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A Decomposed Gradient-Based
Approach for Generalized
Platform Selection and Variant
Design in Product Family
Optimization
A core challenge in product family optimization is to jointly determine (1) the optimal
selection of components to be shared across product variants and (2) the optimal values
for design variables that define those components. Each of these subtasks depends on the
other; however, due to the combinatorial nature and high computational cost of the joint
problem, prior methods have forgone optimality of the full problem by fixing the platform
a priori, restricting the platform configuration to all-or-none component sharing, or
optimizing the joint problem in multiple stages. In this paper, we address these restric-
tions by (1) introducing an extended metric to account for generalized commonality, (2)
relaxing the metric to the continuous space to enable gradient-based optimization, and
(3) proposing a decomposed single-stage method for optimizing the joint problem. The
approach is demonstrated on a family of ten bathroom scales. Results indicate that
generalized commonality dramatically improves the quality of optimal solutions, and the
decomposed single-stage approach offers substantial improvement in scalability and
tractability of the joint problem, providing a practical tool for optimizing families con-
sisting of many variants. �DOI: 10.1115/1.2918906�

1 Introduction
An important goal in designing a successful product family is to

exploit commonality across the family’s product variants to re-
duce manufacturing cost without sacrificing the individual distinc-
tiveness required to attract a variety of market segments. Hence,
resolving the trade-off between commonality and the ability to
achieve distinct performance targets has been the focus of many
product family optimization studies. Simpson �1� reviewed 40 ap-
proaches to product family optimization. Most of these ap-
proaches have avoided the joint problem of simultaneously deter-
mining optimal �1� platform variable selection, �2� platform
design, and �3� variant design, by fixing the platform a priori.
However, optimal platform selection depends on design decisions;
therefore, the optimal platform cannot typically be identified a
priori without knowledge of the final design, and such approaches
cannot, in general, offer optimality for the joint problem. Prior a
posteriori approaches can be classified according to the number of
stages involved: Single-stage approaches optimize both platform
selection and design subproblems simultaneously, whereas multi-
stage approaches select the platform in the first stage and fix the
selection while optimizing the product family design in the second
stage �1�. There is some trade-off between single- and two-stage
approaches: Optimizing the platform and corresponding design
variables in two separate stages may lead to suboptimal solutions,
since the decisions are interdependent. However, single-stage ap-
proaches tend to have higher computational cost, which can make
these algorithms impractical for large product families. Given
these computational limitations, prior methods have restricted

platform variable selection, insisting that a variable or component
either be common across all variants or not at all. While this
restriction improves problem tractability, it may lead to significant
loss in performance, as we demonstrate later. In fact, many exist-
ing product families take advantage of generalized commonality
�2�, where components are shared among a subset of variants, so
this restriction is often unrealistic. Therefore, an efficient and scal-
able single-stage approach is needed to avoid the suboptimal so-
lutions of multistage methods and enable generalized commonal-
ity for product families of practical size.

2 Background

2.1 Commonality Metrics. Several indices and metrics have
been developed to measure the degree of commonality in a prod-
uct family. These studies can be classified into two main catego-
ries according to their development purpose and application: �1�
commonality indices for evaluation of existing product lines and
�2� commonality metrics for use in product family optimization.

The first group of studies proposes commonality indices for
measuring commonality in existing product lines to compare
product families or assess improvement of a redesign. Some of
these indices consider only the number of common parts within
the family �3–5� while others consider specific information about
the product line, such as production volume and component costs
�6–9�. All aforementioned indices represent a proper commonality
measurement with respect to the related criteria. Therefore, selec-
tion of the appropriate index involves consideration of the com-
pany focus and standpoint when designing the product family.

In the second category, commonality metrics are defined within
the context of optimization for resolving the trade-off between the
commonality and achievement of distinct performance targets.
Due to the high computational cost of the joint problem, several
approaches have restricted the commonality definition to all-or-
none component sharing �10–15�: That is, a component can either
be common within the entire family or be distinct among all prod-
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ucts but cannot be shared among only a subset of the variants.
This simplification imposes an unnecessary restriction for many
cases, leading to suboptimal solutions. Fellini et al. �16� addressed
the above restriction by defining the commonality metric as the
summation of all possible pairwise comparisons within the prod-
uct family, assigning a binary variable to each pair that is equal to
1 if the corresponding components are shared and 0 otherwise.
However, while this commonality definition allows the possibility
of having multiple “subplatforms,” we argue that it is limited for
practical application due to its double-counting property. This
shortcoming can be best illustrated with an example: Consider the
two alternative platform configurations in Fig. 1 for a single com-
ponent �module� within a family of four variants �other compo-
nents are not shown�. Here, 1–4 represent the component of inter-
est for each variant, and the colors indicate the component
sharing. In both cases, two distinct component designs must be
produced, and two sets of tooling must be purchased; therefore,
both alternatives may be considered equivalent with respect to
tooling cost benefits of commonality.1 However, Fellini’s metric
gives preference to the second case,2 describing the first case as
commonality level �=2 and the second case as commonality level
�=3. Hence, this pairwise comparison-based metric prefers con-
figurations that group more components into the same subplatform
and as a result, produces a convergence bias toward platform ar-
chitectures with all-or-none component sharing.

