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Optimal Product Design Under
Price Competition
Engineering optimization methods for new product development model consumer demand
as a function of product attributes and price in order to identify designs that maximize
expected profit. However, prior approaches have ignored the ability of competitors to
react to a new product entrant. We pose an approach to new product design accounting
for competitor pricing reactions by imposing Nash and Stackelberg conditions as con-
straints, and we test the method on three product design case studies from the marketing
and engineering design literature. We find that new product design under Stackelberg and
Nash equilibrium cases are superior to ignoring competitor reactions. In our case stud-
ies, ignoring price competition results in suboptimal design and overestimation of profits
by 12–79%, and we find that a product that would perform well in today’s market may
perform poorly in the market that the new product will create. The efficiency, conver-
gence stability, and ease of implementation of the proposed approach enable practical
implementation for new product design problems in competitive market systems.
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1 Introduction
Product design optimization problems that account for competi-

tive market decisions can be categorized into two groups: short-
run price equilibrium and long-run design equilibrium �1–4�. The
long-run scenario represents competition over a sufficiently long
time period that all firms in the market are able to redesign their
products as well as set new prices competitively �4–8�. Short-run
competition assumes that the design attributes of competitor prod-
ucts are fixed, but that competitors will adjust prices in response
to a new entrant �9–11�. We focus here on new product design
problems in short-run price competition.

Table 1 lists prior studies for price competition in product de-
sign and distinguishes them by solution approach, demand model
type, equilibrium type, case studies, and presence of design con-
straints. The solution approach is the method for finding the de-
sign solution under price competition. The demand model type
specifies the market demand function formulation. Equilibrium
type distinguishes Nash and Stackelberg models �12�: Nash equi-
librium refers to a point at which no firm can achieve higher profit
by unilaterally selecting any decision other than the equilibrium
decision. The Stackelberg case, also known as the leader-follower
model, assumes that the leader is able to predict the response of
followers, in contrast with the Nash model, which assumes that
each firm only observes competitor responses. The Stackelberg
case is appropriate for cases where one player is able to “move
first,” and the introduction of a new product entrant is a case
where the firm could exploit this first-move advantage. Finally,
the penultimate column in Table 1 identifies whether the model
incorporates design constraints representative of tradeoffs typi-
cally present in engineering design.

Choi et al. �2� �henceforth CDH� proposed an algorithm for
solving new product design problem under price competition
while treating the new product entrant as Stackelberg leader. They

tested the method on a pain reliever example with ingredient lev-
els as decision variables and an ideal point logit demand model
with linear price utility. The study applied the variational inequal-
ity relaxation algorithm �13� to solve the follower Nash price
equilibria. In Sec. 3, we use CDH’s problem as a case study and
show that the method can have convergence difficulties, and as a
result the approximate Stackelberg solution found by their algo-
rithm was not fully converged.

In contrast to the continuous decision variables used by CDH,
other prior approaches restrict attention to discrete decision vari-
ables that reflect product attributes observed by consumers, as
opposed to design variables controlled by designers under techni-
cal tradeoffs. We refer to the focus on product attributes as prod-
uct positioning, in contrast to product design. These product po-
sitioning problems assume that all combinations of discrete
variables are feasible, thus no additional constraint functions are
considered. Horsky and Nelson �9� used historic automobile mar-
ket data to construct a logit demand model and cost function using
four product attribute decision variables. With five levels for each
of their four variables, they applied exhaustive enumeration to
solve for equilibrium prices of all 625 possible new product en-
trant combinations using first-order condition �FOC� equations.
Rhim and Cooper �10� presented a two-stage method incorporat-
ing genetic algorithms and FOCs to find Nash solutions for new
product positioning problems. The model allows multiple new
product entries to target different user market segments. The prod-
uct in the study is a liquid detergent with two attributes. Recently,
Lou et al. �11� conducted a study for optimal new product posi-
tioning of a handheld angle grinder under Nash price competition
in a manufacturer-retailer channel. There are four product at-
tributes with various levels in the problem, resulting in 72 pos-
sible combinations. Similar to Ref. �9�, the study also used a dis-
crete selection method, but the design candidates were
prescreened to a smaller number in order to avoid full exhaustive
enumeration, and the profits of a few final candidates at Nash
price equilibrium were calculated through a sequential iterative
optimization approach. Prior approaches to product design and
positioning under price competition suffer from inefficient com-
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putation and convergence issues due to iterative strategies to iden-
tify equilibria and combinatorial limitations of discrete attribute
models.

We propose an alternative approach to find optimal design and
equilibrium competition solutions without iterative optimization
of each firm. Our approach poses a nonlinear programming �NLP�
or mixed-integer nonlinear programming �MINLP� formulation
for new product profit maximization with respect to prices and
design variables subject to first-order necessary conditions for the
Nash price equilibrium of competitors. We examine three case
studies from the literature and show that accounting for competi-
tor price competition can result in different optimal design deci-
sions than those determined under the assumption that competitors
will remain fixed. The approach is well-suited to engineering de-
sign optimization problems, requiring little additional complexity
and offering greater efficiency and convergence stability than
prior methods, particularly for the highly-constrained problems
found in engineering design.

The remainder of the article is organized as follows. In Sec. 2,
we explain the detailed formulation of the proposed approach with
Nash and Stackelberg competition models, and we introduce a
modified Lagrangian formulation to accommodate cases with
variable bounds. In Sec. 3, we demonstrate the proposed approach
by solving three product design examples from the literature, and
we conclude in Sec. 4.

2 Proposed Methodology
For a new product design problem under short-run competition,

there are three sets of decision variables to be determined—new
product design variables, new product price, and prices of com-
petitor products. Since price competition is one of the key ele-
ments affecting profit outcomes of a new product design, a reli-
able and efficient Nash price solution method is necessary. A Nash
equilibrium problem can be solved by different numerical ap-
proaches, including the relaxation method �13�, projection method
�14�, nonlinear complementarity problem approaches �15�, fixed-
point iteration method �16�, and FOC method �17�. Each approach
has its strengths and disadvantages. The relaxation method, which
is derived from variational inequality theory, is a sequentially it-
erative optimization approach where each firm is optimized in
turn while holding all other firms fixed, and the process is re-
peated sequentially over all firms until convergence �14�. The re-
laxation method has been used in solving practical equilibrium
problems �2,7,13�; however, it requires an optimization process at
each iteration, which results in long computational time and slow
convergence. The projection method, another variational
inequality-based approach, does not require an optimization loop
and is computationally efficient, but it may not always converge
�18�. The nonlinear complementarity approaches have been con-
sidered powerful tools to solve equilibrium problems �19�. How-
ever, they require specific solvers, e.g., the PATH solver �20� and a
reformulation of the equilibrium problem into complementarity

form. The fixed-point iteration method also requires derivations
for the specific fixed-point equations �16�.

