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ABSTRACT 

In new product design, risk averse firms must consider 
downside risk in addition to expected profitability, since some 
designs are associated with greater market uncertainty than 
others. We propose an approach to robust optimal product 
design for profit maximization by introducing an α-profit 
metric to manage expected profitability vs. downside risk due 
to uncertainty in market share predictions. Our goal is to 
maximize profit at a firm-specified level of risk tolerance. 
Specifically, we find the design that maximizes the α-profit: 
the value that the firm has a (1-α) chance of exceeding, given 
the distribution of possible outcomes. The parameter α[0,1] 
is set by the firm to reflect sensitivity to downside risk (or 
upside gain), and parametric study of α reveals the sensitivity 
of optimal design choices to firm risk preference. We account 
here only for uncertainty of choice model parameter estimates 
due to finite data sampling when the choice model is assumed 
to be correctly specified (no misspecification error). We apply 
the delta method to estimate the mapping from uncertainty in 
discrete choice model parameters to uncertainty of profit 
outcomes and identify the estimated α-profit as a closed form 
function of design decision variables. This process is 
described for the multinomial logit model, and a case study 
demonstrates implementation of the method to find the optimal 
design characteristics of a midsize consumer automobile.  
 
Keywords: Design for market systems, delta method, logit, 
design optimization, robust design, design under uncertainty, 
discrete choice model 

NOMENCLATURE 
c Variable cost 

C Fixed cost 
 గ Cumulative distribution function of profit estimateܨ
g Mapping function for delta method 
j Product index 
J Number of products 
m Market size 
n Number of attributes per product 
pj Price of product j 
ݏ  Point estimate market share for product j 
ݏ̂  Random variable market share estimate for product j 
 ఈ Market share of product j at risk level αݏ
 Vector of point estimates of utility for all products ܞ
  Point estimate observable utility for product jݒ
 ෝ݆ Random variable observable utility estimate for product jݒ
ܠ  Vector of attributes for product j 
 ఈ∗ Optimal product attributes at level αܠ
X Matrix of attributes for all products 
tj Technology implementation design variable for product j 

in optimization model 
wj Engine size constant in optimization model 
α Profit risk tolerance parameter 
 Vector of choice model parameter point estimates 
 Random vector of choice model parameter estimates 
ഥ Mean of  distribution 
Σ Covariance matrix of  distribution 
ߨ  Point estimate of profit for product j 
ොߨ  Random variable profit estimate for product j 
  ఈ Profit of product j at a level αߨ
Φ Standard normal cumulative distribution function   
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1. INTRODUCTION 
Over the last three decades, a significant portion of the 

new product development (NPD) literature has been dedicated 
to the integration of engineering design and marketing 
processes for differentiated markets. Simple models to 
determine the most profitable characteristics of a single new 
product [1-2] have progressed to account for issues such as 
product-line design and preference heterogeneity [3-7], 
competitor reactions [8-10], cost structure [11-12], distribution 
channels [9,13-16], choice-set-dependent preferences [17], 
and coordination with constrained engineering design 
decisions [18-26]. 

As Hsu and Wilcox [27] argue, the trend towards 
estimating marketing models at lower levels of aggregation 
that are more structural1 in consumer behavior representation 
has led to models with many parameters and consequently 
greater uncertainty of those parameters. However, despite the 
advances in NPD methods, the research has not given much 
consideration to the intrinsic parameter uncertainty of the 
demand models. Demand uncertainty directly affects the risk 
of introducing a new product into the market, and firms 
evaluate potential projects not only in terms of expected 
return, but also in terms of risk.  

The purpose of this work is threefold. First, we define a 
robust a-profit metric and propose a general framework to 
incorporate demand uncertainty arising from choice model 
parameter estimation into the design decision process such 
that it accounts for varying levels of loss tolerance. Second, 
we apply the delta method to approximate the a-profit function 
in closed form for multinomial logit (MNL) demand models to 
be used efficiently in numerical optimization routines. Finally, 
we show how ignoring demand uncertainty can lead to 
suboptimal decisions for risk averse firms.  

We do not intend to consider all the various sources of 
demand model uncertainty [28], and several questions will 
remain open. In particular, we assume the discrete choice 
model is correctly specified and ignore uncertainty due to 
model misspecification, and we assume that the model 
parameters do not change over time or from the context in 
which the data were collected to the context in which 
predictions will be made. Nevertheless, the proposed 
methodology can be useful, and it serves as a first step in 
addressing design for profit maximization under demand 
model uncertainty. Design decision makers will be able to use 
the popular multinomial logit demand models to develop new 
products based on their expected profit and also to account for 
the inherent uncertainty present in any statistical estimation 
process.  

This paper begins by discussing the relevant literature on 
product design and pricing under uncertainty in Section 2. 
Section 3 describes the proposed methodology for finding 
optimal designs for varying levels of tolerated product profit 
uncertainty and applies it to multinomial logit demand models. 
Section 4 presents a case study using the multinomial logit 
demand model to determine the optimal attributes of a midsize 

consumer vehicle. Section 5 discusses conclusions, 
limitations, and future work. 

2. LITERATURE REVIEW: PRODUCT DESIGN AND 
PRICING UNDER DEMAND UNCERTAINTY 

Demand uncertainty is caused by several factors such as 
preference dynamics [29], demand model misspecification 
[30-31], choice context [32-33], response variability [34-35], 
and sampling errors associated with the estimation procedure 
[36]. As a result, several researchers have considered the 
impact of demand uncertainty on optimal pricing strategies 
[29-30,37-38]. However, in contrast to prices, design decisions 
are difficult to change post hoc, especially in durable-goods 
markets. Products with high start-up capital costs can have 
virtually unchangeable characteristics, and producers are 
incentivized to consider demand uncertainty during the initial 
stages of the design process (e.g., car manufacturers invest a 
significant portion of capital up front in production equipment, 
and changing a characteristic such as the footprint of a car 
leads to very high costs). 

A few papers [21,36,39] have addressed product demand 
uncertainty resulting from variation in engineering design 
model parameters (e.g. due to manufacturing variability or 
usage conditions), and two of them also account for 
uncertainty in the marketing model parameters. Luo et al. [36] 
and Besharati et al. [21], both address demand uncertainty 
using discrete intervals. 