In brief, while the commonality indices introduced in the first
group appear more realistic in measuring the degree of common-
ality within an existing family, they have not been applied in the
optimization context, since they require a given product family
structure, which is unavailable during the optimization process.
Commonality metrics in the second group restrict the commonal-
ity to all-or-none component sharing or suffer from double count-
ing; therefore, they are incapable of measuring the benefits of
commonality for practical cases properly. Hence, an approach is
needed to adapt indices from the first group for use in optimiza-
tion.

2.2 Prior Single-Stage Approaches for Solving the Joint
Problem. Most prior single-stage approaches use genetic algo-
rithms �GAs� for solving the joint problem �10,11,15,17–20�.
However, applying stochastic methods such as GAs involves sig-
nificant computational cost and a lack of scalability for dealing
with large problems. Khajavirad et al. �20� proposed a decom-
posed GA that improves scalability; however, while GAs offer
global search, their stochastic nature limits the ability to ensure
local or global optimality and requires significant time for
problem-specific parameter tuning. Therefore, for cases where
variant design can be analytically formulated, gradient-based
methods are preferred in that they guarantee at least local optimal-
ity �and global optimality for convex problems� and are computa-
tionally efficient. Khire et al. �12� applied the selection integrated
optimization method for solving the joint problem with gradient-
based methods by formulating the combinatorial problem as a
series of continuous relaxations. While the proposed method

proved to be robust for optimizing the joint problem in a single
stage, it hinges on the all-or-none commonality restriction. A
single-stage gradient-based approach is needed that can solve the
joint problem using generalized commonality with a reasonable
computational cost.

2.3 Decomposition. One approach for exploiting the special
structure of certain classes of large-scale optimization problems is
to decompose the original problem into a number of smaller sub-
systems that are separately optimized and coordinated to arrive at
the overall system optimum. In particular, analytical target cas-
cading �ATC� was specifically developed for solving hierarchies
of interacting systems and subsystems, and convergence proofs
are available �21–25�. Hence, it has been widely used for optimiz-
ing engineering design problems with hierarchical structures
�26–30�. Kokolaras et al. �28� noticed the hierarchical structure of
the product family optimization problem and applied target cas-
cading to the design of a product family with a fixed �a priori�
platform configuration. Michalek et al. �30� also applied ATC to
product line design using market data to predict demand and rev-
enue and manufacturing models to predict cost; however, the ap-
proach did not address commonality among products in the line.
Therefore, a decomposition scheme that exploits the special struc-
ture of the joint problem is crucial to make the single-stage ap-
proach more practical and scalable.

2.4 Proposed Approach. In Sec. 3, we propose a generalized
commonality metric and develop a single-stage, relaxation- and
decomposition-based optimization approach for solving the joint
selection and design problem using gradient-based methods. In
Sec. 4, we demonstrate the approach with a case study involving a
family of ten bathroom scales. Results and conclusions are pre-
sented in Secs. 5 and 6, respectively.

3 Proposed Methodology
The basic formulation for optimizing a single product can be

extended for optimizing a family of products by considering com-
monality decisions as consistency constraints. In order to find the
optimal platform configuration and corresponding set of products
simultaneously, the commonality metric and decision variables are
also added to the original formulation. Hence, for a product family
with n products, each with m components, the joint problem can
be formulated as:

Maximize �����,fi�xi� ∀ i�

with respect to �ijk,xik

subject to gi�xi� � 0, hi�xi� = 0

�ijk = �1 if xik = x jk

0 otherwise
	

∀i, j = �1,2, . . . ,n�, k = �1,2, . . . ,m�

where � = ��ijk ∀ i, j,k�, xi = �xik ∀ k� �1�

where � is the commonality objective, xik is the set of variables
for product i that define component �module� k, and fi, gi, and hi
represent the vectors of performance objective functions, inequal-
ity and equality constraints for the ith product, respectively. The
last relation in Eq. �1�, which we call the commonality consistency
constraint, assigns a binary value �ijk to each component k that is
equal to 1 if the vector of design variables for that component is
shared between the corresponding product pair �xik, x jk� and 0
otherwise.

3.1 Commonality Index. In Eq. �1�, ���� measures common-
ality within the entire family. Defining the proper form for �
depends on the company’s perspective when designing a product
family. In this study, we consider the commonality benefit due to

1If more information is known about the production volume of each variant and
the life of the tooling, a more accurate prediction can be made; however, common-
ality metrics are generally applied at a higher level of abstraction so that they do not
require excessive data to compute.

2If anything, the first alternative would probably be preferred over the second
because the sharing appears to be more balanced �again, this depends on production
volume�.

Fig. 1 The double-counting property of Fellini’s metric; „left…
case 1: �=2; „right… case 2: �=3
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tooling cost savings and adopt the commonality index �CI� intro-
duced by Martin and Ishii �4�, which is a measure of the percent-
age of unique parts,

CI = 1 −

u − max
i

�mi�


i=1
n mi − max

i
�mi�

�2�

where u is the total number of distinct component designs in the
product family and mi is the number of components in the ith
product. CI ranges from 0 to 1, and a higher value indicates fewer
unique parts.3 In computing CI from Eq. �2�, it is assumed that the
product family structure is given. Hence, in order to apply the
metric within an optimization context �i.e., Eq. �1��, it should be
reformulated as a function of the binary commonality variables.
Let us reconsider the commonality representation in Eq. �1�. For
the kth component in the product family, we define the common-
ality matrix �k as follows:

�k ��
1 �12k . . . �1nk

�21k 1 �2nk

] � ]
�n1k �n2k . . . 1

 �3�

In Eq. �3�, it is assumed that all variants include an instance of
the kth component; however, for the general case that some vari-
ants may not include all components, the corresponding binary
commonality variables in Eq. �3� are set to zero. Imposing the
transitivity constraints on commonality variables to ensure a con-
sistent matrix �e.g., if �12=1, �23=1→�13=1�, the set of plat-
forms for component i is well defined, and Eq. �3� can be rear-
ranged to the following block diagonal format:

�k = �
�1�nk1�nk1

0 ¯ 0

0 �1�nkr�nkr
0

] � ]
0 0 ¯ �1�nksk

�nkksk

 �4�

where �1�nkr�nkr
represents an nkr�nkr matrix with all elements

equal to 1, and r= �1,2 , . . . ,sk� is the index of subplatforms for
component k. Furthermore, the number of these submatrices sk,
also called “blocks,” is equal to the number of distinct platforms
for producing the kth component:



k=1

m



r=1

sk

nkr = nm �5�

Eigenvalues of a block diagonal matrix are simply those of its
blocks; hence, Eq. �4� has sk nonzero eigenvalues �kr, each equal
to the number of variants in the rth subpaltform of the kth com-
ponent:

�kr = nkr, r = 1, . . . ,sk �6�

The total number of unique components u in the family can be
found from the following:

u = nm − 

k=1

m



r=1

sk

�nkr − 1� �7�

Substituting Eqs. �5�–�7� into Eq. �2�, CI can be reformulated as
follows:

CI =

k=1

m 
r=1
sk ��kr − 1�

m�n − 1�
�8�

Using the above formula, CI is defined as a function of the
binary commonality variables, i.e., the form that can be computed
during the optimization procedure. However, in practice, it is not
convenient to solve Eq. �1� in the mixed-integer format. Hence, in
the following sections, Eq. �8� will be revised and extended to the
continuous space, and alternative functional forms for relaxing
binary commonality variables will be investigated.

3.2 Extended Commonality Index. In deriving CI using the
discrete format, use of only the nonzero �kr terms omits negative
terms from Eq. �8�. However, by relaxing CI to the continuous
space, this condition is no longer valid, and Eq. �8� should be
modified as follows:

ECI =

k=1

m 
r=1
sk �max��̃kr,1� − 1�

m�n − 1�
�9�

where ECI is the extended commonality index to continuous

space and �̃kr is the rth eigenvalue of the relaxed commonality
matrix for the kth component. Equation �9� introduces a disconti-
nuity in the derivative of ECI. While it is possible to eliminate the
discontinuity through introduction of slack variables and binary
variables, our empirical examples suggest that such reformulation
is unnecessary, since gradient-based algorithms perform well with
the form of Eq. �9�.

In order to investigate the effect of relaxation on ECI, two basic
cases are considered in the relaxed space: �1� a distinct component
becomes common with an existing platform and �2� a component
deviates from the platform to which it belongs and become com-
mon to another platform. The case of a platform component be-
coming distinct is addressed by the first case. Consider a platform
with n� components within the product family and an arbitrary
component that is initially distinct from this platform. The subma-
trix associated with this augmented platform in discrete format is
as follows:

�kr = �
1 ¯ 1 0

] � ] 0

1 ¯ 1 0

0 0 0 1


�n�+1���n�+1�

�10�

Relaxing the distinct variable to the continuous space, it be-
comes common with the platform components by the value of
� �0���1�. Therefore, the new sub-matrix will become

�kr� = �
1 ¯ 1 �

] � ] �

1 ¯ 1 �

� � � 1


�n�+1���n�+1�

�11�

Equation �11� has two nonzero eigenvalues, which can be com-
puted from the following relations:

�1� = ��n� + 1� + ��n� + 1�2 − 4n��1 − �2� �/2

�2� = ��n� + 1� − ��n� + 1�2 − 4n��1 − �2� �/2 �12�

Substituting the above eigenvalues into Eq. �9�, ECI can be found
from the following:

ECI =
0.5��n� + 1� + ��n� + 1�2 − 4n��1 − �2� � − 1

n�
�13�

Similarly, for the second case originally having two platforms
with n�+1 and n� components, respectively, the result is

ECI =
0.5�3�n� − 1� + ��n� + 1�2 − 8n���1 − �� �

2n�
�14�3If data are available on relative cost savings for commonality of each component,

appropriate weights can be included as well.
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Figure 2 shows ECI for the above cases �Eqs. �13� and �14��
with respect to �. The extended metric has desirable properties: It
attains correct values at integers and provides a smooth continu-
ous transition for intermediate values of the relaxation.

Any change in the product family architecture during the opti-
mization process can be regarded as a combination of these basic
cases. It should be noted that, since the system is nonlinear �as can
be seen from the eigenvalue equations�, the superposition prin-
ciple cannot be applied for a general case. However, the analytical
results for these simplified cases along with the numerical justifi-
cations for general product families indicate the appropriateness
of the proposed metric for relaxation.