In this study, we select the FOC method as our primary Nash
price solution tool for several reasons. First, its solution process
does not require iterative optimization loops. Second, the method
only requires first-order derivatives of the profit function with
respect to the decision variables, and no further reformulation
needed. The first-order equations can usually be derived analyti-
cally, and when closed-form expressions are not available, nu-
merical differentiation can apply. Finally, the system of first-order
equations can be solved by general-purpose NLP algorithms, and
no specialized solver is required. It is worthy of note that solutions
satisfying FOCs only satisfy necessary conditions. If the profit
function is concave with respect to price, the FOCs become
sufficient1 �17�. However, in the case of nonconcavity, the solu-
tions found by the proposed method must be verified using the
Nash equilibrium definition post-hoc. Taking price as an example,
the mathematical expression of a Nash equilibrium is given by

�k�p1
�, . . . ,pj

�, . . . ,pJ
�� � �k�p1

�, . . . ,pj, . . . ,pJ
��

∀ j � Jk, ∀ k � K �1�

where �k is the payoff �profit� function of firm k, pj is the price
decision of product j of firm k, and the � �� denotes the decisions
at Nash equilibrium �12�. This formulation states that no unilateral
change to a single firm’s price decision can result in higher profit
for that firm than its Nash price, or, alternatively, each firm is
responding optimally to the decision of the others.

In Secs. 2.1–2.3, we describe the proposed product design op-
timization models under Nash and Stackelberg games incorporat-
ing the FOC method. We then examine the special cases where
prices are constrained and develop a Lagrangian extension for this
case. The major assumptions for the proposed approaches are the
following: �1� the focal firm designs a set of differentiated prod-
ucts that will enter into a market with existing products sold by
competitors; �2� competitors are Nash price setters for profit maxi-
mization with fixed product attributes; �3� competitor product at-
tributes are observed by the focal firm; and �4� price is continuous,
and each firm’s profit function is differentiable with respect to its
price variable.

2.1 Profit Maximization Under the Nash Model. The nec-
essary condition for an unconstrained Nash price equilibrium �Eq.
�1�� can be expressed using the FOC equation ��k /�pj =0 for all
products j produced by each firm k �17�. For short-run Nash com-
petition, new product design variables, new product price, and

1For a noncooperative game with complete information, a Nash equilibrium exists
if: �1� the strategy set is nonempty, compact, and convex for each player; �2� the
payoff function is defined, continuous, and bounded; and �3� each individual payoff
function is concave with respect to individual strategy �17�. More specifically, Ander-
son et al. �21� proved that there exists a unique price equilibrium under logit demand
when the profit function is strictly quasiconcave.

Table 1 Literature on new product design optimization under price competition

Literature
Solution
approach

Price
equilibrium

Demand
model

Design
constraints

Case
study

Choi et al. �2� Iterative variational
inequality algorithm

Stackelberg Ideal point logit Yes Pain reliever

Horsky and
Nelson �9�

Discrete selection
from FOC solutions

Nash Logit No Automobile

Rhim and
Cooper �10�

Two-stage genetic algorithm Nash Ideal point logit No Liquid detergents

Lou et al. �11� Discrete selection and
iterative optimization

Nash HB mixed logit No Angle grinder

This paper NLP/MINLP with KKT constraints Nash/Stackelberg Logit and latent class models Yes Pain reliever, weight scale,
and power grinder
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competitors’ prices follow the Nash framework, which forms three
sets of simultaneous equations. If there are no additional con-
straints on design variables x j and prices pj, the FOC equations
are

��k

�x j
= 0;

��k

�pj
= 0;

��k�

�pj�
= 0

where

�k = �
j�Jk

qj�pj − cj�, �k� = �
j�Jk�

qj��pj� − cj��

qj = Qsj, sj = fS�pj,z j,pĵ,z ĵ ∀ ĵ � j�

qj� = Qsj�, sj� = fS�pj�,z j�,pĵ�,z ĵ� ∀ ĵ� � j��

z j = fZ�x j�, cj = fC�x j,qj�

∀ j � Jk, ∀ j� � Jk�, ∀ k� � K \ k �2�

where �k is the net profit of all new products Jk from producer k,
and �k� is the net profit sum of the products of competitor k�.
Each new product j has design vector x j, attribute vector z j �as a
function of the design z j = fZ�x j��, price pj, unit cost cj �as a func-
tion of the design and production volume cj = fC�x j ,qj��, estimated
market share sj �as a function of the attributes and prices of all
products in the market sj = fS�pj ,z j , pĵ ,z ĵ ∀ ĵ� j�� and estimated
demand qj. The total size of the market is Q. Each competitor
k��K \k has price decisions pj� with fixed design attributes z j� for
all its products ∀j��Jk�. In the equation set, the ��k /�x j and
��k /�pj equations represent the FOCs of the Nash design and
price decisions of the new product, and the ��k� /�pj� equations
are the FOCs for the price decisions of competitor products.