Luo et al. [36] use the parameter covariance matrix of 
part-worth utility point estimates to obtain 95% confidence 
intervals around the point estimates from the design parameter 
best- and worst- case scenarios for a set of product alternatives 
under consideration. The greatest utility under the best-case 
scenario and lowest utility under the worst-case scenario 
within the confidence interval are compared to the similarly 
constructed estimates of utility for competitor products. The 
highest own-utility is compared to the sum of the lowest 
competitor-utilities and vice-versa to construct interval 
estimates of market shares (these no longer represent 
statistical confidence intervals for market share). They then 
use pair-wise comparisons to eliminate dominated alternatives 
(defined as alternatives that have a best-case market share 
worse than another’s worst-case market share, perform worse 
on worst-case performance, and have higher performance 
variability). All non-dominated designs are then considered 
for prototyping and further subjective evaluation. 

Besharati et al. [21] use a framework similar to Luo et al. 
[36], but they change the optimization criteria arguing that 
looking for the best performance on the worst case condition 
might be too conservative. Alternatively, they replace the 
design objectives of worst-case performance and performance 
variability with multi-objective optimization of nominal 
performance characteristics. The marketing model is also 
treated as a multi-objective optimization problem of 
maximizing nominal market share and minimizing the market 
share variance (both positive and negative) resulting from 
uncertainty in both engineering design parameters and part-
worth utility estimates. Finally, they develop a ranking system 
for pair-wise comparison of designs on the design and 
marketing criteria.  

1“Econometric models that are based explicitly on the consumer's 
maximization problem and whose parameters are parameters of the 
consumers' utility functions or of their constraints are referred to as structural 
models.” [50] 
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Hsu and Wilcox [27] use the estimation error associated 
with the parameter estimates to find the stochastic market 
share prediction in a multinomial logit framework. They use a 
simulation-based approach for approximating the exact 
distribution in an efficient way. 

Table 1 compares the above papers that consider the 
uncertainty in demand model parameters as a source of 
demand uncertainty and positions our contribution against this 
prior work. We address variance of profit estimates but do not 
seek to minimize it as a means to improve robustness because 
profit uncertainty is harmful to a firm only in the negative tail 
– i.e. when product demand is less than expected – and we 
avoid penalizing uncertainty that could lead to higher than 
expected profits. 

We apply an α-profit metric in conjunction with discrete 
choice models as a means to incorporate firm risk tolerance 
into the new product design optimization process. This allows 
us to develop a framework to find optimal product 
characteristics and price in a continuous domain, instead of 
requiring a discrete set of product alternatives; and in contrast 
to Luo et al. [36] and Besharati et al. [21], we can treat 
demand uncertainty as a continuous probability distribution 
instead of representing it as an interval. We use the delta 
method to derive a closed-form approximation for the market 
share distribution, since a simulation-based approach such as 
the one used by Hsu and Wilcox [27], though efficient for 
estimating the stochastic distribution of a single design, would 
be computationally expensive and noisy when used as an 
intermediate function in a numerical optimization loop. Our 
framework focuses on demand models derived from random 
utility theory, particularly multinomial logit models (MNL) 
[40]. 

The α-profit methodology can be extended to multinomial 
probit (MNP) [41], mixed logit (MIXL) [42], and the recent 
generalized logit (G-MNL) [43] models; however, any 
functional forms that require numerical simulation to compute 
may be computationally burdensome and introduce potential 
numerical issues when embedded within an optimization loop. 
 
3. THE PROPOSED METHODOLOGY 

We want to find the characteristics of a new product in 
order to maximize a firm’s profit; however, the uncertainty 
present in the demand model parameter estimates will result in 
uncertainty about the predicted profit, which we model as a 
distribution of potential profit outcomes for each design 
alternative. (A similar framework can also be used for 
maximizing alternative objective functions, such as market 
share.) 
 
3.1. General mathematical formulation 

Our goal is to find the design whose predicted profit 
distribution maximizes the α-profit: the value below which 
less than α of the cumulative profit distribution falls. The 

parameter α is set by the firm to reflect sensitivity to downside 
risk (or upside gain), and parametric study of α reveals the 

sensitivity of optimal design choices to firm risk preference. 
Formally, we define the α-profit, ߨఈ(,܆), as the value of the 

profit distribution at level α[0,1] for product ݆ϵ{1,2, …  {ܬ
given the vector of random variables  ~ ܰ൫ഥ,൯ that define 

TABLE 1 – PAPERS THAT CONSIDER CHOICE MODEL 
PARAMETER UNCERTAINTY AS A SOURCE OF DEMAND 

UNCERTAINTY 

Ref. Treats demand 
uncertainty as: 

Design 
attributes 

Design objective(s) 

Hsu and 
Wilcox 

[27] 

Probability 
distribution of market 

share obtained by 
simulation 

NA NA 

Luo et al. 
[36] 

Interval estimates of 
market shares 

obtained using 95% 
confidence levels for 
the utility function 

Discrete Maximize nominal 
market share 

Minimize performance 
variance 

Maximize worst-case 
performance 

Besharati 
et al. 
[21] 

Interval estimates of 
market shares 

obtained using 95% 
confidence levels for 
the utility function 

Discrete Maximize nominal 
share 

Minimize share 
variance 

Maximize nominal 
performance 

This 
paper 

Probability 
distribution of market 

share estimated by 
delta method 

Continuous Maximize profit at 
specified downside 
risk tolerance level 

 
the parameter estimates of the choice model and the values of 
the n attributes (including price) for each of the J products 
available in the market ܆ = ,ܠൣ … , ,ܠ … ൧ ϵ ℝܠ, . 
Specifically, if ߨఫෝ  is a random variable with cumulative 
distribution function Fగෝ|,(ߨ)܆ representing the distribution of 
profit outcomes conditional on  and X, then ߨఈ(,܆) is the 
maximum value of ߨ  for which Fగෝ|,(ߨ)܆ ≤  i.e.: for which ,ߙ
Pr(ߨො < (ߨ ≤  is continuous and (ߨ)܆,If Fగෝ| .(see Figure 1) ߙ
invertible, then ߨఈ൫,܆൯ = Fగෝ|,܆

ିଵ   .(ߙ)
 

 
 

FIGURE 1 – ࢻ-PROFIT SHOWN FOR (A) PROBABILITY 
DENSITY FUNCTION OF PROFIT AND (B) CUMULATIVE 

DISTRIBUTION FUNCTION OF PROFIT 

 
Our objective is to find the product attributes and price 

that maximize the robust profit given the ߙ level that reflects 
firm sensitivity to downside risk. That is, we seek the robust 
optimal new product characteristics ܠఈ∗  at level ߙ  , where 
∗ఈܠ = argmaxܠೕ(ߨ

