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ABSTRACT 
Plug-in hybrid electric vehicles (PHEVs) have potential to 

reduce greenhouse gas (GHG) emissions in the U.S. light-duty 

vehicle fleet. GHG emissions from PHEVs and other vehicles 

depend on both vehicle design and driver behavior. We pose a 

twice-differentiable, factorable mixed-integer nonlinear 

programming model utilizing vehicle physics simulation, 

battery degradation data, and U.S. driving data to determine 

optimal vehicle design and allocation for minimizing lifecycle 

greenhouse gas (GHG) emissions. The resulting nonconvex 

optimization problem is solved using a convexification-based 

branch-and-reduce algorithm, which achieves global solutions. 

In contrast, a randomized multistart approach with local search 

algorithms finds global solutions in 59% of trials for the two-

vehicle case and 18% of trials for the three-vehicle case. 

Results indicate that minimum GHG emissions is achieved with 

a mix of PHEVs sized for around 35 miles of electric travel. 

Larger battery packs allow longer travel on electric power, but 

additional battery production and weight result in higher GHG 

emissions, unless significant grid decarbonization is achieved. 

PHEVs offer a nearly 50% reduction in life cycle GHG 

emissions relative to equivalent conventional vehicles and 

about 5% improvement over ordinary hybrid electric vehicles. 

Optimal allocation of different vehicles to different drivers 

turns out to be of second order importance for minimizing net 

life cycle GHGs. 

 

1. INTRODUCTION
1
 

Plug-in hybrid electric vehicle (PHEV) is a promising 

technology for addressing the issues of foreign oil dependency 

and global warming within the U.S. transportation sector [2]. 

                                                           
1 We focus here on global optimization formulation and methodological 

contributions, and we leave examination of cost, petroleum consumption, 
sensitivity analysis, and policy implications to a companion paper [1]. 

PHEVs are similar to ordinary hybrid electric vehicles (HEVs), 

except the PHEV carries a larger battery pack and offers plug-

charging capability [3]. PHEVs use large battery packs to store 

energy from the electricity grid and propel the vehicle partly on 

electricity instead of gasoline. Under the average mix of 

electricity sources in the U.S., vehicles can be driven with 

lower operation cost and fewer greenhouse gas (GHG) 

emissions per mile when powered by electricity rather than by 

gasoline [4]. PHEVs have the potential to displace a large 

portion of gasoline consumed by the transportation, since 

approximately 60% of daily U.S. passenger vehicle trips are 

less than 30 miles [5]. 

We focus our design study on PHEVs with an all-electric 

control strategy
2
, which disables engine operation in charge-

depleting mode (CD mode) and draws propulsion energy 

entirely from the battery until it reaches a target state of charge 

(SOC) [3]. Figure 1 shows the battery energy status in PHEV 

operation. The distance that a PHEV can travel on electricity 

alone with a fully charged battery is called its all-electric range 

(AER).
3
 Battery swing is the window between maximum SOC 

and target SOC, which is determined by the control strategy, 

and we base our swing definition on percent of cell energy 

used, rather than percent of SOC. Once the driving distance 

reaches the AER and the battery is depleted to the target SOC, 

the PHEV switches to operate in charge-sustaining mode (CS 

mode), and the gasoline engine provides energy to propel the 

vehicle and maintain battery charge near the target SOC. In CS 

mode, the PHEV operates similar to an ordinary HEV. 

                                                           
2 A blended-strategy PHEV uses a mix of the electric motor and gasoline 

engine to power the vehicle in CD-mode, while an all-electric PHEV uses only 
electricity. We confine our scope to all-electric strategy for simplicity, since 

blended-strategy operation characteristics are sensitive to control parameters. 
3 AER is defined as energy-equivalent electric distance for blended-mode 

PHEVs, but we consider only all-electric PHEVs in this study [6]. 
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Figure 1. Battery energy status in CD- and CS-mode 

operation 

 

  
Figure 2. Framework of optimal PHEV design and allocation 

 

We pose a benevolent dictator optimization model to 

determine optimal vehicle type, design, and allocation for 

achieving the social objective of minimum lifecycle GHG 

emissions from personal transportation.
4
 Figure 2 provides an 

overview of the modeling framework, where three major 

components, national driving data, PHEV performance and 

battery degradation, form the bases of the optimization model. 

Due to the combined nonlinearities in the driving data, the 

performance meta-model and the battery degradation model, 

the optimization problem is nonconvex and contains a mixture 

of continuous and discrete variables. The discrete variables 

corresponding to vehicle type are few in number and can be 

handled through exhaustive enumeration if necessary, 

producing a series of nonconvex nonlinear programs (NLPs). 