While Eq. �2� shows the fundamental structure of the Nash
equation set, it does not account for design constraints and price
bounds. Constraints on design variables are typical in engineering
design problems. Bounds on price may be imposed by manufac-
turer, retailer, consumer, or government policies, and they may
also be used to indicate model domain bounds. To account for
these cases, we propose a generalized formulation incorporating
Lagrange multipliers into Eq. �2� and present it in an NLP form as
follows:

maximize �k = �
j�Jk

qj�pj − cj�

with respect to x j,pj,� j,� j,� j,pj�,� j�

subject to
�Lk

�x j
= 0,

�Lk

�pj
= 0,

�Lk�

�pj�
= 0

h�x j� = 0, g�x j� � 0, � j � 0, − � j
Tg�x j� � t

g�pj� � 0, � j � 0, − � j
Tg�pj� � t

g�pj�� � 0, � j� � 0, − � j�
T g�pj�� � t �3�

where

Lk = �k + �
j�Jk

�� j
Th�x j� + � j

Tg�x j� + � j
Tg�pj��

Lk� = �k� + �
j��Jk�

�� j�
T g�pj���, �k� = �

j�Jk�

qj��pj� − cj��

qj = Qsj, sj = fS�pj,z j,pĵ,z ĵ ∀ ĵ � j�

qj� = Qsj�, sj� = fS�pj�,z j�,pĵ�,z ĵ� ∀ ĵ� � j��

∀ j � Jk, ∀ j� � Jk�, ∀ k� � K \ k

where �, �, and � are the Lagrange multiplier vectors for the
design equality constants h, design inequality constraints g, and
price bounds g, respectively. The above formulation determines
the profit-maximizing new product design x j and price pj that are
in Nash equilibrium with competitor prices pj�, ∀j��Jk� and
∀k��K \k. The objective function2 is the total profit �k of pro-
ducer k. The equality and inequality constraints h�x j� and g�x j�
define the feasible domain of the engineering design, and the in-
equality constraint g accounts for the price bounds. The FOCs of
the Lagrangian equations with additional inequality constraints
represent the Karush-Kuhn-Tucker �KKT� necessary condition
�22� of Nash equilibrium for regular points �4�. Such a formula-
tion has been known as mathematical programs with equilibrium
constraints �MPECs�3 �24�. Since MPECs do not satisfy constraint
qualifications, it can induce numerical instability in convergence
�25,26�. For resolving the issue, various algorithms and reformu-
lation approaches have been proposed �24,27,28�. In this study,
we follow a regularization scheme presented by Ralph and Wright
�28� and introduce a positive relaxation parameter t into the KKT
complementary slackness conditions �Eq. �3��. The regularized
NLP formulation can avoid the constraint qualification failures of
MPECs and result in strong stationarity and second-order suffi-
cient condition near a local solution of the MPEC �28�. The com-
petitors’ prices obtained from Eq. �3� are solutions based on nec-
essary conditions. If the profit function is nonconcave, the
solutions need to be tested based on Eq. �1� for verifying sufficient
conditions. We take the FOC solution and optimize each indi-
vidual producers’ profit with respect to its own pricing decisions
while holding other producer’s decisions fixed. If no higher profit
is found throughout the test, the price solutions are Nash prices.

2.2 Profit Maximization Under the Stackelberg Model. For
the proposed Stackelberg competition model, it is assumed that
the new product enters the market as a leader, while other com-
petitors react as followers. Followers observe others’ price deci-
sions, including the new product price, as exogenous variables
and compete with one another to reach a Nash price equilibrium.
The new product leader is able to predict its followers’ Nash price
settings within its optimization, giving it an advantage. The con-
strained formulation using a Stackelberg model is expressed in the
following NLP form:

maximize �k = �
j�Jk

qj�pj − cj�

with respect to x j,pj,pj�,� j�

subject to h�x j� = 0, g�x j� � 0, g�pj� � 0

�Lk�

�pj�
= 0, g�pj�� � 0, � j� � 0, − � j�

T g�pj�� � t

where

Lk� = �k� + �
j��Jk�

�� j�
T g�pj���, �k� = �

j�Jk�

qj��pj� − cj��

qj = Qsj, sj = fS�pj,z j,pĵ,z ĵ ∀ ĵ � j�

2Note that the objective function of the NLP form is not needed to identify points
that satisfy Nash necessary conditions; however, in practice including the objective
of producer k can help to also enforce �local� sufficiency conditions for producer k.
Sufficiency for competitors must be determined post-hoc.

3The formulation should be distinguished from equilibrium problems with equi-
librium constraints �EPECs� �23� since no separate upper and lower level equilibria
exist and the focal firm is in Nash price competition with competitors.
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qj� = Qsj�, sj� = fS�pj�,z j�,pĵ�,z ĵ� ∀ ĵ� � j��

z j = fZ�x j�, cj = fC�x j,qj�

∀ j � Jk, ∀ j� � Jk�, ∀ k� � K \ k �4�

Nash sufficiency conditions for followers must be verified post-
hoc as previously described. Comparing Eq. �4� to Eq. �3�, the
Stackelberg case relaxes the constraint requiring the focal firm to
be in Nash equilibrium. Stated as a relaxation, it is clear that the
focal firm’s profit will be at least as large with the Stackelberg
case as with the Nash case.4

Compared with the solution approaches in literature, the pro-
posed method has significant advantages in several aspects. First,
the approach is able to solve the problem in a single step if a
unique design solution with price equilibrium exists.5 Second,
since the approaches employ FOC equations to find equilibrium
prices, the convergence of the whole formulation is faster and
more stable than prior approaches that use iteration loops. Third,
the formulations can be solved using general-purpose NLP solvers
with minimum additional programming effort. When discrete de-
sign variables exist, the NLP model becomes a MINLP problem.
With the price equilibrium constraints remaining in the continuous
domain, MINLP solvers �29–31� can be used to solve the Stack-
elberg formulation �Eq. �4��.6 MPEC problems with discrete-
constraints have been studied in the literature �32–35�, but we do
not pursue them here.

2.3 Evaluation. In order to compare profitability of the new
product design arrived at under different modeling assumptions,
we define the following three profit terms:

�1� Model-estimated profit. Profit of the design and price solu-
tion to a particular game model, i.e., fixed, Nash, or Stack-
elberg, as estimated by that model.

�2� Competitor-reacted profit. Profit of the design and price
solution to a particular game model via post-hoc computa-
tion of competitor price equilibrium. The profit represents
the market performance of a particular design and pricing
solution if competitors adjust prices in response to the new
entrant. Competitor-reacted profit is equal to model-
estimated profit for the new product using the Nash and
Stackelberg games, but if the new entrant is optimized
while assuming fixed competitors, the difference between
model-estimated and competitor-reacted profit measures the
impact of ignoring competitor price adjusting reactions.