ఈ൫,܆൯) ; i.e. ܠఈ∗  is the design that 
maximizes the value of profit which the model predicts a (1-α) 
chance of exceeding. For illustration, Figure 2 shows the 
probability density function of profit for two alternative 
designs. Design 1 is preferred over Design 2 when optimizing 
for the expected value of profit. However, Design 1 has more 
downside risk, and a risk averse firm optimizing for the α-
profit with small α would prefer Design 2. 
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FIGURE 2 – EXPECTED PROFIT VS. DOWNSIDE RISK: 

THE EXPECTED PROFIT FOR DESIGN 1 IS HIGHER THAN 
THE EXPECTED PROFIT FOR DESIGN 2 (࣊ഥ >  ;(ഥ࣊

HOWEVER, DESIGN 2 HAS A HIGHER PROFIT AT THE α-
LEVEL THAN DESIGN 1 (࣊ࢻ >   (ࢻ࣊

Defining for product j the random variable describing the 
distribution of market share outcomes, ̂ݏ ; market share at 
level α, ݏఈ ; price, pj; variable cost, ܿ = ݂େ(ܠ); fixed cost, 
Cj, and total market size, m; we have ߨො = ݉൫ − ܿ൯̂ݏ − ܥ  
and ߨఈ = ݉൫ − ܿ൯ݏఈ − ܥ  Assuming that there is no 
uncertainty on product price and costs and that pj > cj: 

 
Pr൫ߨො < ఈ൯ߨ = Pr൫݉൫ − ܿ൯̂ݏ < ݉൫ − ܿ൯ݏఈ൯ =

Pr൫̂ݏ <  ఈ൯ݏ
 
Therefore: 
 

Pr൫ߨො < ఈ൯ߨ ≤ ߙ ⟺ Pr൫̂ݏ < ఈ൯ݏ ≤   ߙ
 

In the following sections, we will show how to find the 
robust optimal new product attributes, as defined in this 
section, for the multinomial logit (MNL) demand model, 
given uncertainty in the estimated parameters.  
 
3.2. Application to Multinomial Logit Demand Model 

We apply the proposed methodology to the MNL model 
for several reasons: (1) it is the most widely used discrete 
choice model, especially due to its closed form choice 
probabilities and interpretability [44]; (2) several discrete 
choice models evolved from MNL, such as MIXL and G-
MNL, and a better understanding of how uncertainty affects 
NPD under MNL models can lead to general conclusions and 
intuition about the effects of uncertainty under different 
models; and (3) even though MNL was introduced more than 
thirty years ago by McFadden [40], it is still widely used in the 
NPD literature [14,45-46]. For the purposes of this paper, we 
assume that the model is correct and that the uncertainty arises 
from the parameter estimation and not model misspecification.  

In a multinomial logit model, given some competitive set 
of J products, the predicted market share ݏ  for product j can 
be computed as  

 

(ܞ)ݏ = ೡౠ

∑ ೡೖ
ೖసభ

 

where ܞ = ൫ݒଵ, … ,  ൯ is the vector of observable utility pointݒ
estimates of the respective products.  

The utility function is often specified to be linear in 
parameters: ݒ = ܠߚ , resulting in predicted market share 
݆ for some product (܆)ݏ ∈ {1, … ,ܰ}:  

 

(܆)ݏ = 
ܠೕ

∑ 
ܠೖ

ೖసభ
 

 
Ignoring constant fixed costs, in a multinomial logit 

demand model the predicted profit j  can be computed as: 
 

(܆)ߨ = ݉൫ − ܿ൯ݏ(܆) = ݉൫ − ܿ൯


ೕܠ܂

∑ 
ܠೖ

ೖసభ

 
 
The classical practice is to use maximum likelihood methods 
to estimate the parameters  in multinomial logit models [27]. 
Train [44] notes that the estimates are easily obtained since the 
log-likelihood function is concave for linear utility 
specifications, and Wooldridge [47] proves that the maximum 
likelihood estimator 

 
is asymptotically normally distributed 

with distribution  ~ ܰ൫ഥ,൯, where ഥ is the vector of means 
and   is the covariance matrix, implying that 
ොݒ  ~ ܰ(ഥܠ  .(ܠܠ,

The exact distribution of ̂ݏ  is unknown, but the delta 
method enables analytic approximation of a transformed 
distribution using a linear approximation of the mapping 
function. This frees us from the computational burden of 
simulating a market share distribution for each choice of 
product attributes in the optimization loop, as would be 
required by the method in Hsu and Wilcox [27]. The delta 
method states that any function of a normally distributed 
random variable (in this case the estimated parameters) 
converges asymptotically to a normal distribution ([47], see 
Appendix B for proof). The delta method relies on a Taylor 
series expansion of the mapping function g. If the function of 
the expected value of the parameters is g(ഥ) , then g൫൯ ≅
g൫ഥ൯+ ∇g൫ഥ൯ ∙ ( − ഥ). The mean and variance of g() can 
be calculated as: 

 
Eൣg൫൯൧ ≅ Eൣg൫ഥ൯+ ∇g൫ഥ൯ ∙ ൫ − ഥ൯൧ = g൫ഥ൯ 

 

Varൣ g൫൯൧ = E ቀg൫൯ − g൫ഥ൯ቁ
ଶ
൨ ≅ E ቀ∇൫ഥ൯ ∙ ൫ − ഥ൯ቁ

ଶ
൨ 

= E ቀ∇g൫ഥ൯ቁ
ଶ
∙ ൫ − ഥ൯

ଶ൨ = ∇g(ഥ)ଶ ∙ Var() 
 

As with any linear function approximation to a nonlinear 
function, it may lead to significant distortion of the function 
outside the neighborhood of g(ഥ). 

The quantity of interest ̂ݏ  is itself a function of , but 
ݏ  ∈ [0,1], which does not match the domain of the normal 
distribution. Instead, we select the intermediate function 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 
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g() = ln൫1/ݏ − 1൯ ∈ (−∞, +∞) so that g()  has the same 
domain of a normal distribution, and so that in the case of a 
monopolistic single product firm with an outside good, the 
approximation leads to the exact distribution of the profit. 