There are three primary approaches for solving nonconvex 

NLPs: (1) use a local NLP solver to find local solutions and 

invoke random multistart to seek global solutions [7]; (2) use a 

stochastic algorithm such as genetic algorithms or simulated 

annealing [8], or (3) use deterministic global optimization 

methods. Methods in group (1) and (2) are easy to implement, 

but they do not guarantee global solutions in finite time, and 

comparison of solutions across cases in sensitivity analysis is 

subject to uncertainty in attainment of global solutions in each 

sensitivity case. Methods in group (3) include gradient-based 

and derivative-free algorithms. Derivative-free deterministic 

global search algorithms that use partitioning, such as DIRECT, 

perform well only in low dimensional spaces (< 10 variables) 

                                                           
4 We model allocation of vehicles to drivers as a dictated assignment 

based on driver daily travel distance and do not model market mechanisms. As 

such, we find the best possible outcome for GHG emissions, which is a lower 
bound for market-based outcomes. 

and can perform poorly on constrained problems [9]. In 

contrast, gradient-based global solvers, such as BARON, can 

produce global solutions for significantly larger problems, but 

they require that objective and constraint functions be twice 

differentiable, factorable algebraic functions so that valid 

convex underestimation functions can be automatically 

constructed in nodes of the branch and bound tree [10]. 

We formulate our problem as a twice-differentiable, 

factorable MINLP that can be solved using BARON to ensure 

global solutions while managing both continuous and discrete 

variables. In Section 2, we first develop the formulation with 

specific models for the objective and constraint functions by 

specifying the distribution of miles driven per day, vehicle 

performance models, and the objective and constraint 

formulations. We then reformulate the model as a factorable, 

algebraic nonconvex MINLP that can be solved globally. In 

Section 3, we report solutions for minimum GHG emissions 

and compare the solution performance to the multi-start method 

with a local NLP solver. We then conclude in Section 4. 

2. MODEL 
To optimize a single vehicle for minimum GHG emissions 

over the population of drivers, we minimize the integral of 

fO(x,s), the GHG emissions per day for vehicle design x when 

driven s miles per day, times the probability density function of 

daily driving distance fS(s) over the population of drivers. 
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where g(x) is a vector of inequality constraints and h(x) is a 

vector of equality constraints ensuring a feasible vehicle design. 

We assume each vehicle is charged once per day, so that s 

indicates the distance traveled between charges. 

To extend this model to the case where different drivers are 

assigned different vehicles based on the distance driven per day, 

we incorporate a new decision variable si that defines the cutoff 

point such that drivers who travel less than si per day are 

assigned the vehicle defined by xi and drivers who travel more 

than si per day are assigned the vehicle defined by xi+1. 

Extending this idea to multiple segments, the formulation for 

vehicle design and ordered allocation is given by 
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Taking a two-vehicle-segment case as an example, the vehicle 1 

segment contains vehicles that travel between [0, s1] miles per 

day; the vehicle 2 segment contains vehicles that travel between 

[s1, ∞] miles per day; and the optimal value of s1 is determined 

together with the vectors of vehicle design variables x1 and x2 

for vehicle 1 and vehicle 2. 
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2.1 Distribution of Vehicle Miles Travelled per Day 
We use the 2009 National Household Transportation 

Survey (NHTS) data [5] to estimate the distribution of distance 

driven per day over the population of drivers. The survey 

collected data by interviewing 136,140 households across the 

U.S. on the mode of transportation, duration, distance and 

purpose of the trips taken on the survey day. We fit the 

weighted driving data
5
 using the exponential distribution. The 

probability density function below represents the probability 

density function for vehicle miles traveled by drivers on the day 

surveyed: 

 S ;   0sf s e s    (3) 

The coefficient λ is 0.0296 estimated using the maximum 

likelihood method. Because we lack multiple days of data for 

each vehicle, we assume that a vehicle that travels s miles per 

day on the NHTS survey day will travel s miles every day. This 

assumption will produce optimistic results on the benefits of 

optimal allocation, since distance traveled varies over time for 

individual vehicles in practice. 

2.2 Vehicle Performance Models 
The vehicle performance evaluations are carried out using 

the Powertrain System Analysis Toolkit (PSAT) vehicle 

physical simulator developed by Argonne National Laboratory 

[11].  In our study the body, powertrain and vehicle parameters 

for all PHEV and HEV simulations are based on the 2004 

Toyota Prius model that uses the split powertrain system with 

an Atkinson engine, a permanent magnet motor, and a nickel-

metal hydride (NiMH) battery pack. To account for structural 

weight needed to carry heavy battery packs, we include an 

additional 1 kg of structural weight per 1 kg of battery and 

motor weight [12]. We created a comparable conventional 

vehicle (CV) model using a conventional powertrain and 4-

cylinder engine to account for larger engine torque and power 

requirements, and the parameters that define the frontal area, 

drag coefficient and base weight are adjusted to match the Prius 

for fair comparison. 