�3� Price-equilibrium profit. Profit of the design solution as es-
timated via post-hoc computation of the price equilibrium
of all firms �including the new entrant�.7 The equilibrium
profit represents the profit that a particular design solution
would realize if all firms adjust prices in response to the
new entrant and reach a market equilibrium. Equilibrium
profit is equal to model-estimated profit for new product
design using the Nash and Stackelberg games, but if the
new entrant is optimized while assuming fixed competitors,
the difference between model-estimated and price-
equilibrium profit measures the impact of ignoring com-
petitors’ price reactions on the design of the product, as-
suming that poor pricing choices can be corrected in the
marketplace after product launch.

3 Case Studies
We examine three product design case studies from the litera-

ture to test the proposed approach and examine the improvement
that the Stackelberg and Nash approaches can make with respect
to methods that ignore competitive reactions. Each case study
involves different product characteristics, utility functions, de-
mand models, variable types, and design constraints. For each
case, we solve the problems using the traditional fixed-competitor
approach and compare with the proposed Nash and Stackelberg
approaches. We also compare the computational efficiency and
convergence of the proposed methods with the relaxation methods
�14�.

3.1 Case Study 1: Pain Reliever. The pain reliever problem
was introduced by CDH �2�; price and product attributes of a new
pain reliever product are to be determined for maximizing profit in
the presence of 14 existing competitor products in the market.
This new product design case is a product positioning problem,
and thus the attributes of a product are identical to its decision
variables �z=x�. Each product has four attributes of pharmaceuti-
cal ingredient weight �unit in mg�, including aspirin z1, aspirin
substitute z2, caffeine z3, and additional ingredients z4. The prod-
uct specifications8 and initial prices of competitor products are
listed in Table 2. There are two highlights in the model. First, the
product H is assumed to be a generic brand, which has a fixed
price of $1.99 �2�. The generic brand product does not participate
in the price competition. Second, there are five products, A, C, I,
K, and L, with identical product attributes and costs.

The demand model is an ideal point model with observable
utility v, given by

vij = − ��
n=1

N

�i�znj − �in�2 + �̄ipj + bi� ∀ i, j �5�

where znj is the value of the product attribute n on product j, �in is
consumer i’s desired value for attribute n, �i is consumer i’s sen-

sitivity of utility to deviation from the ideal point, �̄i is consumer
i’s sensitivity of utility to price, and bi is a constant utility term
estimated from consumer i. In this model, product attributes that
deviate from ideal attributes cause reduced utility, which is less
preferred by consumers. Under the standard assumption that util-
ity uij is partly observable vij and partly unobservable �ij so that
uij =vij +�ij, and that the unobservable term �ij assumed to be an
independent and identically-distributed �IID� random variable
with a standard Gumbel distribution, the resulting choice prob-
ability is defined in logit form with an outside good of utility
vi0=0 �36�:

sij =
exp��vij�

1 + �
j��J

exp��vij��
∀ i, j �6�

The weighting coefficient � is equal to 3, given by CDH. The
profit function is

� j = qj�pj − cj� = �Q
1

I �i=1

I

sij��pj − cj� ∀ j �7�

In this problem, the market demand and profit are based on a
simulated market size of 30 consumers. The FOC equation for the
price is9

4CDH �2� used a duopoly game to prove that a Stackelberg leader model can
always receive at least as high a payoff as a Nash model if a Stackelberg equilibrium
exists.

5For the cases of multiple local optima and price equilibria, multistart can be
implemented to identify solutions.

6Discrete decision variables cannot be implemented in the Nash formulation �Eq.
�3�� since KKT conditions assume continuity.

7For Stackelberg, price-equilibrium profit is calculated from Stackelberg pricing.

8The values of aspirin substitute are the weighted combination of acetaminophen
and ibuprofen. The numbers are not provided in the original paper �2�, and we
obtained the attribute data from the mixed complementarity programming library
�MCPLIB� �37� and verified with the original author. The data of consumer prefer-
ence weightings �30 individuals� are also included in that library.

9The derivations of all FOC equations in this paper are included in a separate
supporting information document that is available by contacting the authors.
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�� j

�pj
= �

i=1

I

sij�1 − ��̄i�pj − cj��1 − sij�� = 0 ∀ j �8�

Two constraint functions on the new product design are given
by the ingredient weight limitations �2�:

g1 = 325 − x1j − x2j � 0, g2 = x1j + x2j − 500 � 0 �9�
By applying the above equations into the Nash and Stackelberg

formulations of Eqs. �3� and �4�,10 the model was solved using the
sequential quadratic programming �SQP� active-set solver in the
MATLAB Optimization Toolbox. The solutions to the pain reliever
problem with fixed competitors, Nash, and Stackelberg ap-
proaches are presented in Table 3, with CDH’s Stackelberg solu-
tion shown in the last column. Several interesting observations are
found from the results. First, the fixed-competitor solution has
overestimated profit and market share predictions by presuming
that competitors will not act. When competitors are allowed to

react by altering prices under Nash competition, the competitor-
reacted profit shows a significant profit reduction from estimated.
Second, the competitor-reacted profit and price-equilibrium profit
are nearly identical �to significant digits�. The equilibrium profit
from the fixed-competitor case is lower than the Nash and Stack-
elberg cases, implying that the attribute decisions determined by
assuming fixed competitors are suboptimal, even if the new en-
trant’s price is adjusted optimally in response to market competi-
tion. Third, we found that the solution under the Stackelberg
model has a different design and price point, resulting in slightly
higher profit than the Nash solutions,11 which supports the claim
that Stackelberg is a better approach when promoting new product
development �2�. Fourth, CDH’s Stackelberg solution is not fully
converged since our Nash test �Eq. �1�� results showed that com-
petitors �followers� can find alternative price decisions that result

10We use t=10−9 for all the cases.

11CDH �2� compared their Stackelberg solution to the optimal new product solu-
tion with competitors fixed at Nash prices �suboptimal solution� and concluded
Stackelberg resulted in higher profit. However, the comparison for the two models
should base on fully converged equilibrium solutions.