 

   

T

T

T
1

\

1g ln 1 ln 1 ln

k

k j

j

J

k

k J j

e
e

s ej





 
                      

 




β x

β x x

β x
β

 

 
By the delta method, we know that  
 

    T

g gˆg ~ g ,
a

N
        β

β β Σ
ββ

 

 
Since  
 

   

 

T

T

\

\

g
k j

k j

k j
k J j

k J j

e

e



















β x x

β x x

x x

β
 

 
(see Appendix A for details) we can approximate the variance 
of g for any given X. Because 

 

 

 1 1 1ˆˆ 1 1 g ln 1
ˆj j

j j j

s s
s s s


 

    
                     

β  

 
we can calculate  

    1ˆˆPr Pr g ln 1j j
j

s s
s


 

  
           

β
 

Normalizing the right hand equation 

     
1 1
2 2

1g ln 1ˆg g
Pr

g g g g

j

T T

s


 
  
         
                  
 β β

β
β β

Σ Σ
β ββ β

 

 
Since: 

   
 1

2

ˆg g
~ 0,1

g g

a

T

N

 
 
 

 
 
        
 β

β β

Σ
ββ

 

The probability expression is the cumulative distribution of a 
standard normal, thus 

 
 

1
2

1g ln 1
ˆPr

g g

j
j j

T

s
s s


  

 
  
           
        
 β

β

Σ
ββ

 
 
where Φ is the cumulative distribution function of the standard 
normal distribution. Solving for ݏఈ 
 

   

1
1
2

1 g g1 exp gj Ts 





  
    

        
  β

β Σ
ββ

 

 
Equation (16) enables a modeler to compute the estimated 
market share at the  risk level as a closed form deterministic 
function of the decision variables using only the mean ഥ and 
covariance matrix   defining the choice model parameter 
estimates. Both ഥ and  are available from standard estimation 
procedures. The -profit can then be computed as ߨఈ =
݉൫ − ܿ൯ݏఈ − ܥ . In the special case of a monopolistic 
single product firm, this framework leads to the exact 
distribution of the profit, since 

 

 

   Tˆˆg ln

g gˆ ~ ,

j

T T

e

Nj j T



            

β x

β

β

β x β x Σ
ββ

  

 
Figure 3 illustrates the mapping for a model with a single 
parameter showing the normal distribution of the estimated 
model coefficient, , the resulting distribution of g() and its  
normally distributed approximation via the delta method, and 
the resulting distribution of ̂ݏ  and its (non-normal) 
approximation via the delta method. 
 

 
FIGURE 3 – ILLUSTRATION OF PROBABILITY 

DISTRIBUTION FUNCTIONS AND THEIR 
APPROXIMATIONS USING THE DELTA METHOD 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 
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As a result of the delta method formulation, the 
distribution of ˆ js  depends on the variance of g() , which 
depends on ߲g ߲⁄ . Because ߲g ߲⁄  is proportional to 
∑ ൫ܠ୩ − ୨൯݁ܠ

(ܠౡିܠౠ)∈\ , the distribution of ̂ݏ  is influenced 
by the differentiation of the new product attributes from each 
of the existing product attributes. All else being equal, greater 
differentiation implies higher uncertainty in market share 
predictions. 

4. CASE STUDY 
In this section, we examine the application of this method 

to the optimal design of a midsize vehicle for an automotive 
manufacturer. It is assumed that the manufacturer is operating 
as a single-product firm, and that other manufacturers do not 
redesign their products in response to the introduction of the 
new vehicle. The application to manufacturers that offer 
diversified product lines or operate in dynamic market 
conditions is left as future work. 
 
4.1. Demand side 

We estimate a logit model to describe vehicle choice 
using the fuel economy, price, and sales data from Ward’s 
Automotive Index [48] for 44 midsize vehicle models (See 
Appendix C for vehicle details). We assume for simplicity that 
each of vehicles purchased in the data represents a consumer 
who considered the 44 midsize vehicle alternatives and 
purchased the identified vehicle at its manufacturer suggested 
retail price (MSRP). This data set has over 3 million midsize 
purchases – enough to identify logit model parameters with 
high certainty. To better illustrate the approach, we divide the 
total number of observations by 30,000 and round the 
resulting sales of each alternative to the nearest integer to 
simulate the uncertainty associated with a smaller data set of 
~100 observations. 

Two explanatory variables are considered: price (unit: 
$10,000), and operating cost (unit: cents per mile), and we 
assume a linear utility function. If this model is misspecified, 
there will be additional uncertainty associated with model 
prediction, but we assume here correct specification and focus 
on uncertainty of parameter estimates due to missing data. 
Using the maximum-likelihood method for coefficient 
estimation, we obtain the results in Table 2.  

 
TABLE 2 – MULTINOMIAL LOGIT MODEL PARAMETER 

COEFFICIENTS 
 n ≈ 100 n ≈ 1000 
Observed 
variable 

Coef. Std. 
Error 

t-stat Coef. Std. 
Error 

t-stat 

Price, 
$10,000 

-0. 354 0.126 -2.81 -0. 342 0.039 -8.68 

Op. cost 
0.01$/mile 

-0.114 0.063 -1.81 -0.119 0.020 -6.00 

 
The coefficients suggest that consumers in the midsize 

segment value lower-priced vehicles with lower operating 
costs, as expected. The inverse of the Hessian, the information 
matrix, obtained from the maximum-likelihood optimization 
problem is shown in Table 3. In the case of maximum-
likelihood estimators, the information matrix is also the 

variance-covariance matrix of the estimators, Σ (see Appendix 
D for proof). 

 
TABLE 3 – VARIANCE-COVARIANCE MATRIX OF LOGIT 

COEFFICIENTS (INFORMATION MATRIX) FOR N=100 
 Price 

($10,000) 
Operating cost 
(0.01$/mile) 

Price ($10,000)  0.0158 -0.0040 
Operating cost (0.01$/mile) -0.0040  0.0040 

4.2. Supply side 
Following Shiau et al. [49], a midsize vehicle j with a 

gasoline engine is represented by an engine scaling variable 
wj, a technology implementation variable tj, and price pj. Here 
wj represents the power of the engine and tj represents the 
level of implementation of fuel-saving technologies (e.g. low-
friction lubricants or electric power steering). We set wj = 0.8 
for simplicity, reducing the problem to two decision variables. 
The mapping from design variable tj to the observed product 
attribute of operating cost is given by equation 18. For this 
study, we assume a gasoline price of pG = $2.85, the average 
daily high price during the year the data were collected (2007). 
 