For the PHEV design, the Prius engine size is scaled by the 

peak power output from the base engine (57 kW) using a linear 

scaling algorithm. Similarly, the motor is scaled from the base 

motor (52 kW) linearly. Both the engine and motor weights are 

also scaled proportionally to the peak power. We use the Saft 

Li-ion battery module in the PSAT package for the PHEV 

energy storage device. Each cell in the module weighs 0.378 

kg, with a modified specific energy of 100 Wh/kg and has a 

battery cell energy capacity of 21.6 Wh with a nominal output 

voltage of 3.6 volts. The weight of each 3-cell module is 1.42 

kg after accounting for a packaging factor of 1.25. The battery 

size and capacity are scaled by specifying the number of cells 

in the battery pack. We assume an 800W base electrical hotel 

                                                           
5 We excluded data entries of publication transportation and also excluded 

drivers who traveled zero miles or more than 200 miles. We fit the distribution 
to the reported distance traveled on the survey day, and we assume that (1) the 

survey data calibrated with weightings are representative of the national 

population, and (2) the distance driven on the survey day is the same distance 
driven every day for that vehicle. 

load on the PHEV, the HEV and the CV. To estimate the 

performance of a PHEV, we use the federal standard Urban 

Dynamometer Driving Schedule (UDDS) driving cycle [13] to 

calculate simulated electrical efficiency (miles/kWh) in CD-

mode for PHEVs, and gasoline efficiency (mpg) in CS-mode 

for PHEVs as well as for HEVs and CVs.
6
 We also perform a 

simulated performance test to calculate the time required to 

accelerate the vehicle from 0 to 60 miles per hour (mph) in the 

CD mode and in the CS mode. 

Because the GHG emissions per mile associated with 

HEVs and CVs are independent of the number of miles driven 

per day, we take the HEV and CV to have fixed designs. The 

HEV is identical to the Prius model, which has a configuration 

of peak engine power 57 kW, motor power 52 kW, NiMH 

battery size 168 cells (1.3 kWh), fuel efficiency 60.1 miles per 

gallon, and 0-60 mph acceleration time 11.0 seconds. Similarly, 

our CV has an engine size 126 kW and fuel efficiency 29.5 

miles per gallon, and 0-60 mph acceleration time 11.0 seconds. 

For the PHEVs, the design variables x consist of the engine 

scaling factor x1, motor scaling factor x2, battery pack scaling 

factor x3, and battery energy swing x4. We created a set of 

polynomial meta-model fits as functions of x for the PHEV 

using discrete simulation data points: (1) CD-mode electricity 

efficiency E (mile per kWh); (2) CS-mode gasoline efficiency 

G (mile per gallon); (3) CD-mode 0-60 mph acceleration time 

tCD (second); (4) CS-mode 0-60 mph acceleration time tCS 

(second); (5) CD-mode battery energy processed (charging and 

discharging) per mile μCD (kWh/mile); (6) CS-mode battery 

energy processed per mile μCS (kWh/mile); and (7) final SOC 

after completing multiple US06 aggressive driving cycles in CS 

mode uCS (starting at the target SOC). Metamodels of E and G 

are used to calculate energy consumption; tCD and tCS are used 

to ensure comparison of equivalent-performance vehicles; μCD 

and μCS are usd to calculate battery degradation, and uCS is used 

to ensure the engine is capable of providing average power 

needs in CS mode. We evaluated these output values using 

PSAT over a grid of values for the inputs x1 = {30, 45, 60}/57, 

x2 = {50, 70, 90, 110}/52, x3 = {200, 400, 600, 800, 

1000}/1000, and multivariate polynomial functions were fit to 

the data using least squares. The general form of the cubic 

fitting function fm3 is defined as (the subscript 3 indicates the 

PHEV case, which will be discussed later). 

  3 3 3 2 2

3 1 1 2 2 3 3 4 1 5 1 2

2 2 2 2

6 1 3 7 1 3 8 2 3 9 2 3 10 1 2 3

2 2 2
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x

 
(4) 

where the am terms are the coefficients for function m. The 

polynomial fitting coefficients for E, G, tCD, tCS, μCD, μCS and 

uCS are listed in Table A1 in Appendix.
7
 The maximum 

                                                           
6 Examination of alternative driving cycles and the correlation between 

driving cycle and driving distance is left for future work. 
7 We truncated the acceleration data points greater than 13.0 seconds to 

improve the metamodel fit, and fit μCD, μCS and uCS using quadratic terms to 
avoid over-fitting. 
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metamodel error among the test points is 0.1 miles/kWh, 0.1 

miles/gallon, 0.5 seconds, 0.02 kWh, and 0.5% for electrical 

efficiency, gasoline efficiency, acceleration time, energy 

processed, and final SOC, respectively. 