3.3 Relaxation of the Commonality Consistency
Constraint. After defining a commonality metric that remains
valid in the continuous space, the binary commonality consistency
constraint should be relaxed using a continuous, differentiable
function that ranges from 0 to 1 with correct values at the end
points. Fellini et al. �16� proposed the following approximating
function:

�ijk� =
1

1 + �	xijk/
�2 , 	xijk = �xik − x jk� �15�

where 
 is a small value greater than zero that controls the degree
to which the curve approximates the discontinuous step function:
As 
 decreases, the optimal solution of the continuous problem
tends toward that of the discrete formulation. However, as 
 ap-
proaches zero, Eq. �15� becomes ill conditioned, which leads to
numerical difficulties. Therefore, the approach is to approximate
the discrete formulation by a sequence of continuous optimization
problems in which 
 is iteratively decreased until variables that
are designated as common fall within an acceptable deviation tol-
erance. To support convergence, it is desirable that � should ap-
proach its final value for 
 small but sufficiently greater than zero
to prevent ill conditioning, so it is desirable that �� /�
�0 for
small 
. In addition, since Eq. �9� depends on the approximating
function, it is desirable to select the function so that ECI is con-
tinuous and differentiable. We propose two alternatives to Eq.
�15�, which are then compared with respect to the aforementioned
criteria: The logistic curve has been used frequently in probabilis-
tic models for pairwise comparison. It can be applied as a relax-
ation function with slight changes to the standard form, which we
call the half logistic curve for distinction:

�ijk� =
2e−	xijk/


1 + e−	xijk/
 , 	xijk = �xik − x jk� �16�

Another candidate is the Hubbert curve, which is the derivative of
the logistic function:

�ijk� =
4e−	xijk/


�1 + e−	xijk/
�2 , 	xijk = �xik − x jk� �17�

The first derivative of Eqs. �15�–�17� ���� /�
� are plotted in Fig.
3 as a function of 
 for a fixed deviation �	x=0.01�.

As can be found from Fig. 3, for both the half logistic and
Hubbert curves, the first derivative approaches zero for 

�0.001. However, for Fellini’s proposed function, the curve does

not approach a constant value even for 
�0.0005, which leads to
convergence problems during the optimization process. Next, in
order to investigate the effect of the approximating function on
ECI characteristics, the three candidate functions are plugged into
Eq. �9�. Here, for simplicity and better visualization, three distinct
components are considered. We are interested to sketch the com-
monality change for a sequence of decreasing 
 values as a func-
tion of one component x3, given fixed values for the other com-
ponents x1 and x2. Over the range of possible values for x3, the
component begins distinct, then becomes common with the first
component x1, deviates and becomes common with the second
component x2, and finally deviates again to become distinct �Fig.
4�; as can be seen from this figure, in the case of the half logistic
curve, ECI is not differentiable at the two extreme points, which
may cause numerical difficulties for optimization. However, for
both Hubbert and Fellini’s curves, ECI has a continuous derivative
and is concave in the neighborhood of the local optima. Hence,
according to the two aforementioned criteria, the Hubbert curve
shows the best characteristics, since it converges to the discrete
solution as 
 decreases and results in a differentiable ECI with
respect to x.

3.4 Proposed Approach: All-in-One Formulation. Using
ECI �Eq. �9�� as the commonality metric and the Hubbert curve
�Eq. �17�� as the relaxation function, the MINLP formulation in
Eq. �1� can be replaced by a sequence of NLP optimizations as
follows:

Maximize fi�xi�, i = 1, . . . ,n

Maximize ECI��k�,
s�, k = 1, . . . ,m

�k� = �
1 �12k� ¯ �1nk�

�21k� 1 �2nk�

] � ]
�n1k� �n2k� ¯ 1

, �ijk� =

4 exp�xik − x jk


s
�

�1 + exp�xik − x jk


s
��2

with respect to x = �x1,x2, . . . ,xn�

subject to gi�xi� � 0, hi�xi� = 0

Fig. 2 Commonality level change for two basic cases

Fig. 3 First derivative of the approximating functions with re-
spect to �

Fig. 4 ECI using three approximating functions; „left… Fellini’s
curve; „middle… Half Logistic; „right… Hubbert curve
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where 
s+1 = c
s, 0 � c � 1 �18�

Hence, by defining 
0 and c, Eq. �18� is iteratively optimized
until the difference between the common variables fall within an
acceptable tolerance. In Eq. �18�, we used a linear scheme for
decreasing 
. However, in general, different methods, such as an
exponential reduction scheme, can be applied depending on the
form of the approximating function. Moreover, selection of appro-
priate values for c is problem specific and should be properly
tuned for each case. Equation �18� is a multiobjective optimization
problem with 1+
i=1

n pi, objective functions, where pi is the num-
ber of objective functions for the ith product. In practice, we are
interested to sketch the Pareto frontier for capturing the trade-off
between increasing commonality and loosing variant perfor-
mance. Hence, all performance objectives can be grouped into one
objective defined as the �normalized and possibly weighted� sum
of the deviation of each achieved performance level f�xi� from its
corresponding performance target Ti. Moreover, using the discrete
definition for commonality variables, CI attains the following val-
ues:

CI =
r

m�n − 1�
, r � �0, . . . ,m�n − 1�� �19�

Therefore, the multiobjective optimization problem can be con-
verted to a series of 1+m�n−1� single objective optimizations,
each finding the optimal platform and individual product designs
for a fixed commonality level lr. Applying the above modifica-
tions, Eq. �18� can be reformulated as follows:

Minimize �lr − ECI��k�,
s��2 + 

i=1

n

wi�Ti − fi�xi��2
2, k = 1, . . . ,m

lr =
r

m�n − 1�
, r � �0, . . . ,m�n − 1��

subject to gi�xi� � 0, hi�xi� = 0


s+1 = c
s, 0 � c � 1 �20�

where wi is weighting coefficient showing the relative importance
of performance objectives; � · �2

2 denotes the square of the l2 norm;
and �k� and �ijk� are computed as defined in Eq. �18�.