Table 2 Specifications of existing pain reliever products in the market

Product
Aspn. z1

�mg�
Aspn. sub. z2

�mg�
Caff. z3

�mg�
Add. ingd. z4

�mg�
Cost c

�$�
Initial price p

�$�

A 0 500 0 0 $4.00 $6.99
B 400 0 32 0 $1.33 $3.97
C 0 500 0 0 $4.00 $5.29
D 325 0 0 150 $1.28 $3.29
E 325 0 0 0 $0.98 $2.69
F 324 0 0 100 $1.17 $3.89
G 421 0 32 75 $1.54 $5.31
H 500 0 0 100 $1.70 $1.99
I 0 500 0 0 $4.00 $5.75
J 250 250 65 0 $3.01 $4.99
K 0 500 0 0 $4.00 $7.59
L 0 500 0 0 $4.00 $4.99
M 0 325 0 0 $2.60 $3.69
N 227 194 0 75 $2.38 $4.99
Cost 0.3 0.8 0.4 0.2 �unit: $/100 mg�

Table 3 New product design and competitor price solutions for the pain killer problem

Fixed competitor Nash Stackelberg CDH solution

New product design
and price

x1=z1 124.0 102.7 101.5 102.1
x2=z2 201.0 222.3 223.5 222.9
x3=z3 0 0 0 0
x4=z4 0 0 0 0
Price $3.74 $3.85 $3.74 $3.77
Cost $1.98 $2.09 $2.09 $2.38

Model-estimated profit $8.60 �16.3%� $7.78 �14.7%� $7.80 �15.7%� $8.16 �16.1%�
Competitor-reacted profit $7.68 �14.5%� $7.78 �14.7%� $7.80 �15.7%� $7.80 �15.5%�
Price-equilibrium profit $7.68 �14.5%� $7.78 �14.7%� $7.80 �15.7%� $7.80 �15.7%�

Price, market share %,
profit of competitors at
price equilibrium

A $6.25, 3.55%, $2.39 $6.27, 3.45%, $2.35 $6.29, 3.41%, $2.34 $6.29, 3.41%, $2.34
B $2.26, 6.15%, $1.71 $2.26, 6.18%, $1.73 $2.26, 6.16%, $1.72 $2.26, 6.16%, $1.72
C $6.25, 3.55%, $2.39 $6.27, 3.45%, $2.35 $6.29, 3.41%, $2.34 $6.29, 3.41%, $2.34
D $2.27, 7.73%, $2.31 $2.28, 7.78%, $2.34 $2.28, 7.73%, $2.32 $2.28, 7.73%, $2.32
E $1.97, 11.4%, $3.39 $1.97, 11.5%, $3.42 $1.97, 11.3%, $3.39 $1.97, 11.3%, $3.39
F $2.18, 9.10%, $2.75 $2.18, 9.16%, $2.78 $2.19, 9.08%, $2.76 $2.19, 9.08%, $2.76
G $2.47, 4.60%, $1.28 $2.47, 4.63%, $1.29 $2.47, 4.62%, $1.29 $2.47, 4.62%, $1.29
H $1.99, 7.52%, $0.65 $1.99, 7.57%, $0.66 $1.99, 7.56%, $0.66 $1.99, 7.56%, $0.66
I $6.25, 3.55%, $2.39 $6.27, 3.45%, $2.35 $6.29, 3.41%, $2.34 $6.29, 3.41%, $2.34
J $4.76, 3.37%, $1.77 $4.76, 3.36%, $1.76 $4.77, 3.29%, $1.74 $4.77, 3.29%, $1.74
K $6.25, 3.55%, $2.39 $6.27, 3.45%, $2.35 $6.29, 3.41%, $2.34 $6.29, 3.41%, $2.34
L $6.25, 3.55%, $2.39 $6.27, 3.45%, $2.35 $6.29, 3.41%, $2.34 $6.29, 3.41%, $2.34
M $4.29, 11.4%, $5.80 $4.26, 11.5%, $5.70 $4.26, 11.2%, $5.59 $4.27, 11.2%, $5.60
N $3.90, 6.36%, $2.90 $3.93, 6.33%, $2.93 $3.95, 6.11%, $2.88 $3.95, 6.11%, $2.88
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in higher profits. In other words, the follower prices do not reach
a Nash equilibrium in their solution and fail the Nash best re-
sponse definition. Moreover, the competitor-reacted profit has a
significant gap from CDH’s model-estimated profit, which again
shows that their solution is not a stable equilibrium. The fixed-
competitor approach has the worst performance when market
competition is present, while Stackelberg leads to a higher profit
than Nash, and the competitor-reacted profit upon CDH’s solution
does not reach the true Stackelberg equilibrium due to incomplete
convergence. As a result, CDH’s suboptimal Stackelberg design
solutions overestimate the profit and have a lower equilibrium
profit than the true Stackelberg profit solved by our proposed
method.12 Overall, the proposed methods using the Nash and
Stackelberg models result in an equilibrium profit of 1.2% and
1.5% higher than the fixed-competitor case, respectively, and pre-
vent the suboptimal design decisions.

We further compare the computational time and solution error
of the proposed method with two other approaches, the relaxation
parallel method �the CDH method� �2,13,14� and the relaxation
serial method �7,14�. We use infinity norm 	= 	Z�−Z	
 to define
solution errors, where Z� is the target solution vector, including
prices and new product design attributes, and Z is the solution
vector found by each algorithm.13 The benchmarking results are
presented in Fig. 1.14 For the Nash case, while the two relaxation
methods have difficulty in reaching a solution with error less than
10−6, the proposed approach is able to find more accurate solu-
tions with relatively shorter computational time. For the Stackel-
berg case, the proposed formulation shows a surpassing perfor-
mance on both computational time and solution error.

