.

In order to optimize over this posterior surface, Monte Carlo
integrationwas applied as follows: when the chain has stabilized, new
values of βi are generated as the chain continued to run, allowing
hyperparameters to vary across the generated values. These values are
thinned to reduce serial correlations; specifically, 10,000 values are
generated, and every 10th is retained. The resulting set of 1000 βi

draws, with splines fit through the part-worth attribute levels of each
draw, is used to represent the population (the posterior surface)
throughout the optimization. Accuracy can be enhanced, if need be, by
generating additional βi values, although in the case study, tests of
solution sensitivity to additional draws (up to 24,000) show that 1000
draws is sufficient to represent the “demand surface”.

5. Results

There are two main methodological components to the approach
advocated here: 1) econometric, for the extraction of individual-
level preferences and generation of the preference splines, and 2)
optimization-based, for the determination of the best number of
products, their positioning and their design conditional on thepreference
splines. We examine each of these components in turn.

5.1. Demand model results

Table 1 lists DIC results for the normal mixture model and BIC
results for the discrete mixture and homogeneous cases as well as
classical log-likelihood values for reference. The latent class model
identified by BIC consists of seven segments, whereas the mixture
model with a diagonally-restricted covariance matrix identified by
DIC has three mixing components, and the full-covariance mixture
model has two. It is apparent that (1) continuous heterogeneity
(normal mixture) alone is superior to discrete heterogeneity (latent
class) alone, up through a fairly large number of segments (Rossi et al.,
2005); (2) a correlated (random) coefficients specification for the
normal mixture is superior to an uncorrelated one; and (3) more than
one segment in the normal mixture model is supported. In short, the
most general specification fares best, and each of its attributes —

correlated coefficients and both discrete and continuous heterogene-
ity — is useful in accurately representing consumer preferences.9 In
the following sections, we will refer primarily to this full model,
calling on others peripherally to compare the “optimal product lines”
they entail.

For illustration and a ‘reality check’, we briefly examine the
posterior means of part-worth coefficient vectors, βi. The resulting
splines are shown graphically in Fig. 4, along with analogous splines
for the discrete mixture and homogeneous cases. For identification
purposes these values are scaled so that the sum in each set of
attributes is zero, making for easier visual comparison. In each of the
six attribute spline graphs, the heterogeneous model is most “arched”
or highly sloped, suggesting the presence of some consumers with
relatively strong preference differentials across attribute levels. Of
course, part-worth values have a nonlinear mapping onto choice
9 The posterior predictive distribution (Gelman et al., 2003) may be used to further
assess whether the various demand models and different heterogeneity representa-
tions provide adequate fit to the observed data.



Table 1
Comparison of heterogeneity specifications for demand: discrete latent class vs. HB random parameters.

B Λ LL BIC B Λ LLa DIC

1 0 −10,983 22,194 Hierarchical Bayes continuous mixture 1 Diag −3813 12,432
2 0 −10,239 20,944 2 Diag −3713 12,073
3 0 −9784 20,271 3 Diag −3656 11,961
4 0 −9537 20,014 4 Diag −3638 12,029
5 0 −9336 19,850
6 0 −9187 19,788 1 Full −4051 11,742
7 0 −9059 19,770 2 Full −4016 11,674
8 0 −8948 19,785 3 Full −4017 11,745

All the boldfaced numbers in this table indicate the minimum BIC or DIC.
a Classical LL for the HB models was evaluated using posterior means as plug-in values and is included only for informal comparison to the latent class models.
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probabilities, so an “averaged part-worth” is only a rough guide to
comparing across heterogeneity specifications.

Although it is not our main focus here, a number of trends are
apparent across these mean estimated coefficient values. Unsurpris-
ingly, price appears to exert the strongest influence and is decisively
downward-sloping (which is true of the posterior means for each of
the n=184 original participants). One might have expected similarly
monotonic preferences for number size and weight capacity, but this
trend is only true for the former; apparently, too high a capacity was
viewed as “suboptimal” by the respondents, on average. Note that
these βi values reflect pure consumer preference and not any sort of
constraint resulting from infeasible designs, which can only arise from
the engineering design subsystem. Preferences for the other three
variables (platform area, aspect ratio (i.e., shape) and interval-mark
gap) all have interior maxima.