2.3 Electric Travel and Battery Degradation 
To calculate the objective function of GHG emissions, we 

first define the distance driven on electric power sE and the 

distance driven on gasoline sG as a function of the vehicle’s 

AER sAER and the total distance driven per day s. Assuming one 

charge per day, sE and sG are given by 

 
 

 
 

AER

E

AER AER

AER

G

AER AER

if 
,

if 

0 if 
,

if 

s s s
s s

s s s

s s
s s

s s s s


 




 

 

x
x

x
x

 
(5) 

For PHEVs, we assume that the battery is fully charged 

once each day. For HEVs and CVs, there is no electrical travel; 

thus HEV and CV can be seen as special cases with sAER = 0, so 

that sE = 0 and sG = s. Assuming constant efficiencyE (mile per 

kWh) in CD-mode, the AER of a PHEV can be calculated from 

the energy capacity per battery cell κ = 0.0216 kWh/cell, the 

(scaled) number of cells x3, and the battery swing x4:  

   AER 3 4 E1000s x x x  (6) 

We use the Peterson model [14] for estimating battery 

degradation and replacement. The model was constructed by 

cycling modern A123 LiFePO4 cells under representative 

driving cycles (non-constant C-rate) and measuring capacity 

fade as a function of energy processed, including intermediate 

charging and discharging over the driving cycle. Results show 

relative energy capacity fade as a linear function of normalized 

energy processed while driving and while charging. The daily 

energy processed while driving wDRV and charging wCHG a 

PHEV can be expressed as (unit in kWh): 
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where μCD and μCS are energy processed per mile (kWh/mile) in 

CD and CS mode, respectively, and ηB is battery charging 

efficiency 95% [14]. We assume that energy processed for daily 

charging is equal to net energy consumed in electrical travel per 

day. The relative energy capacity decrease can be calculated by 

the energy processed in driving and charging per cycle per cell 

per original cell energy capacity: 

 
 

DRV DRV CHG CHG
P

3
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1000

w w
r s

x

 




x  

(8) 

where αDRV = 3.46×10
-5

 and αCHG = 1.72×10
-5

 are the 

coefficients for relative energy capacity fade. These coefficients 

are derived from the same data set described in [14].
8
 If the 

battery end-of-life is defined as the point when the drop in 

                                                           
8 The regression in [14] focused on finding the degradation from energy 

arbitrage, but in this paper the data was assigned to categories to enable 
predictions about degradation due to driving and recharging. 

relative energy capacity is rEOL, the battery life θBAT, measured 

in days (or, equivalently, cycles), can be calculated as 
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The rEOL criterion is defined at 20% [14] . 

2.4 Objective and Constraint Functions 
The operating (use phase) GHG emissions νOP represents 

the average GHG emissions in kg CO2 equivalent (kg-CO2-eq) 

per day associated with the lifecycle of gasoline and electricity 

used to propel the vehicle:
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where ηC = 88% for battery charging efficiency [15], vE = 0.752 

kg-CO2-eq per kWh for electricity emissions
9
, and vG = 11.34 

kg-CO2-eq per gallon for gasoline lifecycle emissions. Total 

lifecycle GHG emissions further includes the GHGs associated 

with production of the vehicle and battery. The average total 

lifecycle GHG emissions per day fV(x, s) is 
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(11) 

where θVEH = sLIFE/s is the vehicle life in days, sLIFE = 150,000 

miles
10

 is the vehicle life in miles, θBRPL is the battery 

replacement effective life (defined below), vBAT = 120 kg-CO2-

eq per kWh for Li-ion battery and 230 kg-CO2-eq per kWh for 

NiMH battery is the lifecycle GHG emissions associated with 

battery production, vVEH = 8,500 kg-CO2-eq per vehicle is the 

lifecycle GHG emissions associated with vehicle production 

(excluding emissions from battery production) [4]. 

To compare comparable vehicles, we require that all 

vehicles meet a minimum acceleration constraint of 0-60 mph 

in less than 11 seconds. Because we have limited our scope to 

all-electric PHEVs, we require the acceleration constraint to be 

satisfied both in CD mode, using electric power alone, and in 

CS mode, where the gasoline engine is also used. The resulting 

constraints are tCD(x) < 11s and tCS(x) < 11s. Additionally, we 

require the gasoline engine to be large enough to provide 

average power for the vehicle in CS mode under an aggressive 

US06 driving cycle while maintaining the target SOC level in 

the battery. The resulting constraint is uCS(x) > 32%. Finally, we 

impose simple bounds on the decision variables: 30/57 ≤ x1 ≤ 

60/57, 50/52 ≤ x2 ≤ 110/52, 200/1000 ≤ x3 ≤ 1000/1000, 0 ≤ x4 

                                                           
9 The lifecycle GHG emissions of electricity is estimated using the US 

national average electricity emission factor 0.69 kg-CO2-eq/kWh [16] with 9% 

transmission loss [17]. 
10 We assume that all vehicles must be replaced every 150,000 miles, 

which represents the U.S. average vehicle life [18]. This assumption may be 

unrealistic for vehicles driven very short or very long daily distances because 
other time-based factors also play a role in vehicle deterioration. However, 

these factors are only significant for regions of the objective function's 

integrand that are relatively insignificant to the integrated objective function, 
and they do not provide a significant source of error. 
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≤ 0.8 to avoid metamodel extrapolation. Any active simple 

bounds would imply a modeling limitation rather than a 

physical optimum. 