3.2 Case Study 2: Weight Scale. The weight scale case study
was introduced by Michalek and co-workers �37–39�. Compared
with the first case study, this model has more complex engineering
design constraints and product attributes with higher-order nonlin-
ear equations. There are 14 design variables x1–x14, and 13 fixed
design parameters y1–y13, where detailed definitions are included
in Ref. �37�. The five product attributes z1–z5 and engineering
constraint functions g1–g8 are shown in Table 4 as functions of
the design variables. Table 5 shows the part-worth utility of the
latent class model presented in Ref. �38�. There are seven market
segments, where no-choice utility in each segment is fixed at zero
during estimation. The discrete part-worths are interpolated by
using fourth-order polynomials, and the utility is expressed as a
continuous function �. Thus the observable utility of product j in
market segment m is given by

vmj = �̄mj�pj� + �
n=1

N

�mnj�znj� �10�

where �̄mj is the price utility polynomial and �mnj is utility poly-
nomial for attribute n for product j in segment m. The logit choice
probability of product j in segment m is

smj =
exp�vmj�

exp�vm0� + �
j��J

exp�vmj��
∀ j �11�

with outside good utility vm0=0. The profit function of product j
is given by

� j = �
m=1

M

Qmsmj�pj − cj� − cF ∀ j �12�

where the segment market size Qm is calculated by multiplying
the total market size, 5�106 units, by the corresponding market
size ratio listed in the bottom row of Table 5. The unit cost cj is
$3.00, and the fixed investment cost cF is $1 million dollars �29�.
The FOC equation for the Nash price equilibrium is

�� j

�pj
= �

m=1

M

Qmsmj
 ��̄mj

�pj
�1 − smj��pj − cj� + 1� = 0 ∀ j

�13�

Table 6 shows the specifications of four competing products C1,
R2, S3, and T4 in the market, where each product has a unique
combination of product characteristics. We used MATLAB SQP
active-set solver with multistart and found multiple solutions that
satisfy FOCs. After verifying post-hoc with the Nash definition
�Eq. �1�� the unique market equilibrium was identified. The opti-
mal price and attribute solutions under the fixed competitors,
Nash, and Stackelberg cases and competitor solutions at price
equilibrium are presented in Table 7. The fixed-competitor case
produces a distinct design solution from the other two, while Nash
and Stackelberg cases have similar design attributes but signifi-
cantly different price decisions. The design variables �not shown�
vary arbitrarily within the space of feasible designs that produce

12We use multi-start to search for all stationary points in the feasible domain and
perform post hoc Nash best response verification �Eq. �1��. We found only one
unique Stackelberg solution.

13The elements in the Z� and Z vectors are dimensionless and normalized to
upper and lower bounds of each variable. Z� is obtained by using the proposed
method with a convergence tolerance 10−15.

14The computer system setup comprises of OS: Windows XP; CPU: Intel Core2
2.83Hz; RAM: 2.0 Gbyte; and solver: active-set SQP algorithm in MATLAB R2008a.

Table 4 Attribute and engineering constraint functions

Product attribute functions

z1 =
4
x6x9x10�x1 + x2��x3 + x4�
x11�x1�x3 + x4� + x3�x1 + x5��

, 200 � z1 � 400

z2=x13x14
−1 , 0.75�z2�1.33

z3=x13x14 , 100�z3�400
z4=
x12z1

−1 , 2 /32�z4�6 /32

z5 =
�2 tan�
y11z1

−1���0.5x12 − y10�
�1 + 2y12

−1 tan�
y11z1
−1��

, 0.75 � z5 � 1.75

Design constraint functions

g1 :x12− �x14−2y�1�0
g2 :x12− �x13−2y1−x7−y9��0
g3 : �x4+x5�− �x13−2y1��0
g4 :x5−x2�0
g5 :x7+y9+x11+x8− �x13−2y1��0
g6 : �x13−2y1�− �0.5x12+y7�−x7−y9−x10−x8�0
g7 : �x1+x2�2− �x13−2y1−x7�2−0.25�x14−2y1�2�0
g8 : �x13−2y1−x7�2+y13

2 − �x1+x2�2�0

Fig. 1 Computational time versus solution error for the pain-
killer problem: „a… Nash case and „b… Stackelberg case
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Table 5 Latent class model of the weight scale problem

Attribute Level

Market segment

1 2 3 4 5 6 7

Weight Capacity z1 �lb� 200 �1.34 �0.60 �0.38 �0.34 �0.92 �0.70 �1.19
250 �0.36 �0.11 0.03 0.34 0.50 0.02 0.55
300 0.06 0.21 0.08 0.70 0.37 0.04 0.34
350 �0.21 0.05 �0.14 0.70 0.57 �0.09 �0.20
400 �0.13 �0.15 0.20 0.51 0.55 �0.12 �0.19

Aspect Ratio z2 0.75 �0.79 0.20 �0.04 0.44 0.10 �0.18 �1.40
0.88 0.07 0.70 0.15 0.50 0.32 0.23 �0.62

1 0.38 0.79 0.20 0.55 0.51 0.29 �0.02
1.14 �0.09 �0.07 0.12 0.54 0.16 �0.10 0.57
1.33 �1.34 �1.73 �0.56 �0.08 0.09 �0.89 0.39

Platform Area z3 �in.2� 100 0.01 �0.45 0.19 0.36 0.17 0.45 �0.45
110 �0.04 �0.21 �0.02 0.28 0.09 0.10 �0.49
120 �0.41 �0.03 0.00 0.50 0.05 �0.05 �0.01
130 �0.68 0.10 �0.12 0.46 0.30 �0.48 0.00
140 �0.86 0.00 �0.27 0.31 0.45 �0.87 0.25

Gap size z4 �in.� 2/32 �1.56 �0.55 �3.49 0.18 0.32 �0.39 �0.06
3/32 �0.89 �0.21 �0.65 0.39 0.28 �0.15 �0.08
4/32 �0.07 0.22 0.92 0.66 0.22 0.15 �0.13
5/32 0.18 �0.02 1.48 0.49 0.00 �0.13 �0.28
6/32 0.37 �0.03 1.56 0.20 0.23 �0.33 �0.14

Number size z5 �in.� 0.75 �0.96 �1.20 �0.73 �0.35 �0.40 �1.24 �1.13
1 �0.44 �0.51 �0.18 0.15 0.17 �0.72 �0.26

1.25 0.12 0.34 0.25 0.58 0.22 0.17 0.07
1.5 �0.30 0.32 0.21 0.72 0.60 0.48 0.17

1.75 �0.39 0.47 0.24 0.81 0.48 0.46 0.46

Price p $10 0.47 0.13 0.43 0.70 3.19 1.64 0.24
$15 �0.08 0.13 0.41 0.64 1.92 1.28 0.19
$20 �0.22 0.02 0.03 0.52 0.40 0.36 0.03
$25 �0.79 �0.02 �0.29 0.25 �1.48 �1.12 �0.34
$30 �1.35 �0.86 �0.79 �0.20 �2.97 �3.02 �0.81