3.5 Proposed Approach: Decomposition Scheme. Increas-
ing the problem size makes the all-in-one formulation �Eq. �20��
impractical for solving the joint problem directly, and efficiencies

may be gained through decomposition. According to the ATC
framework, the original all-in-one problem with a hierarchical
structure is decomposed into a top level system and a hierarchy of
subsystems. For every output of each subsystem that affects the
parent system, two copies are created: a target copy x managed by
the system and a response copy y managed by the subsystem. An
ATC consistency constraint function ��x-y� is added to ensure
that x=y at the solution, and � is relaxed using penalty functions
or Lagrangian relaxation to support decomposition and coordinate
a consistent and optimal solution �see Ref. �25� for a comprehen-
sive review�.

As can be seen from Eq. �20�, the only nonseparable part in the
all-in-one formulation is the commonality deviation portion of the
objective function. Hence, using ATC the joint product family
problem can be decomposed to a two-level optimization problem:
The system level optimization problem finds the optimal platform
configuration while each subsystem deals only with optimizing a
single product in the family �Fig. 5�.

The resulting system level problem is an unconstrained NLP
problem that finds the optimal platform and distinct design vari-
ables x for a given commonality level lr and with minimum de-
viation from the responses y passed up from the product level
subsystems:

Minimize �lr − ECI��k�,
s��2 + 

i=1

n

��xi − yi�, k = 1, . . ,m

lr =
r

m�n − 1�
, r � �0, . . . ,m�n − 1��

with respect to x = �x1,x2, . . . ,xn�


s+1 = c
s, 0 � c � 1 �21�

where �k� and �ijk� are computed as defined in Eq. �18�. The opti-
mization problem for the ith subsystem, which optimizes the ith
product, has the following formulation:

Minimize wi�Ti − fi�yi��2
2 + ��yi − xi�

with respect to yi

subject to gi�yi� � 0, hi�yi� = 0 �22�

where yi is the vector of local variables representing the design
variables of the ith product, and xi is the target vector cascaded

Fig. 5 ATC framework for optimizing the joint product family problem
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down from the system level problem.4

A variety of approaches have been used to decompose and co-
ordinate consistency among subsystems �21–25�. We adopt the
augmented Lagrangian alternating direction �ALAD� method of
multipliers �24�: According to this method, the ATC consistency
constraint relaxation function ��yi−xi� is the augmented Lagrang-
ian function �T�yi−xi�+wT�yi−xi�2, where the values of � are
iteratively updated using the method of multipliers. In the ALAD
approach, each subproblem is solved only once before updating �
via the method of multipliers, and the penalty weight w may be
held constant or only be updated when no improvement in the
objective function is observed.

The optimization scheme for solving the decomposed problem
is sketched in Fig. 6: In the inner loop, for a fixed 
 and com-
monality value, the ATC formulation is solved using the ALAD
method. In the middle loop, 
 iteratively decreases until the rela-
tive difference among the shared components falls below user
specified tolerances. Finally, after finding the optimal platform
configuration and individual products for a constant commonality
value, lr is updated, and this procedure continues until the opti-
mum product families for the entire range of commonality levels
are found. Thus, the inner loop handles coordination of sub-
systems in the decomposition, the middle loop drives the com-
monality relaxation toward an integer solution, and the outer loop
generates points along the Pareto frontier.

4 Case Study: Bathroom Scale Design
We now apply the proposed approach to the design of a family

of standard dial-read out and digital bathroom scales from the
literature. Design of a family of scales is a well-suited example for
illustrating the trade-off between commonality and achievement
of distinct performance targets5 since individual products with dis-
tinct characteristics �e.g., digital and analog� operate according to
nearly identical principles, leading to significant market differen-
tiation with high potential levels of engineering commonality. The
engineering optimization model is taken from Ref. �29�. Product
design variables are depicted in Fig. 7 on the analog scale, which
is the same for the digital scale excluding the dial diameter �the
dial is replaced with an encoder wheel and photointerrupter�.

For module-based product family optimization, design vari-
ables are grouped according to the component �module� to which
they belong �Table 1� and, the commonality is measured based on
component sharing; i.e., two products have a common part if all
of the design variables corresponding to that part have the same
value for both products.

Performance objectives are weight capacity, platform area, as-
pect ratio, and number size �analog scale�. To capture several de-
sign issues ignored in the prior study �29�, the following con-
straints were added to the optimization formulation:6

1 Maximum displacement of the spring must remain below the
allowable value restricted by the scale thickness.

2 The scale should be designed so that it measures the right
weight regardless of the user’s leg positions.

3 Short levers should be constrained so that they fit in the scale
within the allowable bounds relative to the long lever posi-
tions.

4 In the analog scale, the dial diameter should be restricted so
that the dial does not interfere with the support position on
either lever.

5 The distance from the scale centerline to the support posi-
tions on both levers is constrained to be more than the leg
distance from the center line for stability.

5 Results
In order to test the effects of generalized commonality and the

scalability of the decomposed single-stage method, a family of ten
bathroom scales including five analog and five digital scales was
optimized. Individual product performance targets were selected
from the product attribute levels suggested in Ref. �29� to define a
set of distinct, feasible products.