2.5 MINLP Reformulation 
The resulting model formulation (Eq. (2)) involves 

integration, discrete decisions (vehicle type), and piecewise-

smooth functions with derivative discontinuities due to AER 

and battery life. To solve the problem globally, we pose a 

factorable, algebraic nonconvex MINLP reformulation that can 

be solved using the BARON convexification-based branch-and-

reduce algorithm [19]. First, the exponential distribution form 

for the NHTS data fit allows the integral in Eq. (2) to be 

simplified in terms of two algebraic formulae: the cumulative 

density function FS: 
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and the partial expected value function FE:  
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Thus the problem reduces to an algebraic formulation with 

discrete vehicle-type decisions and piecewise-smooth 

functions. We next introduce four sets of binary variables to 

convert the problem to a twice-differentiable MINLP. The first 

binary variable set til identifies the vehicle type l{1,2,..,L} for 

each segment i, where til {0,1} i,l and ltil = 1 i. Here we 

consider three vehicle types l{1,2,3} for CV, HEV and PHEV, 

respectively, and write the objective function as a binary-

weighted function ∑l(tl)(fl(xl, s)). 

The second binary variable set zij{0,1} i,j handles one 

of the derivative discontinuities by identifying in which of three 

regions j{1,2,3} on the s-axis each segment i is located, 

relative to sAER (jzij = 1 i).  

(1) In region 1, sAER ≤ si  (zi1)(sAER(xi) – si-1) ≤ 0;  

(2) in region 2, si-1 ≤ sAER ≤ si  (zi2)(si-1 – sAER(xi)) ≤ 0 and 

(zi2)(sAER(xi) – si) ≤ 0;  

(3) in region 3, sAER ≥ si  (zi3)(si – sAER(xi)) ≤ 0.  

The population-weighted operation GHG emissions are 
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Applying Eq. (12) and (13), the above integral can be expressed 

as the sum of three analytical functions: 
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The third binary variable set qio o{1,2,3} and oqio = 1 i 

identifies the relative conditions between battery life θBAT and 

vehicle life θVEH. Here we define the battery life in vehicle 

mileage travelled (VMT) as sBAT = sθBAT, assuming one charge 

per day. The estimated battery life sBAT using the Peterson 

degradation model is a non-decreasing function of s: 
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(16) 

The expression for s∞ is simplified from the conditional 

expression for s > sAER by imposing s
−1
0. The function sBAT 

has two unique characteristics. First, the function value is a 

constant when s ≤ sAER. Second, when s ≥ sAER, sBAT is a 

monotonically increasing function and asymptotically 

approaches the life of the battery on energy processed in CS 

mode, which is the constant value under s∞ condition. 

Because of the unique features in sBAT, we are able to identify 

four possible relations between sBAT and vehicle life sLIFE:  

(a) battery life sBAT(x, s) is less than vehicle life sLIFE for all s;  

(b) sBAT curve and sLIFE curve has one intersection point sT, 

where sLIFE > sBAT for 0 ≤ s ≤ sT and sBAT > sLIFE for s ≥ sT;  

(c) the flat region of sBAT overlaps with sLIFE (sBAT = sLIFE) for 

0 ≤ s ≤ sAER, and sBAT > sLIFE for s ≥ sT; and  

(d) sBAT is greater than vehicle life sLIFE for all s. 

The four conditions are illustrated in Figure 3. 
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Figure 3. Four conditions for the battery and vehicle VMT 
curves 

 

Condition (a) occurs when the following inequality is valid: 

BAT LIFEs s   (17) 

For condition (b), an analytical expression for sT is available by 

solving sLIFE=sBAT(x,sT): 
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Condition (c) and (d) occur when the following inequality is 

valid: 
0

BAT LIFEs s  (19) 

The battery replacement effective life θBRPL under the buy-

lease scenario is determined by min(θVEH, θBAT). Therefore, 

three discrete cases are identified:  

(1) In case 1 (o=1), s
∞

BAT ≤ sLIFE (θBAT < θVEH) s  

(qi1)(θBAT(s) – θVEH) < 0 and θBRPL = θBAT;  

(2) for case 2 (o=2),  θBAT intersects θVEH at a point sT  

(qi2)(θVEH – θBAT(s)) < 0 and (qi2)(θBAT(s=0) – θVEH) < 

0, so θBRPL = θBAT for s ≤ sT, θBRPL = θVEH for s ≥ sT; and  

(3) for case 3 (o=3), s
0

BAT ≥sLIFE (θBAT
 

≥ θVEH) s  

(qi3)(θVEH – θBAT(s=0)) < 0 and θBRPL = θVEH. 