Outside good 0 0 0 0 0 0 0
Segment size 7.1% 19.2% 14.2% 19.8% 13.6% 15.8% 10.3%

Table 6 Specifications of weight scale competitors

Product Weight capacity z1 Aspect ratio z2 Platform area z3 Gap size z4 Number size z5 Price p

C1 350 1.02 120 0.188 1.40 $29.99
R2 250 0.86 105 0.094 1.25 $19.99
S3 280 0.89 136 0.156 1.70 $25.95
T4 320 1.06 115 0.125 1.15 $22.95

Table 7 New product design solutions for the weight scale problem

Fixed competitor Nash Stackelberg

New product design
and price

z1 258 261 260
z2 1.046 1.038 1.039
z3 132 140 140
z4 0.117 0.119 0.119
z5 1.350 1.383 1.386

Price $18.24 $17.14 $15.87

Model-estimated Profit $24.0M �33.8%� $13.8M �21.0%� $13.9M �23.2%�
Competitor-reacted Profit $13.5M �19.0%� $13.8M �21.0%� $13.9M �23.2%�
Price-equilibrium Profit $13.7M �21.2%� $13.8M �21.0%� $13.9M �23.2%�

Price, market share %,
profit of competitors at
price equilibrium

C1 $16.96, 21.3%, $13.8M $17.26, 21.3%, $14.2M $17.13, 20.7%, $13.7M
R2 $15.00, 14.6%, $7.75M $14.84, 14.7%, $7.70M $15.11, 14.2%, $7.60M
S3 $17.54, 20.2%, $13.7M $16.99, 20.2%, $13.1M $17.81, 19.6%, $13.5M
T4 $17.69, 16.7%, $11.2M $18.13, 16.8%, $11.7M $17.93, 16.3%, $11.1M

Share of no-choice 6.1% 6.1% 6.0%
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optimal attributes in this model.
Similar to the observations in the previous case, the fixed-

competitor assumption gives the highest model-estimated profit,
but the competitor-reacted and price-equilibrium profits demon-
strate that the prediction is overestimated when market competi-
tion is taken into account. The price-equilibrium profit is 1.6%
higher than competitor-reacted profit, which implies that subopti-
mal pricing is a significant component of the competitor-reacted
profit loss in the fixed-competitor case, but suboptimal design is a
larger component. The Stackelberg approach leads to a higher
expected profit than Nash. The Nash and Stackelberg approaches
are able to produce 1.1% and 3.4% higher competitor-reacted
profit, and 1.3% and 1.8% higher price-equilibrium profit than the
fixed-competitor case, respectively. In this case, the new product
Stackelberg leader has the lowest price, but the approach is able to
gain the highest market share and profit. This case study again
demonstrates that incorporating price competition in product de-
sign can not only avoid overestimation of profitability, but also
help the designer to make the best strategic design decisions.

The computational benchmarking for this problem between the
proposed method and the relaxation methods is shown in Fig. 2.
For the Nash case, the relaxation methods cannot reach a solution
with an error less than 10−2. In the same amount of computational
time, the proposed Nash formulation finds the solutions with sig-
nificantly higher accuracy. For the Stackelberg case, the relaxation
methods fail to converge, whereas the proposed Stackelberg for-
mulation reaches the solutions in a relatively short computational
time. These results once again show the limitation for the algo-
rithms using iterative optimizations for handling an engineering
design problem with higher-order nonlinearity and complexity.

3.3 Case Study 3: Angle Grinder. The angle grinder case
study determines the optimal attributes and price of a hand held
power grinder �11,40–42�. The market demand model is a latent
class model with four market segments and six discrete attributes,
including price �three levels: $79, $99, and $129�, current rating
�three levels: 6, 9, and 12 A�, product life �three levels: 80, 110,
and 150 h�, switch type �four levels: paddle, top slider, side slider,
and trigger� and girth type �two levels: small and large�. The part-
worth utilities of the latent class model, brand dummy utility,
market segment size, and outside good utility are reported in Ref.
�41�. Since the new product design variables are identical to the
product attributes, we categorize this case study as a product po-
sitioning problem �z=x�.

The major difference of this case study from the previous two
cases is its discrete decision variables. In order to derive analytical
expressions for price utility, we interpolate the discrete price part-

worths into the underlying continuous space using polynomial �̄.
Therefore, the observable utility component for product j in mar-
ket segment m is given by

vmj = �̄mj + �
d=1

Dn

wmndzndj �14�

where m is the market segment index, �̄mj is the interpolated price
utility for market segment m as a function of price pj, wmnd is the
part-worth utility at level d of attribute n in market segment m,
and zndj is a binary indicator variable that is equal to 1 if product
j contains attribute n at level d and 0 otherwise. Furthermore, M is
the number of segments and Dn is the number of levels for at-
tribute n. The price utility function in each segment is fit through

the discrete levels with a quadratic function �̄mj = ā2mpj
2+ ā1mpj

+ ā0m, where ā2m, ā1m, and ā0m are coefficients interpolated via
least-squares regression. The four resulting price utility curves are
plotted in Fig. 3. It can be seen that the price responses in each
segment are not monotonically decreasing when price increases
within the range of $75-$130. This implies that the data will pre-
dict an unusual increase in demand with increasing price in seg-
ments 1, 2, and 4, providing incentive for firms to charge high
prices. The share of choice smj and profit � j are given by Eqs.
�11� and �12�, respectively. The FOC equation for the Nash price
equilibrium is

�� j

�pj
= �

m=1

M

Qmsmj��2ā2mpj + ā1m��1 − smj��pj − cj� + 1� = 0 ∀ j

�15�
Based on the available price part-worth utility in the demand

model, we confine the price decisions within a range of the survey
data �ḡ1 :75− pj �0, ḡ2 : pj −130�0� since unbounded prices in
this model will encourage firms toward infinite prices and will
result in no equilibrium solution. Furthermore, the specifications
of three competing products in the market are shown in Table 8.
The estimated costs of products X, Y, and Z are $68.15, $100.94
and $49.58, respectively �11�, and the new product cost is as-
sumed $75, independent of the design. The total market size is
9�106 units.