  G
G

1
Operating cost ($/mile)  where $2.85

32.1760
j

j

t p
x p


    

 
The marginal cost to the manufacturer per vehicle cj is 

calculated as the summation of the vehicle base cost cB engine 
cost cE and fuel-saving technology cost cT such that the 
production cost of a single vehicle is defined as cj=cB+cE+cTj. 
We assume cB is fixed at $7,836, cE is fixed at $1,131.50, and 
cTj is given by equation 19:  

 
2

3 4 3 4= +  where  $85,936 and  $2,177Tj j jc b t b t b b    

For more detail on the estimation of the operating cost and 
vehicle manufacturing cost models see Shiau et al. [49]. 

 
 
4.3. Optimization Results 

The new vehicle is optimized according to the following 
formulation: 

maximize ߨఈ = ݉൫ − ܿ൯ݏఈ − ܥ  

with respect to ݐ ,    
subject to 0 ≤ ݐ ≤ 1; 10,000 ≤  ≤ 90,000 
where  

   

1
1
2

11 expj T
g gs g 





  
    

         
  β

β Σ
β β

 

   T

\

g ln k j

k J j

e 



 
  

 
 β x xβ

 
2

B E 3 4+j j jc c c b t b t  

  

(18) 

(19) 
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Matlab’s fmincon function was used to solve the problem, and 
the results are found in Table 4. Because optimization results 
are independent of the constants for fixed cost C and market 
size m we report the profit factor, defined as sj(pj-cj), which 
represents profit for a market size of one and fixed cost of 
zero. Profit for other values of these constants can be 
computed from the profit factor post hoc. 

 
TABLE 4 - OPTIMAL PRODUCT CHARACTERISTICS 

α 
(%) 

Tech
nolog

y tj 

Price 
($) 

Op. 
cost 

(cents
/mi.) 

Var. 
Cost 
($) 

Market 
share 
at α 
level 
(%) 

Profit 
factor 
at α 
level 

Exp. 
market 
share 
(%) 

Exp. 
Profit 
factor 

10 0.05 30,298 8.37 9,105 1.91 406 2.83 599 
15 0.07 31,516 8.21 9,271 1.93 430 2.75 613 
20 0.09 32,652 8.06 9,464 1.95 452 2.69 624 
25 0.10 33,768 7.93 9,683 1.96 473 2.63 633 
30 0.12 34,903 7.80 9,930 1.98 494 2.55 636 
35 0.13 36,086 7.67 10,211 1.99 516 2.48 642 
40 0.15 37,343 7.55 10,532 2.01 539 2.43 650 
45 0.16 38,704 7.41 10,903 2.03 563 2.35 653 
50 0.18 40,206 7.27 11,336 2.04 590 2.28 659 
55 0.20 41,896 7.12 11,852 2.07 621 2.20 661 
60 0.22 43,839 6.95 12,478 2.09 655 2.11 661 
65 0.24 46,132 6.76 13,256 2.12 696 2.00 657 
70 0.26 48,928 6.55 14,256 2.15 746 1.88 652 
75 0.29 52,486 6.28 15,600 2.19 809 1.73 637 
80 0.33 57,293 5.95 17,525 2.25 895 1.58 629 
85 0.38 64,420 5.49 20,577 2.34 1,024 1.37 602 
90 0.46 76,876 4.76 26,361 2.48 1,254 1.07 543 

 
Table 4 reveals that, for this case, as the firm's risk 

aversion increases (smaller ) it implements less fuel saving 
technology, resulting in lower production cost and higher 
operating cost, while pricing the vehicle lower and sacrificing 
some expected profit for reduced downside risk of profit at the 
-level. As the firm becomes risk seeking (larger ) it 
implements more fuel-saving technology, resulting in higher 
production cost and lower operating cost, while pricing the 
vehicle substantially higher and sacrificing some expected 
profit for the small chance of high realized profits. An 
intermediate -level is associated with highest expected profit, 
representing risk neutrality.  

For comparison purposes, the competitor vehicle design 
statistics are summarized in Table 5, with details in Appendix 
C. The optimal price for the new vehicle at each α-level is 
greater than the competitor averages but within the range of 
competitor prices with the exception of high-risk cases α=85% 
and 90%. The operating cost for the new vehicle at all α-levels 
is lower than the averages for the competitor vehicles but 
within the range of competitor values with the exception of 
high-risk case α=90%. For the more risk averse α-levels, the 
optimal solution is closer to the competitor averages and 
within the range of competitor prices and operating costs.  At 
the risk-seeking end of the spectrum, the new vehicle diverges 
from the average competitor designs, and at high risk-
tolerance levels is even out of the range of the market-tested 
competitor designs.  
 

TABLE 5 – COMPETITOR VEHICLE STATISTICS 
 Price ($) Fuel Economy 

(mi./gal.) 
Op. cost 

(cents/mi.) 
Minimum 10,415 21 5.21 
Maximum 61,715 55 13.66 

Sales weighted avg. 22,494 28 10.58 
 

Figure 4 shows the cumulative profit distribution plots for 
 ఈ∗ at α=25% and 75% and the optimal solution maximizingܠ
the value of profit at the expected value of β. The optimal 
design at α=25% has lower profit at α=75% and vice versa.  
Thus the optimal design depends on a firm’s sensitivity to 
downside risk: a risk averse firm would prefer the design 
resulting in the blue α=25% curve because there is less loss 
associated with downside risk. A risk-seeking firm would 
prefer the design resulting in the green α=75% curve because 
it has the greatest upside potential (fatter tails). The red curve 
is the design resulting from optimizing for the point estimate 
of market share and ignoring the uncertainty in β. As seen in 
Figure 4, at α=25%, the optimal product designed for α=25% 
has profit factor approximately 25% larger than the optimal 
product designed for α=75%. 

 

 
FIGURE 4 – CDF OF PROFIT DISTRIBUTIONS 

ILLUSTRATING THAT DIFFERENT DESIGNS ARE 
PREFERRED FOR  =0.25 VS.  = 0.75 

 
Varying tj to maximize profit results in a trade-off for the 

manufacturer between increased utility (demand) from 
improved consumer operating cost vs. higher manufacturing 
costs. In this study, lower levels of fuel-saving technology 
implementation are optimal for lower α-levels. As tj is 
increased, the vehicle is increasingly differentiated from other 
vehicles in the data set. This change disproportionately affects 
the mean and variance of g() . Larger values of tj cause 
greater variation in the profit distribution, so that with more 
extreme product positioning, there is greater potential for 
upside but also more downside risk associated with the design. 
A sensitivity case using more optimistic estimates for 
technology costs resulted in different values of tj but a similar 
trend with respect to α. 