The fourth binary variable set yik identifies in which region 

sT lies when qi2 = 1 (o=2). The three conditions k{1,2,3} on 

the binary variable set yik are:  

(1) In region 1 (k=1), sT(xi) ≤ si-1  (qi2)(yi1)(sT(xi) – si-1) < 0;  

(2) in region 2 (k=2), si-1 ≤ sT ≤ si  (qi2)(yi2)(si-1 – sT(xi)) ≤ 0 

and (qi2)(yi2)(sT(xi) – si) ≤ 0; and  

(3) in region 3 (k=3), sT(xi) ≥ si  (qi2)(yi3)(si – sT(xi)) < 0. 

The combinations of j, k and o result in 27 cases. For each 

segment i, for each of the cases j{1,2,3} k{1,2,3} 

o{1,2,3}, the integral in Eq. (2) reduces to a twice-

differentiable closed form factorable algebraic expression 

Fijko(xil, si-1, si). Table 1 presents the summary of the discrete 

conditions with corresponding θBRPL and the components in the 

total cost function. Among the o=2 cases, there are three 

infeasible cases because the value of sT should be greater than 

sAER when an sT point exists. The analytical expressions of 

battery GHG emission function FBG for all discrete cases are 

listed in follows: 

Case (1a): θBRPL = θBAT and sAER ≤ si-1 
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Case (1b): θBRPL = θBAT and si-1 ≤ sAER ≤ si 
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Case (1c): θBRPL = θBAT and si ≤ sAER 
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Case (2a): θBRPL = {θBAT, θVEH} and sAER ≤ si-1 
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Case (2b): θBRPL = {θBAT, θVEH} and si-1 ≤ sAER ≤ si 
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Case (3): θBRPL=θVEH 
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Table 1. Discrete conditions for estimating total lifecycle emissions on the AER and battery life 

o  J  k  θBRPL Total GHG function Fijko 

  1 sAER ≤ si-1    Fi1k1=vVEH+FOG1+FBG1a

 

1 BAT LIFEs s   2 si-1 ≤ sAER ≤si   θBAT Fi2k1=vVEH+FOG2+FBG1b

 

  3 si ≤ sAER    Fi3k1=vVEH+FOG3+FBG1c

 

2 
0

BAT LIFE BATs s s 

 

1 sAER ≤ si-1 

1 sT ≤ si-1 θVEH Fi112=vVEH+FOG1+FBG3

 

2 si-1 ≤ sT ≤ si {θBAT, θVEH} Fi122=vVEH+FOG1+FBG2a

 

3 si ≤ sT θBAT Fi132=vVEH+FOG1+FBG1a

 

2 si-1 ≤ sAER ≤ si 

1 sT ≤ si-1 Infeasible  

2 si-1 ≤ sT ≤ si {θBAT, θVEH} Fi222=vVEH+FOG2+FBG2b

 

3 si ≤ sT θBAT Fi232=vVEH+FOG2+FBG1b

 

3 si ≤ sAER 

1 sT ≤ si-1 Infeasible  

2 si-1 ≤ sT ≤ si Infeasible  

3 si ≤ sT θBAT Fi332=vVEH+FOG3+FBG1c

 

  1 sAER ≤ si-1    Fi1k3=vVEH+FOG1+FBG3

 

3 
0

BAT LIFEs s  2 si-1 ≤ sAER ≤ si   θVEH Fi2k3=vVEH+FOG2+FBG3

 

  3 si ≤ sAER    Fi3k3=vVEH+FOG3+FBG3

 

 

The complete MINLP formulation is 
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(26) 

where the expression for Fijko reduces to a twice-differentiable 

algebraic expression in each case, f11 = f12 = 0, f21 = 29.5 mpg 

(CV), f22 = 60.1 mpg (HEV), f31 = f32 = 0, f41 = f42 = 11 sec, f51 = 

f52 = f61 = f62 = 0, f71 = f72 = 1, and fm3(xil) are defined in Eq. (4) 

for PHEVs (l=3 and ti3=1) with coefficients listed in Table A1. 

Here we summarize the primary modeling assumptions of 

this optimization framework: (1) Vehicles are designed and 

allocated to drivers based on VMT to minimize life cycle GHG 

emissions; (2) Each driver has a constant daily driving distance 

over the vehicle life; (3) The US NHTS weighted driving data 

are described using the exponential distribution function; (4) 

Vehicle performances are measured using EPA UDDS driving 

cycle simulation, and PHEV is assumed one full charge per 

day; (5) Lifecycle GHG emissions assume the average US grid 

mixture. 