Because of the existence of discrete design variables, Eq. �3� is
not valid for Nash solutions. On the other hand, the Stackelberg

Table 8 Specifications of existing angle grinder products in the market

Product brand
Current rating z1

�A�
Product life z2

�h� Switch type z3 Girth size z4 Price p

X 9 110 Side slider Large $99
Y 12 150 Paddle Small $129
Z 6 80 Paddle Small $79

Fig. 2 Computational time versus solution error for the weight
scale problem: „a… Nash case „b… Stackelberg case

Fig. 3 Price part-worth fitting functions for the angle grinder
demand model
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formulation of this problem using only price FOC equations �Eq.
�15�� can form a MINLP model without difficulty. The formula-
tion is solved by using MINLP solver GAMS/BONMIN

15 �31� �CPU
time: 0.860 s�, and the solutions are presented in Table 9. For the
fixed competition case, it can be seen that the new product price
reaches the modeling upper bound. We find that the new product
and product Y dominate the market with relatively high shares and
profits, while product X and Z have low market shares. For the
Stackelberg case, the design attributes and price of the new prod-
uct are identical to the fixed-competitor case, but it can be seen
that all competitors revised their price decisions in response to the
new entrant to increase profitability. As a result, all prices reached
the upper bound �$130� of the demand model, and the estimated
market shares and profits of products X, Y, and Z are higher than
the fixed-competitor case.16

In this case, price bounds were added because finite price equi-
librium solutions do not exist within the domain of the demand
model’s trusted region, i.e., the region based on interpolation of
measured survey or past purchase data. For example, in a general
sense, increasing price induces decreasing utility, holding all other
factors constant. However, some consumers may assume, within
some range, that products with higher prices have higher quality
or better nonvisible characteristics �43�. A model built on such
data will predict that higher prices result in greater demand, and
thus higher profit if no other tradeoff exists. As a result, no price
equilibrium exists within the measurable price range, and extrapo-
lation leads to infinite prices.

There are several useful observations for this case study. First,
we demonstrate that a Stackelberg product design and price com-
petition problem containing discrete design variables can be
solved by a MINLP solver without exhaustive search or heuristic
selection used in prior methods �9,10�. Second, the fixed-
competitor model has significantly overestimated profit by 22.5%.
Third, this special case demonstrates the influence of concavity to
the existence of equilibrium solutions. Due to the unique price
utility responses, the individual profit function is not concave with
respect to its price variable. Thus it is expected that a price equi-
librium may not exist in the interior decision space but only
boundary equilibrium exists �17�. Finally, product Y dominates
market segments 2 and 3, while the new product is designed to
dominate segments 1 and 4, which are the two biggest segments
�Table 10�. In a heterogeneous market, design and pricing deci-
sions are often coupled, and the best solution depends on the

positioning of competitors �4�; therefore, accounting for competi-
tor reactions can be critical to successfully locating new products
in the market. Furthermore, without applying an upper bound to
price, we find that all price decisions diverge, and no finite price
equilibrium solution exists. As we can see in Fig. 3, extrapolating
the price utility curves of segments 1, 2, and 4 results in higher
utility for higher prices. Applying an upper bound creates finite
equilibria, but the bound activity clearly suggests that the data do
not support the solution. This model is problematic for the opti-
mization application, and the results suggest that more data should
be collected beyond the existing range in order to measure the
eventually-decreasing utility associated with increased price. It is
also possible in this case that survey respondents inferred high
quality from high prices in the survey, since they tend to see such
correlations in the marketplace; however, conjoint results should
not exhibit these trends if respondents correctly treat all attributes
not shown as equal across all profiles.

4 Conclusions
Prior profit maximization methods in engineering design ignore

competitive reactions in market systems. We propose an approach
to solve the new product design problems for profit maximization
while accounting for competitive reactions under Nash and Stack-
elberg price competition. Based on the theory of mathematical
programs with equilibrium constraints, our approach accounts for
competitive reactions through inclusion of equilibrium conditions
as constraints in the optimization framework. This approach re-
quires little additional complexity and offers greater efficiency
and convergence stability than prior methods. Because the equi-
librium conditions are set only with respect to competitor pricing
decisions, it is not necessary to know competitor cost structures or
internal competitor product engineering details, and the equilib-
rium conditions can be added to any existing product design profit
optimization problem.

We show that failing to account for competitive reactions can
result in suboptimal design and pricing solutions and significant
overestimation of expected market performance. Application of
the method to three case studies from the literature exhibits its
ability to handle problems of interest in the engineering domain.
The case study results indicate that the Stackelberg approach is
most preferred because of its capability to generate higher profits
than Nash by anticipating competitor reactions. Both Nash and
Stackelberg approaches can avoid overestimation of market per-
formance and potentially poor product design positioning result-
ing from the common fixed-competitor model.
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Table 9 Optimal new product solutions for fixed and Stackel-
berg cases

Fixed competitor Stackelberg

New product design
and price

x1=z1 12 A 12 A
x2=z2 110 h 110 h
x3=z3 Side slider switch Side slider switch
x4=z4 Small girth Small girth
Price $130 $130

Model-estimated profit $299M �60.3%� $244M �49.3%�
Competitor-reacted profit $244M �49.3%� $244M �49.3%�
Price-equilibrium profit $244M �49.3%� $244M �49.3%�

Price, market share%,
profit of competitors

X $99, 1.9%, $5.0M $130, 10.0%, $56M
Y $129, 34.4%, $87M $130, 34.0%, $89M
Z $79, 2.4%, $6.0M $130, 6.0%, $43M

Share of no-choice 0.9% 0.7%

Table 10 Market shares in each segment at boundary
equilibrium

Market
segment

1
�%�

2
�%�

3
�%�

4
�%�

Total
�%�

37.8 24.8 12.1 25.3 100
X 25.6 0.9 0 0.2 10.0
Y 5.1 70.8 99.8 10.0 34.0
Z 13.1 3.6 0 0.6 6.0
New product 55.6 23.6 0.1 88.5 49.3
No-purchase 0.6 1.1 0.1 0.8 0.7
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