4.4. Assessing the delta method approximation 
In order to check the quality of the delta method 

approximation, we compare the distribution obtained for the 
optimal design found at α=25% using a Monte Carlo 
simulation vs. the delta method. 

First, we take 50,000 draws of the coefficients using the 
covariance matrix obtained in the logit estimation. The 
simulated distributions of the parameters are shown in Figure 
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5, which displays both a contour plot of the multivariate 
distribution and a set of random draws from the distribution. 
We use these simulated draws to find a simulated distribution 
of the g function (equation 9) and compare it with the delta 
method approximation. Using the g function distribution, we 
can also compute the market share distribution since ̂ݏ =
൫1 + ݁൫,܆൯൯

ିଵ
. 

Figures 6 and 7 show, respectively, the comparisons of 
the simulated g function and market share distributions with 
the ones obtained by the delta method. The delta method 
approximation yields high accuracy in this example. 

5. CONCLUSIONS 
Uncertainty in consumer choice model predictions implies 

uncertainty about the profit a product would generate. We 
propose a method for incorporating discrete choice model 
parameter uncertainty in the design decision problem and for 
determining the optimal design of a product given a specified 
level of risk tolerance. In the proposed method, the modeler 
specifies the level of sensitivity to downside risk by setting α. 
Specifically, ߨఈ is defined as the value below which ߙϵ[0,1] 
of the profit distribution ߨఫෝ  lies, and the design is optimized to 
maximize ߨఈ , rather than the expected value of profit. We 
apply the delta method to derive an estimated closed-form 
function for ߨఈ  in the case of the multinomial logit model. 
The closed-form function enables the optimization problem to 
be computationally efficient, and it is preferable over methods 
requiring a simulation-based approach when applicable. 

We demonstrate the method in a simple vehicle design 
case-study, where the delta method is shown to yield a close 
approximation to the true distribution. We find that the 
optimal solution varies with α, and the optimal solution at one 
α-level may be significantly less profitable at another α-level. 
Thus, optimal design choices depend on risk preference. For 
the design of the new vehicle in the case study, we find that as 
level of risk tolerance increases, the optimal profit at the α-
level is obtained by increasing the level of fuel-saving 
technology implementation and differentiating the new vehicle 
attributes from the average of the competitor attribute values. 

The proposed methodology addresses only the uncertainty 
of model parameter estimates caused by missing data; 
therefore, it is useful in situations with limited data where 
model specification can be assumed to be correct, such as 
some conjoint experiments. Future work may expand the 
method to be used with other choice models and address other 
sources of uncertainty, such as model misspecification. 
 
 

FIGURE 5 – DISTRIBUTIONS OF SIMULATED BETA 
COEFFICIENTS 

 
 
 
 
 
 
 

 
 

FIGURE 6 – COMPARISON OF SIMULATED AND 
APPROXIMATED g FUNCTION 
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FIGURE 7 – COMPARISON OF SIMULATED AND APPROXIMATED MARKET SHARE 
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Appendix A: Finding the Derivative  ࣔ()
ࣔ

  for a 
Multinomial Logit Model without Outside Good 
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Appendix B: Delta Method Proof 
Adapted from Wooldridge 2002 

Theorems and properties utilized: 
Asymptotic properties of estimators: Let {ߚே:ܰ = 1,2, … } be 
a sequence of estimators of the P x 1 vector ߚ ∈ B. If ߚே  is an 
unbiased and consistent estimator of ߚ, then by the 
multivariate central limit theorem 
ேߚ)ܰ√ − (ߚ


  where V is a P x Pߚ for any (ܸ,0)݈ܽ݉ݎܰ→

positive semidefinite matrix. We say that ߚே is √ܰ -
asymptotically normally distributed and V is the asymptotic 
variance of √ܰ(ߚே − ) denoted Avarߚ ቀ√ܰ(ߚே − )ቁߚ = ܸ . 
(V is necessarily positive semidefinite because 
Avar ቀ√ܰ(ߚே − )ቁߚ = Eൣ√ܰ(ߚே − (ߚ ∙ ேߚ)ܰ√ −  (.)′൧ߚ
 
Variance property: For any nonstochastic Q x P matrix R, with 

rank(ܴ) = ܳ,  0 ~ (0, ')
a

NN R Normal RVR   
 
Asymptotic equivalence lemma: {xN} and {zN} are sequences 
of K x 1 random vectors. If ݖே

ௗ
ݖ→  and ݔே − ேݖ


→ 0 , then 

ேݔ
ௗ
 .ݖ→

 
Mean value theorem: ݂′(ܿ) = ()ି()

ି
  for some c: b > c > a 

Slutsky’s theorem: If ݂(∙) is continuous, then ݂{ݔே}
ௗ
→   (ݔ)݂

when random vectors {ݔே}
ௗ
→  ݔ

 
Landau Symbols and convergence properties: Let x be a 
continuous variable tending to some limit and let ߶(ݔ) be a 
positive function and f(x) be any function. Then define݂ =
O(߶)  to mean that |݂| < ߶ܣ  for some constant A and all 
values x, ݂ = o(߶)  to mean that 

థ
⟶ 0  as x approaches 

infinity.  ݂ = o(߶) implies and is stronger than ݂ = O(߶). 
 
Delta method theorem: 
Let f: B → ℝொ  be a continuously differentiable function on 
parameter space B ⊂ ℝ where Q ≤ P and assume β is on the 
interior of the parameter space. Define (ߚ)ܨ = ∇ఏf(ߚ) as the 
Q x P Jacobian of f(β).  
 
If 

ேߚ)ܰ√ − (ߚ
ௗ
 (ܸ,0)݈ܽ݉ݎܰ→

 
and V is positive semidefinite, 
 
then: 
 

√ܰ൫f(ߚே)− f(ߚ)൯

,0)݈ܽ݉ݎܰ→ F(ߚ)ܸF(ߚ)′). 