4The proposed decomposition improves scalability by �1� separating platform
selection from variant design and �2� optimizing each product separately. However,
the size of the remaining platform selection subproblem constrains the degree of
scalability for large problems.

5Following the bulk of the product family literature, we have treated performance
targets as exogenous and introduced a generic penalty function for deviation from
those targets. If data are available, quantification of differentiation in terms of the
market responses of a heterogeneous consumer population would more completely
describe the product family trade-off �30,31�; however, we do not pursue this here.

6The complete mathematical formulation is available in Ref. �29� or from the
authors. Details were not included here due to space limitations.

Table 1 Scale components and their design variablesa

Component name Associated variables

1. Long Lever �x1 ,x2 ,x5�
2. Short Lever �x3 ,x4�
3. Spring �x6�
4. Rack and Pinion �x8 ,x9�
5. Pivot �x10 ,x11�
6. Cover �x7 ,x13 ,x14�

aDial commonality among the analog scales is ignored since the dial production cost
is negligible compared to other components.

Fig. 7 Design variables shown on the disassembled analog
scale †29‡

Fig. 6 Decomposition algorithm for optimizing the joint prod-
uct family problem
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First, individual variants were separately optimized to find op-
timal designs under the condition of no enforced commonality.
Although no commonality was enforced in this case, separately
optimized products result in ECI=17 /54 for this problem. These
designs were applied as initial seeds for product family optimiza-
tion. Next, the ATC framework �Fig. 5� was applied for optimiz-
ing a family of ten bathroom scales with a0=0.01 decreased in ten
steps by a factor of c=0.75. The overall performance objective is
formulated as the average of the l2 norm of the normalized devia-
tion vector of individual attributes from their corresponding per-
formance targets over the entire family. For comparison, ECI �Eq.
�10�� and the restricted all-or-none version were separately ap-
plied. The all-or-none commonality metric was computed by re-
placing the normalized pairwise difference 	x in Eqs. �15�–�17�
with the variance of the kth component across the variants. The
resulting Pareto frontiers are plotted in Fig. 8. While both optimal
fronts depict the inherent trade-off between commonality and the
ability of the variants to achieve distinct performance targets, the
generalized curve dramatically dominates the all-or-none curve.
That is, for a given level of performance loss, a much higher
commonality value can be achieved using ECI. For example, Fig-
ure 8 shows that for achieving the minimum performance loss
using the restricted metric, the commonality level can only be
increased up to 17% �i.e., shared pivot among all variants�; how-
ever, by allowing component sharing within subsets of products,
the commonality level can be increased to 62% for the same per-
formance loss, leading to significant cost savings.

Figure 8 divides the Pareto frontier for the generalized case into
three segments: In Zone I, it is possible to increase the common-
ality up to 62% without any performance loss, which reveals �1�
the importance of solving the joint product family problem and �2�
the importance of including generalized commonality. In Zone II,
for 0.62�ECI�0.78, the rate of performance loss is relatively
slow; that is, product attributes deviate only nominally from the
assigned targets. However, in Zone III, the performance loss rap-
idly increases, and individual products cannot achieve their target
characteristics. Therefore, by plotting the product family Pareto
front, the designer is provided with a helpful perspective on how
to decide the desired commonality level and its corresponding
platform configuration to reduce manufacturing cost without ex-
cessive sacrifice of distinctiveness.

Table 2 describes the platform configuration for three points on
the Pareto frontier and their nearest comparison points on the
restricted curve. The numbers listed indicate the number of vari-
ants that share each component design �with 1’s omitted�. For
example, the notation �6,2� indicates that one design is shared
among six variants, a second design is shared among two variants,
and the remaining two variants have distinct designs. As can be
seen from this table, the platform configuration �and design vari-
able values, not listed here� are such that the optimal family with
commonality level r does not necessarily involve the platform

variables optimal for commonality level r−1. This result high-
lights the importance of solving the joint problem instead of se-
lecting the platform architecture a priori

Table 3 lists the total computational time required to solve for
each of the three points shown in Fig. 8 using alternative schemes
�the restricted commonality case uses Points 1, 2, and 3 instead�.
Overall, the generalized commonality formulation produces im-
proved solutions; however, higher complexity of the commonality
objective and search space increases computational requirements,
motivating the need for decomposition. As can be seen from the
table, for the bathroom scale example, decomposing the joint
problem using ATC decreases computational requirements by 50–
60%. In addition, further speedup can be achieved by optimizing
the individual subsystems in parallel, which provides �70% im-
provement over the all-in-one case. In the current case study, each
variant design formulation is relatively simple, and computational
time of the ATC framework is dominated by the upper level sub-
problem. In cases where the variant subproblems have greater
complexity, higher speedups due to the decomposition and paral-
lelization would be expected.