5.2. Product line optimization results

Conditional on the generated splines arising from the HB conjoint
estimates (using the full normal mixture model), the design and
positioning subsystems are solved iteratively until convergence.
Optimization was carried out with each subsystem solved using
sequential quadratic programming. The ATC hierarchy is solved for a
set of fixed product line size J, and the value of J producing the most
profitable overall product line is determined post hoc. As is typical,
local optima are possible, so global optima are sought using multi-
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Fig. 4. Plots of the average splines for each product attribute and price under the three
demand models.
start (Martí, 2003). Fig. 5 depicts the highest resulting profit levels,
using ten runs with random starting points for J={1,2,…,7}. It is clear
that a product line with four products is most profitable.

Table 2 presents the resulting product attributes for various
heterogeneity specifications. Several of the resulting scale designs are
bounded by active engineering design constraints, which is necessary
to ensure that the scale is physically tenable, e.g., that the dial, spring
plate and levers fit in the case. Furthermore, all the scales in the line lie
well within the range available through online retailers, although
resulting prices migrate to the upper bound due to the single-
producer scenario. Looking across the table and considering primarily
marketing attributes, we might term the resulting products “large
high-capacity, small-numbered square scale” (27.4% of the market),
“large-number portrait scale” (21.0%), “small, low-capacity landscape
scale” (18.6%) and “high-priced, middle-of-the-road scale” (11.3%).
The estimated market shares do not add to 100% because of the
presence of the “no choice” option, which allows some portion of the
potential market to prefer no scale at all to any of the four in the final
line configuration.

Although the four scales may appear not to differ tremendously,
they do in fact cover a wide swath of the attribute space bounded by
the original conjoint levels; thus, they are quite different relative to
the dial-readout scales available in the market. Note that extrapola-
tion beyond the extreme conjoint levels was disallowed, whichmeans
that scale 4, the “high-priced, middle-of-the-road scale”, may
command an even higher price than indicated ($30). This situation
was exacerbated for the latent class model, for which four of the six
scales in the best solution (as per Table 2) were at this upper price
limit. As discussed more fully in the conclusions, whether this
represents an untapped surplus or an insufficient upper limit on
price in the conjoint design or is an artifact of all competitive
interaction being subsumed by the “outside good”; it is an issue that
should be teased apart by further studies.
Fig. 5. Resulting profit as a function of the number of products in the line.



Table 2
Optimal product line solutions under each demand specification.

Single product solutions Product line solutions

Homogeneous Discrete
mixture

Normal
mixture

Discrete mixture (latent class) Normal mixture

1 2 3 4 5 6 1 2 3 4

Π Profit (millions)a $ 54.10a 58.30a 60.70a 59.10a 72.40
Market sharea % 48.80 57.80 65.00 25.10 8.70 8.70 8.70 6.90 4.90 27.40 21.00 18.60 11.30

z1 Weight capacity lb 255 254 256 238 257 257 257 253 248 292 262 200 255
z2 Aspect ratio – 0.996 1.047 1.002 1.045 1.041 1.039 1.039 1.062 1.051 0.98 1.156 0.921 0.986
z3 Platform area in.2 134 127 130 100 131 131 131 123 114 140 122 105 135
z4 Tick mark gap in. 0.116 0.117 0.115 0.106 0.116 0.116 0.116 0.114 0.111 0.103 0.116 0.121 0.116
z5 Number size in. 1.334 1.339 1.315 1.193 1.341 1.337 1.337 1.316 1.268 1.221 1.351 1.293 1.331
p Price $ 26.41 24.21 22.61 23.96 30.00 30.00 30.00 30.00 29.37 22.89 24.53 23.84 30.00

a As calculated post-hoc using the normal mixture demand model.
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5.3. Effectiveness of ATC coordination

To demonstrate the importance of the proposed approach, the ATC
solution was compared to the solution obtained through a disjoint
sequential approach, which has been referred to as analytical target
setting (Cooper, Georgiopoulos, Kim, & Papalambros, 2006). In the
disjoint scenario, price and product attribute positioning targets are
set based on consumer preference datawithout engineering feasibility
information (the positioning subproblem), and these targets are
passed to the engineering design subproblems. Each engineering
subproblem is then solved to design a feasible product that meets its
targets as closely as possible10 (the engineering subsystem) without
further iteration, which can be viewed as a ‘single pass’ through ATC,
similar to actual practice, where marketing studies precede engineer-
ing design and subsequent iteration is costly and time-consuming.