 

3. RESULTS AND DISCUSSION 
We consider three driver segment scenarios, n=1, 2 and 3, 

and solve the MINLP model (Eq. (26)) using GAMS/BARON 

solver to obtain global solutions. The optimal vehicle type, 

design and allocation ranges for each case are summarized in 

Table 2. The first two data columns show the performance 

values of CV and HEV. We plot the functional values at the 

optimal solution x
*
 in Figure 4. The plots in the upper row 

show the lifecycle GHG emissions per mile fO(x
*
,s)/s, and the 

plots in the lower row show the population-weighted lifecycle 

GHG emissions per day fO(x
*
,s)·fS(s). The area under the 

population-weighted curve is the net lifecycle GHG emissions 

per person per day in the United States. 
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Table 2. Solutions of minimum lifecycle GHGs with three driver segment scenarios 

Driver segment scenario 
Single segment  Two segments  Three segments  

CV  HEV  PHEV  PHEV PHEV  PHEV PHEV PHEV 

Allocation  (miles) 0-200  0-200  0-200  0-87 87-200  0-33 33-83 83-200 

AER (miles) −  −  36  40 25  29 46 25 

Engine power (kW) 126  57  46  47 43  44 49 43 

Motor power (kW) −  52  70  71 73  71 72 73 

Battery cells −  168  396  435 269  316 512 274 

Battery design swing −  −  0.8
†
  0.8

†
 0.8

†
  0.8

†
 0.8

†
 0.8

†
 

Battery capacity (kWh) −  1.3  8.6  9.4 5.8  6.8 11.0 5.9 

CD-mode eff. (miles/kWh) −  −  5.30  5.29 5.35  5.33 5.25 5.34 

CS-mode eff. (mpg) 29.5  60.1  60.2  60.0 60.7  60.5 59.6 60.7 

CD-mode acceleration (sec) −  −  11.0  11.0 11.0  11.0 11.0 11.0 

CS-mode acceleration (sec) 11.0  11.0  9.3  9.1 10.3  9.8 8.9 10.2 

Final SOC −  −  0.32  0.32 0.32  0.32 0.32 0.32 

GHG emissions 

(kg-eq-CO2 per person-day) 
14.6  8.2  7.78  7.77  7.75 

Reduction % from CV only −  −43.8%  −46.7%  −46.8%  −46.9% 
†
Variable limited by model boundary 

 

For the single-segment case, we found that a PHEV36 has 

the lowest lifecycle GHG emissions. GHG emissions from the 

HEV scenario are about 44% lower than the CV scenario, and 

GHGs from the PHEVs scenarios are 5-6% lower than HEVs. 

For the two-segment case, the optimal solution is to allocate a 

PHEV40 to drivers who can charge every 87 miles or less (92% 

of drivers and 74% of VMT per day) and allocate a smaller-

range PHEV25 to drivers who charge less frequently. This 

optimal allocation of two vehicles reduces daily GHG 

emissions by only an additional 0.1% compared to allocating 

all drivers a PHEV36. The solution of three-segment case 

similarly produces very slight additional GHG reduction, 

implying that a single segment is able to provide a practical 

solution for our evaluation of PHEV environmental 

performances. A significant reduction in GHG emissions is 

achieved by allocating PHEVs to drivers rather than HEVs or 

CVs, and there is only a marginal additional gain from optimal 

allocation in the two- and three-segment cases. 

In the plots of the two-segment case (Figure 4(b) and (e)), 

there are two intersection points between the two PHEV GHG 

curves, and the optimal single cutoff point is located at the first 

intersection. Although the PHEV40 GHG curve surpasses the 

PHEV25 after 87 miles, the difference between two is almost 

indistinguishable, and the portion of the population driving 

greater than 87 miles/day is small. Assigning all drivers high-

AER PHEVs can significantly reduce petroleum consumption, 

but this is not necessarily the best solution for minimizing 

GHGs because reducing the number of unnecessary batteries in 

these vehicles reduces the emissions associated with battery 

production as well as the emissions associated with reduced 

vehicle efficiency caused by carrying heavy batteries. While the 

largest group of vehicles travel short distances each day, the 

majority of the GHG emissions are produced by those vehicles 

that travel between about 25-45 miles/day.  

We further tested the single segment case with low carbon 

electricity scenario (high portion of renewable energy sources) 

218 kg-CO2-eq/kWh in the grid mix [4]. The optimal solution 

shows an optimal large-capacity PHEV87 (upper bound) is best 

to reduce the average GHG emissions to 4.53 kg-CO2-eq per 

person per day, and the reduction percentages from CV and 

HEV are 69% and 45%, respectively. This result implies grid 

decarbonization is needed in order for large capacity PHEVs to 

have significantly superior GHG performance than HEVs. This 

finding is consistent with prior studies [4, 12]. 