6 Summary and Conclusions
In this study, we first proposed a method for computing the CI

introduced by Martin and Ishii for use in optimization and argued
for its improved properties over prior metrics applied for optimi-
zation. The discrete definition of the CI was then extended to the
continuous space, and the properties of the index were examined.
Results show that the proposed metric remains valid in the con-
tinuous space, enabling relaxation of the MINLP formulation into
a continuous domain, which enables use of gradient-based ap-
proaches. Considering the critical effect of the approximating con-
sistency function on ECI performance, two important criteria for
selecting the proper function were described, and three alterna-
tives were compared. The Hubbert curve proved to be the only
alternative possessing the desired characteristics. Therefore, by
applying the ECI as the commonality objective along with the
Hubbert curve as the approximating function, a novel single-stage
gradient-based approach for optimizing the joint platform selec-
tion and design problem was introduced. In order to address the
scalability of the proposed method, the all-in-one formulation was

Fig. 8 Pareto curves for family of ten bathroom scales

Table 2 Platform configurations for points on the Pareto fron-
tier „Fig. 8…

Module

All-or-none ECI

1 2 3 I II III

Long lever — — 10 4 6,2 8,2
Short lever — 10 10 4,4,2 7,2 10

Spring — — 10 5,3 6,4 10
Rack and

pinion
— 10 10 6,3 7 9

Pivot 10 10 10 10 10 10
Cover — — — 2,2 2,2,2 3,3,2,2

Table 3 Effect of generalization, decomposition, and parallel-
ization on the computational time „seconds…

Optimization
scheme

All-or-
none ECI

ATC
�serial�

All-in-
one

ATC

Serial Parallel

Point I �1� �115� 1294 523 371
Point II �2� �232� 1392 655 454
Point III �3� �453� 1500 702 472
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decomposed using ATC into a two level optimization problem in
which the upper level problem finds the optimal platform configu-
ration while each subproblem optimizes the individual products.
The proposed approach was demonstrated in optimizing a family
of ten bathroom scales. The Pareto front reveals the trade-off be-
tween commonality and the ability to achieve distinct perfor-
mance targets, which can help in product family planning. More-
over, comparing the optimal fronts using the ECI versus the all-
or-none metric for commonality revealed the importance of
generalizing the commonality definition to allow component shar-
ing among subsets of variants in the optimization formulation, and
the computational studies demonstrate the advantages of decom-
position.

In conclusion, since the all-or-none commonality restriction has
been shown to generate inferior solutions, it should only be used
when generalized commonality is truly not of interest or when
specific knowledge about the product domain reveals that all-or-
none commonality is sufficient. First, using the restriction as a
computational convenience can result in significant losses. Sec-
ond, using a suitable definition of the commonality objective is
also important to provide an appropriate proxy for commonality
benefits, and we advocate for use of the extended CI. Finally,
restrictions of the joint product platform selection and variant de-
sign problem to a priori fixed platform specifications and solution
methods that rely on multiple stages can generate suboptimal so-
lutions. The proposed method addresses the joint problem directly,
avoiding these limitations, and the decomposition scheme ad-
dresses the scalability issue and enables use of parallel processing
to further speed up computation. However, in order to obtain more
concrete conclusions regarding the performance of various exist-
ing product family optimization methods, a comprehensive and
systematic comparison study for solving a number of different
case studies using all proposed approaches is required.

To date, no method has been proposed with proven achieve-
ment of global optimality for the joint product family problem;
however, we believe that efficient approaches to address the joint
problem directly while also accounting for generalized common-
ality is an important direction for future research.

Acknowledgment
This work is supported in part by the Pennsylvania Infrastruc-

ture Technology Alliance, a partnership of Carnegie Mellon, Le-
high University, and the Commonwealth of Pennsylvania’s De-
partment of Community and Economic Development �DCED�.

References
�1� Simpson, T. W., 2005, “Methods for Optimizing Product Platforms and Prod-

uct Families: Overview and Classification,” Product Platform and Product
Family Design: Methods and Applications, T. W. Simpson, Z. Siddique, and J.
Jiao, eds., Springer, New York, pp. 133–156.

�2� Thevenot, H. J., and Simpson, T. W., 2006, “Commonality Indices for Product
Family Design: A Detailed Comparison,” J. Eng. Design, 17�2�, pp. 99–119.

�3� Collier, D. A., 1981, “The Measurement and Operating Benefits of Component
Part Commonality,” Decision Sci., 12�1�, pp. 85–96.

�4� Martin, M. V., and Ishii, K., 2002, “Design for Variety: Developing Standard-
ized and Modularized Product Platform Architectures,” Res. Eng. Des., 13�4�,
pp. 213–235.

�5� Wacker, J. G., and Trelevan, M., 1986, “Component Part Standardization: An
Analysis of Commonality Sources and Indices,” J. Operations Manage., 6�2�,
pp. 219–240.

�6� Jiao, J., and Tseng, M. M., 2000, “Understanding Product Family for Mass
Customization by Developing Commonality Indices,” J. Eng. Design, 11�3�,
pp. 225–243.

�7� Kota, S., and Sethuraman, K., 1998, “Managing Variety in Product Families
Through Design for Commonality,” Design Theory and Methodology—

DTM’98, Atlanta, GA, ASME Paper No. DETC98/DTM-5651.
�8� Siddique, Z., Rosen, D. W., and Wang, N., 1998, “On the Applicability of

Product Variety Design Concepts to Automotive Platform Commonality,”
ASME Design Engineering Technical Conferences—Design Theory and Meth-
odology, Atlanta, GA, ASME Paper No. DETC98/DTM-5661.

�9� Thevenot, H. J., and Simpson, T. W., 2005, “A Comprehensive Metric for
Evaluating Commonality in a Product Family,” J. Eng. Design, 18�6�, pp.
577–598.