In this disjoint scenario, marketing produces a plan for a line of
four scales with a predicted combined market share (relative to full
potential) of 83.4% and resulting profit of $81.2 million. There is no
reason to believe these target product attributes will be attainable
because they are based on consumer preferences alone. In the disjoint
case, these targets are passed to the engineering subproblems, which
each design a feasible product to achieve product attributes as close as
possible to the targets requested by marketing without further
iteration. The resulting products differ significantly from the initial
plan and so have attributes less preferred by consumers, resulting in
combined 70.5% market share and $67.9 million profit: 16% less than
marketing's original (unachievable) prediction. If ATC is instead used
to iteratively coordinate positioning and design, the resulting joint
solution is a line of four different products, resulting in a 78.2% market
share and $72.4 million profit. In this case, coordination resulted in a
feasible product line with a predicted 6% improvement in profitability
relative to disjoint decision-making.

In the disjoint scenario, marketing “leads” by developing the
original plan and engineering design “follows” by attempting to meet
product attribute targets. The reverse situation, where engineering
“leads”, is possible when all consumers have monotonic preferences
for product attributes by first designing a set of products that are
Pareto-optimal in performance and then allowing marketing to pick a
line from that set of products (Li & Azarm, 2002). However, in this
example, preferences for attributes are non-monotonic, so no such
common Pareto set exists, and without preference information,
engineering design has no single well-defined optimization objective.

5.4. Heterogeneity representation

We examine the impact of the heterogeneity specification on the
joint solution and whether simpler forms might have sufficed for
optimal feasible line design. The simple homogeneous demand model
10 We choose zero initial values for Lagrange multipliers, reducing the consistency
constraint relaxation function to a quadratic penalty Euclidean distance metric.
is obviously ill-suited for generating product lines; moreover, because
the IIA property is greatly exacerbated by preference homogeneity,
the well-known “red bus, blue bus” problem can lead to lines with
duplicate products (Train, 2003; Shiau & Michalek, 2009a). We thus
compare the discrete mixture (latent class) model with the normal
mixture model. Because the discrete mixture is natively supported in
many statistical packages, it might prove convenient for line
optimization; recent literature suggests that discrete and continuous
heterogeneity can often represent preferences about equally well
(Rossi et al., 2005; Andrews, Ainslie, & Currim, 2002; Andrews, Ansari,
& Currim, 2002). Though fit statistics (Table 1) alone argue that the
discrete mixture is inferior to the normal mixture specification in
terms of representing preferences, it does not necessarily mean that,
conditional on the resulting estimates, the resulting optimal line will
be similarly inferior in terms of profitability.

Table 2 lists a comparison between the resulting profitability of the
best locally-optimal solutions found using the discrete and continuous
mixture demand models over ten multi-start runs with random
starting points for each value of J. Not only do the different
heterogeneity specifications result in different product line solutions
(a line of six products under the seven-class discrete mixture vs. four
under the two-component normal mixture), but the former suffers a
profit decrement of 18% relative to the latter using the continuous
mixture model to evaluate solutions post hoc. The discrete mixture
solution also entails little variation in the values across segments for a
given attribute. Furthermore, because the discrete mixture specifica-
tion models all individuals within a segment as having identical
preferences, the remaining within-segment IIA property can result in
solutions with duplicate or near-duplicate products, such as the one
reported in Table 2. It is important to note that such solutions are
artifacts of the econometric model andmay be difficult to interpret for
managerial use. For example, simply taking the solution resulting
from the model and eliminating product duplicates will not, in
general, produce a locally optimal solution in the reduced space.
Furthermore, the within-segment homogeneity of preferences results
in a profit surface containing pronounced local minima, which
impedes the optimization process and makes global search difficult.
Thus, even a relatively sophisticated heterogeneity representation can
offer very different, and potentially sub-optimal, product line results.

While it may be unsurprising that simpler heterogeneity repre-
sentations can lead to suboptimal product lines, it is less obvious
whether a homogeneous model is sufficient for the design of a single
product (as assumed, for example, in Michalek et al., 2005). Our
analysis strongly suggests that it is not. Table 2 lists single-product
solutions under the three demand model scenarios. Although in this
case the more restrictive models do a fairly good job predicting some
of the optimal product attributes, this is not so for price, which is
notably exaggerated (relative to the normalmixturemodel), resulting
in a solution with a loss of 7% market share using the discrete mixture
model and 14% using the homogeneous one (again, using the con-
tinuous mixture model to evaluate solutions post hoc). These results
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make sense because continuous heterogeneity allows for some
consumers that are highly price sensitive, so that a single price need
be lower to avoid losing them entirely. Simply put, even whenmaking
a ‘one size fits all’ product, a manufacturer should not presume that all
customers have the same preferences. It had not initially been
anticipated, based on any prior literature of which we are aware, that
preference heterogeneity would be so important when only a single
product is being produced. How heterogeneity specification affects
contingent optimization results is surely worthy of further study on its
own.