To compare the solution performance of the randomized 

multi-start method with global solutions, we use 1000 random 

starting points uniformly distributed in the design variable 

domain with the Matlab SQP NLP solver fmincon to find the 

minimum GHG solutions. The integrals in Eq. (1) and Eq. (2) 

are approximated by trapezoidal numerical integration, and the 

vehicle types for the two-segment and three-segment cases are 

preselected as PHEV-PHEV and PHEV-PHEV-PHEV, 

respectively. The solution quality is evaluated using relative 

error |F−F
*
|/F

*
, where F is the optimal objective value found by 

local solver with each multi-start and F
*
 is the global solution. 

The results are presented in Figure 5. All multi-start points 

reached feasible optimal solutions. For the single-segment 

model, the multi-start method performs very well, and all multi-

start solutions reached the global optimum. For the two-

segment case, 59% of the multi-start solutions reach the global 

optimum (within 10
-6

). For the three-segment case, the ratio of 

finding the global solution decreases to 18%. Using different 

NLP solvers may affect the percentages, but the results show 

that when the numbers of driver segments and design variables 

increase, the probability of random starting points reaching 

global solution decreases significantly. In this case, local 

minima are all within 1% of the global minimum. 
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Figure 4. Optimal PHEV design and allocations for 

minimum lifecycle GHG emissions 

 
Figure 5. Histogram for the solution errors of 1000 random 

multi-starts with local NLP solver 

4. CONCLUSIONS 
We construct an optimization model to determine optimal 

vehicle design and allocation of conventional, hybrid, and plug-

in hybrid vehicles to drivers in order to minimize life cycle 

GHG emissions. We reformulate the model as a twice-

differentiable factorable algebraic nonconvex MINLP that can 

be solved globally using convexification with a branch-and-

reduce algorithm implemented in GAMS/BARON. We find that 

minimum life cycle GHG emissions can be achieved by 

assigning a medium-range PHEV36 to drivers who have daily 

travel distance up to 200 miles. Results indicate that moving 

drivers from conventional vehicles to HEVs or PHEVs implies 

significant reductions in life cycle GHGs, but optimal 

allocation of vehicles to drivers is of second order importance. 

While larger battery packs may be better for reducing 

petroleum consumption, larger packs do not necessarily result 

in lower GHGs, and the best solution is a combination of mid-

sized packs that reduce unnecessary GHGs associated with 

battery production and reduced efficiency due to weight. Grid 

decarbonization makes larger battery packs more competitive 

for GHG reduction. 

We also compare the solution performance of the random 

multi-start method to the deterministic global optimization 

approach. The results indicate that the probability of the multi-

start method finding global solution decreases as the number of 

driver segmentation increases. 

Adoption of PHEVs will depend critically on cost. We 

examine cost and petroleum consumption objectives in a 

companion paper and examine sensitivity of minimum cost 

solutions to variation in parameters such as battery prices, fuel 

and electricity prices, and carbon allowance prices [20]. The 

global MINLP framework presented here provides confidence 

in comparing solutions across sensitivity scenarios. 
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APPENDIX 
 

Table A1. Polynomial coefficients of the PHEV performance 
meta-model 

fm3 ηE ηG tCD tCS μCD
* μCS

* uCS
* 

m 1 2 3 4 5 6 7 

am1 0.008 2.214 1.457 3.334    

am2 0.154 1.087 -5.496 -2.266    

am3 0.353 5.578 -28.46 -20.26    

am4 -0.005 -0.815 0.913 0.414    

am5 -0.005 0.510 -0.881 -3.524    

am6 -0.025 1.562 -1.050 -0.286    

am7 0.000 2.212 -0.308 -10.11    

am8 -0.057 -0.613 2.044 1.951    

am9 -0.043 0.254 15.61 10.31    

am10 -0.016 -0.159 0.336 5.808    

am11 -0.001 -8.906 -4.634 -6.932 0.010 0.466 -0.194 

am12 -0.805 -6.095 31.48 15.80 0.011 -0.008 -0.005 

am13 -0.656 -15.21 34.02 39.20 0.053 -0.018 0.047 

am14 0.057 0.089 1.153 7.901 0.000 -0.014 0.000 

am15 0.080 -3.274 1.169 6.582 0.008 -0.038 0.011 

am16 0.342 2.498 -32.06 -30.12 -0.003 0.010 -0.001 

am17 -0.191 2.622 3.405 -6.734 0.097 -0.890 0.382 

am18 1.189 9.285 -54.47 -26.39 0.038 0.077 0.019 

am19 -0.347 5.837 9.570 -4.098 0.370 0.400 -0.077 

am20 4.960 57.68 44.23 32.10 2.196 1.441 0.140 
* The terms are fit with quadratic form. 

 