 
Proof:  
Because β0 is in the interior of B and because ߚே  is a 
consistent estimator such that plim ߚே = ߚ መேߚ ,  is an open 
convex subset of B containing β0 with probability approaching 
1. Therefore, with probability approaching 1, we can use the 
mean value theorem to write: 
 

f(ߚே) = f(ߚ) + F̈ே(ߚே −  (ߚ
  
Where F̈ே  denotes the Jacobian matrix FN(β) evaluated at 
mean values between ߚே and ߚ. Rearranging the equation: 
 

√ܰ൫f(ߚே)− f(ߚ)൯ = F̈ே√ܰ(ߚே −  (ߚ
 
Adding and subtracting F(ߚ)√ܰ(ߚே −  ) to the right handߚ
side of the equation yields: 
 

√ܰ൫f(ߚே)− f(ߚ)൯ 
= F(ߚ)√ܰ(ߚே − (ߚ + ቀF̈ே − F(ߚ)ቁ√ܰ(ߚே −  (ߚ

 
Because the mean values are between ߚே  and β0, they 
converge in probability to β0 and we can apply Slutsky’s 
theorem, F̈ே


→ F(ߚ), which implies that F̈ே − F(ߚ) is op(1) 

and the equation becomes: 
 
 
 
 
 
 

(20) 
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√ܰ൫f(ߚே)− f(ߚ)൯ 
=  F(ߚ)√ܰ(ߚே − (ߚ + o(1) ∙ ேߚ)ܰ√ −  (ߚ

=  F(ߚ)√ܰ(ߚே − (ߚ + o(1) ∙ O(1) 
=  F(ߚ)√ܰ(ߚே − (ߚ + o(1) 


→ F(ߚ)√ܰ(ߚே −  (ߚ

 
By the asymptotic equivalence lemma and property of 
variance stated above with F(β0)=R: 
 

√ܰF(ߚ)(ߚே − (ߚ

,0)݈ܽ݉ݎܰ→ F(ߚ)ܸF(ߚ)′) 

 

Appendix C: Competitor Vehicle Characteristics 
Data from Ward’s Automotive [48] 

Model 
# 

Price ($) City 
MPG 

HWY 
MPG 

Harmonic 
average 

Fuel 
consumption 

(gal./mi.) 

Op cost 
($/mile) 

1 18,850 23 33 28 0.04 $0.10 
2 19,220 24 34 29 0.03 $0.10 
3 18,565 22 28 25 0.04 $0.11 
4 22,305 60 51 55 0.02 $0.05 
5 17,995 23 31 27 0.04 $0.11 
6 15,365 28 34 31 0.03 $0.09 
7 22,315 19 28 23 0.04 $0.12 
8 10,415 28 36 32 0.03 $0.09 
9 33,885 21 30 25 0.04 $0.11 
10 20,305 23 33 28 0.04 $0.10 
11 21,454 24 32 28 0.04 $0.10 
12 13,495 27 35 31 0.03 $0.09 
13 13,065 28 35 31 0.03 $0.09 
14 32,150 19 27 23 0.04 $0.13 
15 34,295 20 29 24 0.04 $0.12 
16 13,820 22 30 26 0.04 $0.11 
17 20,595 20 30 24 0.04 $0.12 
18 20,915 19 27 23 0.04 $0.13 
19 19,525 24 31 27 0.04 $0.10 
20 44,195 20 30 24 0.04 $0.12 
21 28,655 21 28 24 0.04 $0.12 
22 22,915 19 27 23 0.04 $0.13 
23 52,325 18 24 21 0.05 $0.14 
24 30,405 18 27 22 0.05 $0.13 
25 16,955 22 30 26 0.04 $0.11 
26 23,590 22 31 26 0.04 $0.11 
27 61,715 19 27 23 0.04 $0.13 
28 19,445 23 31 27 0.04 $0.11 
29 29,890 18 26 22 0.05 $0.13 
30 20,720 24 34 29 0.03 $0.10 
31 19,899 23 30 26 0.04 $0.11 
32 44,865 21 29 25 0.04 $0.12 
33 21,515 21 31 26 0.04 $0.11 
34 42,765 18 27 22 0.05 $0.13 
35 18,995 24 32 28 0.04 $0.10 
36 42,670 19 27 23 0.04 $0.13 
37 39,400 18 27 22 0.05 $0.13 
38 46,450 18 26 22 0.05 $0.13 
39 22,135 20 27 23 0.04 $0.12 
40 35,115 21 29 25 0.04 $0.12 
41 49,000 19 28 23 0.04 $0.12 
42 27,385 22 31 26 0.04 $0.11 
43 20,825 22 30 26 0.04 $0.11 
44 53,090 18 25 21 0.05 $0.13 

 

Appendix D: The Inverse of the Information Matrix is 
the Asymptotic Variance of Maximum Likelihood 
Estimators 
Adapted from Wooldridge 2002 

Definitions: 
 An M-estimator solves the problem: 

maxఉ∈ܰିଵ∑ ݓ)ݍ ே(ߚ,
ୀଵ , where w=(x,y) are the data, β is 

the parameter vector, and q is the quality function associated 
with the estimator (e.g. an error function). The parameter 
vector β0 is assumed to uniquely solve the population 
problem maxఉ∈E[(ߚ,ݓ)ݍ].  
 

  In the case of maximum likelihood M-estimators (MLE), 
ݓ)ݍ (ߚ, = log൫݂(ݕ|ݔ;ߚ)൯ , where f is the likelihood 
function. Because it is a maximization problem, the 
expected value of the hessian of the objective function 
∇ఉଶ log൫ ݂(ߚ)൯, denoted H(β), is negative definite at β=β0. 

 
 {݂(∙ ݔ:(ߚ,ݔ| ∈ ߚ,ܺ ∈  denotes the parametric model of {ܤ

conditional density 
 

 (ݕ݀)ߥ is a σ-finite measure, which for the purposes of this 
proof just denotes the increment over which the conditional 
density can be integrated 

 
 ݈ ≡ ݕ)݈ ݔ, (ߚ, ≡ log൫݂(ݕ|ݔ;ߚ)൯ ≡ log likelihood 

 
 Score of the log likelihood: 

≡ (ߚ)ݏ ≡ ∇ఉ݈୧(ߚ)ᇱ = ቆ
∂݈(ߚ)
ଵߚ∂

,
∂݈(ߚ)
ଶߚ∂

, …
∂݈(ߚ)
ߚ∂

ቇ ′ 

Theorems and properties utilized: 
 For M-estimators of β0, 
ேߚ)ܰ√ − (ߚ


  :where  (ିଵܣܤିଵܣ,0)݈ܽ݉ݎܰ→

 
A0≡ -E[H(β0)] (for maximization problems where the 
expected value of H is negative definite) 
 
ܤ ≡ Var[ݏ(ߚ)] = E[ݏ(ߚ)ݏ(ߚ)′] 
 