6. Conclusions and future research

Firms work to position and design lines of products that best suit
their market and profitability goals. Different functional entities
within the firm can interpret this imperative idiosyncratically by
measuring customer preferences and positioning new products for
marketers and maximizing performance under technological con-
straints for engineers. Considered independently, these goals often
lead to conflict, both in practice and with respect to optimization
models in each discipline; moreover, disjoint sequential approaches
can lead to suboptimal decision-making.

The product line designmethodology advocated in this article draws
on a wide array of techniques — product line optimization, analytical
target cascading, discrete choice analysis, preference heterogeneity and
Bayesian econometrics — to model various subsystems separately,
coordinating themvia ATC. The resultingproduct line is a solution to the
“joint” marketing and engineering problem and produces results
superior to a sequential approach. Theproduct line problem is especially
well suited to ATC decomposition. The separation of the subsystems is
advantageous both for organizational purposes because each modeling
group can focus on what it knows best and need not be an expert in all
areas and for computational purposes because the individual subsys-
tems can be solved in parallel within low-dimensional spaces and with
fewer constraints then the full, non-decomposed system. ATC decom-
position can improve scalability of the problem to complex products
(which can be represented as (sub)hierarchies themselves) or to large
numbers of products simply by adding more subsystems. The intrinsic
modularity of the approach accommodates additions, variations, and
extensions.

A number of concrete conclusions emerged from applying the
proposed method. One for which we know of no precedent is that
accounting for preference heterogeneity can be critical even for a “one-
size fits all” product. That is, the single-product solution looks quite
different when the market itself is assumed (incorrectly) to be
homogeneous. In our case study, this was so particularly for price:
$26.41 (homogeneous) vs. $22.61 (heterogeneous). Homogeneity
presumes that all consumers have the same preference coefficients, so
the design can be tuned exactly for those preferences. When hetero-
geneity is incorporated, the optimal design will often be a compromise
between conflicting preferences of different consumers, and the
compromise product cannot command as high a price in our example.
The identification of generalizable relationships between heterogeneity
specification and optimal price is worthy of further research.

Conversely, we see that prices for the products in a line can be
higher than for one product alone; each product fits a ‘segment’
better, and so extracts a premium over the ‘mass market’ single-
product case, which is true regardless of which type of heterogeneity
representation the modeler selects. Overall, and unsurprisingly,
multiple products turned out to perform better than single ones,
depending on the cost structure of the market. Of course, the precise
number of products to produce depends on the cost of adding
additional product variants to the line.

Comparing solutions achieved under different heterogeneity
specifications indicates that the form of heterogeneity chosen by the
modeler can exert non-trivial impact on the solution obtained, which
suggests the need for further research to characterize the relationship
between model specification and resulting optimal solutions. The use
of general heterogeneity specifications, such as the full covariance
normal mixture presented here, is likely preferred; however,
dedicated study is needed to establish this to a degree typical of the
preference heterogeneity literature (e.g., Andrews, Ainslie, & Currim,
2002; Andrews, Ansari, & Currim, 2002).

Several elements of our proposed framework can be readily
relaxed or extended to accommodate different engineering- or
marketing-based problem settings. Although others certainly exist,
let us briefly discuss six potential avenues for future research. First,
while we assume linear cost functions and particular specifications for
share and product architecture, each of these can bemodified without
affecting the basic methodological structure. Second, we have focused
on product attributes that can be represented in a continuous space.
For categorical attributes, like brand, similar decomposition schemes
can be used for MINLP formulations, although further research on
convexification and global optimization is needed to improve
scalability for these highly nonconvex problems (Khajavirad &
Michalek, 2009). Third, while we study the case of a monopolist
with an outside good, it is trivial to incorporate competitors with
known fixed attribute positionings. If competitors are likely to react to
a new entrant, solutions that fail to account for competitor reactions
may be suboptimal. In many cases, it is possible to incorporate
competitor reactions using game theoretic models (Shiau & Michalek,
2009a, 2009b; Luo, 2011; Tsafarakis et al., 2010). Future research
might consider dynamics resulting from line re-positioning by extant
and entrant firms and how the former could enact optimal defensive
strategies. This might provide a natural framework to address the sort
of endogeneity issues intrinsic to dynamic, multi-player marketing
optimization problems. Fourth, consumer preference heterogeneity
specification merits renewed attention in the domain of product and
line design, specifically, how to best balance the revenue-enhancing
benefits of differentiation (due to heterogeneity) against the cost-
saving benefits of product commonality in manufacturing (Kumar,
Chen, & Simpson, 2009). Fifth, the incorporation of perceptual
attribute transformations, which vary by consumer, could extend
applicability to categories that rely more on image. Lastly, further
research is also needed to characterize the uncertainty of optimal
design recommendations in relation to the uncertainty in demand
model parameters as well as demand model representation (Luo,
Kannan, Besharati, & Azarm, 2005).