�10� Akundi, S., Simpson, T. W., and Reed, P. M., 2005, “Multi-objective Design
Optimization for Product Platform and Product Family Design Using Genetic
Algorithms,” ASME Design Engineering Technical Conferences—Design Au-
tomation Conference, Long Beach, CA, ASME.

�11� Hassan, R., De Weck, O., and Springmann, P., 2004, “Architecting a Commu-
nication Satellite Product Line,” 22nd AIAA International Communications
Satellite Systems Conference & Exhibit 2004 (ICSSC), Monterey, CA, AIAA.

�12� Khire, R. A., Messac, A., and Simpson, T. W., 2006, “Optimal Design of
Product Families Using Selection-Integrated Optimization �SIO� Methodol-
ogy,” 11th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Opti-
mization, Portsmouth, VA, AIAA.

�13� Messac, A., Martinez, M. P., and Simpson, T. W., 2002, “A Penalty Function
for Product Family Design Using Physical Programming,” ASME J. Mech.
Des., 124�2�, pp. 164–172.

�14� Nayak, R. U., Chen, W., and Simpson, T. W., 2002, “A Variation-Based
Method for Product Family Design,” Eng. Optimiz., 34�1�, pp. 65–81.

�15� Simpson, T. W., and D’Souza, B. S., 2004, “Assessing variable levels of plat-
form commonality within a product family using a multiobjective genetic al-
gorithm,” Concurr. Eng. Res. Appl., 12�2�, pp. 119–129.

�16� Fellini, R., Kokkolaras, M., Papalambros, P., and Perez-Duarte, A., 2005,
“Platform Selection Under Performance Loss Constraints in Optimal Design of
Product Families,” ASME J. Mech. Des., 127�4�, pp. 524–535.

�17� Cetin, O. L., and Saitou, K., 2004, “Decomposition-Based Assembly Synthesis
for Structural Modularity,” ASME J. Mech. Des., 126�2�, pp. 234–243.

�18� Fujita, K., and Yoshida, H., 2001, “Product Variety Optimization: Simulta-
neous Optimization of Module Combination and Module Attributes,” ASME
Design Engineering Technical Conferences—Design Automation Conference,
Pittsburgh, PA, ASME.

�19� Gonzalez-Zugasti, J. P., and Otto, K. N., 2000, “Modular Platform-Based
Product Family Design,” ASME Design Engineering Technical Conferences—
Design Automation Conference, Baltimore, MD, ASME.

�20� Khajavirad, A., Michalek, J. J., and Simpson, T. W., 2007, “A Decomposed
Genetic Algorithm for Solving the Joint Product Family Optimization Prob-
lem,” Third AIAA Multidisciplinary Design Optimization Specialists Confer-
ence, Honolulu, HI, AIAA.

�21� Kim, H. M., Chen, W., and Wiecek, M. M., 2006, “Lagrangian coordination
for Enhancing the Convergence of Analytical Target Cascading,” AIAA J.,
44�10�, pp. 2197–2207.

�22� Michalek, J. J., and Papalambros, P. Y., 2005, “An Efficient Weighting Update
Method to Achieve Acceptable Consistency Deviation in Analytical Target
Cascading,” ASME J. Mech. Des., 127�2�, pp. 206–214.

�23� Michelena, N., Park, H., and Papalambros, P. Y., 2003, “Convergence Proper-
ties of Analytical Target Cascading,” AIAA J., 41�5�, pp. 897–905.

�24� Tosserams, S., Etman, L. F. P., Papalambros, P. Y., and Rooda, J. E., 2006, “An
Augmented Lagrangian Relaxation for Analytical Target Cascading Using the
Alternating Direction Method of Multipliers,” Struct. Multidiscip. Optim.,
31�3�, pp. 176–189.

�25� Li, Y., Lu, Z., and Michalek, J. J., 2008, “Diagonal Quadratic Approximation
for Parallelization of Analytical Target Cascading,” ASME J. Mech. Des.,
130�5�, p. 051402.

�26� Choudhary, R., Malkawi, A., and Papalambros, P. Y., 2005, “Analytic Target
Cascading in Simulation-Based Building Design,” Autom. Constr., 14�4�, pp.
551–568.

�27� Kim, H. M., Rideout, D. G., Papalambros, P. Y., and Stein, J. L., 2003, “Ana-
lytical Target Cascading in Automotive Vehicle Design,” ASME J. Mech. Des.,
125�3�, pp. 481–489.

�28� Kokkolaras, M., Fellini, R., Kim, H. M., Michelena, N. F., and Papalambros, P.
Y., 2002, “Extension of the Target Cascading Formulation to the Design of
Product Families,” Struct. Multidiscip. Optim., 24�4�, pp. 293–301.

�29� Michalek, J. J., Feinberg, F. M., and Papalambros, P. Y., 2005, “Linking Mar-
keting and Engineering Product Design Decisions via Analytical Target Cas-
cading,” Journal of Product Innovation Management, 22, pp. 42–62.

�30� Michalek, J. J., Ceryan, O., Papalambros, P. Y., and Koren, Y., 2006, “Balanc-
ing Marketing and Manufacturing Objectives in Product Line Design,” ASME
J. Mech. Des., 128�6�, pp. 1196–1204.

�31� Kumar, D., Chen, W., and Simpson, T., 2007, “A Market-Driven Approach to
the Design of Platform-Based Product Families,” Int. J. Prod. Res., in press,
published online August 2007.

071101-8 / Vol. 130, JULY 2008 Transactions of the ASME