 For M-estimators, E[si(β0)]=0 is a necessary condition of 
asymptotic normality 
 

 ݈ = ln( ݂) → ݂ = ݁ → ∇ ݂ = ∇݁  =  ݁ ∙ ∇݈ = ݂ ∙ ∇݈ =
݂ ∙  ݏ

 
 Law of iterated expectations: E[x]=Ey[E[x|y]] 

 

Information matrix theorem: 
Let {(xi,yi)} : i=1,2,…} be a random sample with ݔ ∈ ܺ ∈
 ℝ  and ݕ ∈ ܻ ∈ ℝீ , B ∈ ℝ  be the parameter set and 
{݂(∙ :(ߚ;ݔ| ݔ ∈ ߚ,ܺ ∈ B}  denote the parametric model of 
conditional density.  Under standard regularity conditions for 
asymptotic M-estimators:  

(27) 

(28) 
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ேߚ)ܰ√ − (ߚ
ௗ
 (ିଵܣܤିଵܣ,0)݈ܽ݉ݎܰ→

 
If it is assumed that: 
1. ݂(∙  for all x (ݕ݀)߭ is a true density with respect to (ߚ,ݔ|
and β so that ∫ (ݕ݀)߭(ݔ|ݕ)݂ = 1  
 
2. For some ߚ ∈ B,  ݂(∙ (ݔ| = ݂(∙ ݔ ) for allߚ;ݔ| ∈ ܺ, and 
β0 is the unique solution to maxఉ∈E[݈(ߚ)] 
 
3. β0 is on the interior of compact set B 
 
4. For each ߚ ∈ B, ݈(∙  is a Borel measurable function on Y (ߚ|
x X 
 
5. For each (ݕ, (ݔ ∈ ܻ × ܺ,  is twice differentiable on (∙,ݔ,ݕ)݈
int(B) 
 
6. The elements of ∇ఉଶ൫݈(ݕ, ൯(ߚ,ݔ  are bounded in absolute 
value by a function b(y,x) with finite expectation 
 
7. The interchanges of ∇ and ∫  hold for all ߚ ∈ int(B) 
 
8. A0 ≡ -E[Hi(β)] is positive definite 
 
Then for maximum likelihood M-estimators: 
 

ߚ)ܰ√ − (ߚ
ௗ
 (ିଵܣ,0)݈ܽ݉ݎܰ→

 
and therefore the asymptotic variance, Avar(ߚ), is equal to బ

షభ

ே
 

where A0 ≡ -E[Hi(β0)] is the information matrix. 
 
Proof:  
Let Eఉ[∙  ] denote conditional expectation with respect to theݔ|
density ݂(∙ ݔ| ߚ for any (ߚ, ∈ B. Then, by definition: 

 
Eఉ[ݏ(ߚ)|ݔ] = ∫ ݔ,ݕ)ݏ ଢ଼(ݕ݀)߭(ߚ;ݔ|ݕ)݂(ߚ,  

 
Assuming the validity of interchanging integration and 
differentiation on the int(B) for all ݔ ∈ ߚ,ܺ ∈ int(B): 
 
∇ఉ ∫ ଢ଼(ݕ݀)߭(ߚ;ݔ|ݕ)݂ = ∫ ∇ఉ݂(ݔ|ݕ;ߚ)߭(݀ݕ)ଢ଼ = 0

   
since ∫ ଢ଼(ݕ݀)߭(ߚ;ݔ|ݕ)݂  is unity for all β. Therefore, the 
partial derivatives with respect to β must be identically zero.  
Rewriting ∇ఉ݂(ݔ|ݕ;ߚ) as 
 

∇ఉ݈(ݔ|ݕ;ߚ) ∙ (ߚ;ݔ|ݕ)݂ = (ߚ;ݔ|ݕ)ݏ ∙  (ߚ;ݔ|ݕ)݂
 
yields: 

∫ ଢ଼(ݕ݀)߭(ߚ;ݔ|ݕ)݂(ߚ)ݏ = Eఏ[ݏ(ߚ)|ݔ] = 0 
 
Taking the derivative and again interchanging integration and 
differentiation results in: 
 

∇ ቀ∫ ଢ଼(ݕ݀)߭(ߚ;ݔ|ݕ)݂(ߚ)ݏ ቁ = ∫ ∇൫ݏ(ߚ)݂(ݔ|ݕ;ߚ)߭(݀ݕ)൯ଢ଼  

= න (ݕ݀)߭(ߚ;ݔ|ݕ)݂(ߚ)ݏ∇
ଢ଼

+ න (ݕ݀)߭(ߚ;ݔ|ݕ)݂∇(ߚ)ݏ
ଢ଼

 

= E[∇ݏ(ߚ)|ݔ] +න (ݕ݀)߭(ߚ;ݔ|ݕ)݂(ߚ)ݏ(ߚ)ݏ
ଢ଼

 

= E[∇ݏ(ߚ)|ݔ] + න (ݕ݀)߭(ߚ;ݔ|ݕ)݂(ߚ)ଶݏ
ଢ଼

 

= E[∇ݏ(ߚ)|ݔ] + Eൣݏଶ(ߚ)|ݔ൧ 

= Eൣ∇ଶ൫݈(ߚ)൯|ݔ൧+ Var[ݏ(ߚ)|ݔ] 

= E[H୧(ߚ)|ݔ] + Var[ݏ(ߚ)|ݔ] = 0 

→ −E[H୧(ߚ)|ݔ] = Var[ݏ(ߚ)|ݔ] 

for all ߚ ∈ B. Substituting β= β0 yields: 
 

−E[H୧(ߚ)|ݔ] = E[ݏ(ߚ)ݏ(ߚ)′|ݔ] 
  
Taking the expectation value with respect to the distribution of 
x:  

−E୶ൣE[H୧(ߚ)|ݔ]൧ = E୶ൣE[ݏ(ߚ)ݏ(ߚ)′|ݔ]൧ 
 
Using the law of iterated expectations: 
 

−E[H୧(ߚ)] = E[ݏ(ߚ)ݏ(ߚ)′] 
 
or 

A0=B0 
 
This implies: 
 

ேߚ)ܰ√ − (ߚ

 (ିଵܣܣିଵܣ,0)݈ܽ݉ݎܰ→

= ,0)݈ܽ݉ݎܰ (ିଵܣܫ = ,0)݈ܽ݉ݎܰ E[H]ିଵ) 
 
 
 
 
 
 

 

(29) 

(30) 

(31) 

(32) 

(33) 

(34) 

(35) 

(36) 

(37) 

(38) 

(39) 

(40) 

(41) 