In closing, several maxims are relevant for management, marketing,
and engineering design communities. First, although engineers are
keenly aware of real, inviolable constraints, marketers tend to work to
find desirable product attribute targets for exploring new markets. A
tacit belief is that most, if not all, design constraints can be vanquished
by ingenuity or sufficient capital. While this assumption is sometimes
true, often it is not. ATC encodes non-negotiable technological
infeasibilities directly into its conceptual foundations, which includes
a “consumer space” that is driven by heterogeneity of consumer
preferences. As such, marketers and engineers using their own models
within an overarching ATC formulation can come to terms and resolve
tradeoffs among competing performance goals through coordination in
designing deliverable products. Second, while it may appear simple to
specify directly which product attribute combinations cannot co-exist,
in practice it is often impractical; the feasible domain can snake through
the product attribute space inways difficult to visualize or translate into
meaningful consumer terms, and in many cases, such as our case study,
the feasible domain does not include any of the discrete combinations of
attributes used for conjoint analysis but rather intermediate combina-
tions that satisfy physical constraints. ATC frees marketers from
considering such issues when collecting consumer preferences;
iterative coordination avoids infeasible product line configurations
implicitly. Third, andmost important, heterogeneitymatters: it must be
accounted for in sufficient generality, even for the design of a single
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product. Finally, ATC was proven to converge to joint optimality across
its various subsystems for a broad class of problems. Given its scalability,
efficiency, and ability to key into a wide variety of extant modeling
techniques, we hope to see ATC-based frameworks widely adopted as a
cross-disciplinary platform for the design of complex product lines.

Appendix A. List of symbols

• Hadamard product (element by element multiplication of
vectors)

Roman characters
b Index of mixing components (segments)
B Number of mixing components
cj
I Investment cost for product j
cj
V Unit variable cost for product j
g Vector function of engineering design inequality constraints
h Vector function of engineering design equality constraints
i Consumer index
I Number of individual consumers
ID Number of individual consumer draws from the Bayesian

mixture model
j Product index
J Number of products in the product line
pj Price of product j
Pijt Probability that individual i chooses product j from choice

set t
qj Demand for product j
r Engineering design response function. Calculates product

attributes as a function of design variables
S Size of the market
sb Size of segment b (percentage)
t Choice set index for conjoint survey
T Number of choice sets in the conjoint survey
uij Utility of alternative j for individual i
vij Observable component of utility of product j for individual i
vi0 Utility of the outside good for individual i
w Vector of weighting coefficients
xj Vector of engineering design variables for product j
zj
M Vector of product characteristic targets set by marketing for

product j
zj
E Vector of product characteristics achieved by the engineer-

ing design of product j

Greek characters
βiζω Part-worth coefficient for consumer segment i for attribute

ζ at level ω
βi Vector of part-worth coefficients compiling βiζω for all ζ

and ω
δjζω Binary dummy variable indicating whether product j

possesses attribute ζ at level ω
εij Random error coefficient for individual i product j
ζ Index of product characteristics={1,2,…,Z}. ζ=0 refers to

price.
Z Number of product characteristics
θb Vector of mean values for mixture component b
Λb Covariance matrix for mixture component b
λ Vector of Lagrange multipliers
Π Profit
π Consistency constraint relaxation function. Relaxes the

constraint zjM=zj
E

Φijt Binary dummy variable indicating observed choice of
individual i with respect to alternative j on choice occasion
t

Ψiζ Spline function of β for individual i and product attribute ζ
ω Product characteristic level index={1,2,…,Ωζ} for product

characteristic ζ
Ωζ Number of discrete levels for product characteristic ζ
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