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ABSTRACT 

Engineering optimization methods for new product 
development model consumer demand as a function of product 
attributes and price in order to identify designs that maximize 
expected profit. However, prior approaches have ignored the 
ability of competitors to react to a new product entrant; thus 
these methods can overestimate expected profit and select 
suboptimal designs that perform poorly in a competitive market. 
We propose an efficient approach to new product design 
accounting for competitor pricing reactions by imposing Nash 
and Stackelberg conditions as constraints, and we test the 
method on three product design case studies from the marketing 
and engineering design literature. We find that a Stackelberg 
leader strategy generates higher profit than a Nash strategy. 
Both strategies are superior to ignoring competitor reactions: In 
our case studies, ignoring price competition results in 
overestimation of profits by 12%-79%, and accounting for price 
competition increases realized profits by up to 3.4%. The 
efficiency, convergence stability, and ease of implementation of 
the proposed approach enables practical implementation for 
new product design problems in competitive markets. 

 
Keywords: Design Optimization; Nash Equilibrium; 
Stackelberg Competition; Game Theory; Demand Model; 
Logit; Design for Market; New Product Development 

 
1. INTRODUCTION 

Product design optimization problems that account for 
competitive market decisions can be categorized into two 
groups: Short-run price equilibrium and long-run design 
equilibrium 1  [1-3]. The long-run scenario represents 

                                                           
1 Unlike long-run equilibrium concepts in economics, we do not account 

for firm entry and exit [4]. 

competition over a sufficiently long time period2 that all firms 
in the market are able to redesign their products as well as set 
new prices competitively [3,5-8]. Short-run competition 
assumes that the design attributes of competitor products are 
fixed3, but that competitors will adjust prices in response to a 
new entrant [2,9-11]. We focus here on new product design 
problems in short-run price competition4. 

Table 1 lists prior studies for price competition in product 
design and distinguishes them by solution approach, demand 
model type, equilibrium type, case studies, and presence of 
design constraints. The solution approach is the method used to 
find the design solution under price competition. The demand 
model type specifies the market demand function formulation. 
Equilibrium type distinguishes Nash and Stackelberg strategies 
[13]: Nash equilibrium refers to a point at which no firm can 
achieve higher profit by unilaterally selecting any decision other 
than the equilibrium decision (i.e. price). The Stackelberg case, 
also known as the leader-follower model, assumes that the 
leader is able to predict the response of followers, in contrast 
with the Nash model, which assumes that each firm only 
observes competitor responses [13]. The Stackelberg case is 
appropriate for cases where one player is able to “move first”, 
and introduction of a new product entrant is a case where the 
firm can exploit this first-move advantage. Finally, the last 
column in Table 1 identifies whether the model incorporates 
design constraints representative of tradeoffs typically present 
in engineering design. 

                                                           
2 Advances in CAD tools, concurrent engineering, rapid prototyping, and 

production technologies that reduce lead time can decrease the relevant 
timeframe of “long-run” equilibria [8]. 

3 The situation of fixed competitor attributes under market competition is 
alternatively described as “sticky” [1]. 

4 We came across an article [12] discussing short-term price competition 
of multiple products with fixed product attributes, but it did not consider new 
product entry, thus excluded from the list. 
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Choi et al. [2] (henceforth CDH) proposed an algorithm for 
solving the new product design problem under price 
competition while treating the new product entrant as 
Stackelberg leader, and they tested the method on a pain 
reliever example with ingredient levels as decision variables 
and an ideal point logit demand model5 with linear price utility. 
The study applied the variational inequality diagonalization 
algorithm [14] to solve the follower Nash price equilibria. In 
Section 3, we use CDH’s problem as a study case and show that 
the method can have convergence difficulties, and as a result the 
Stackelberg solution found by their algorithm is not fully 
converged. 

In contrast to the continuous decision variables used by 
CDH, other prior approaches restrict attention to discrete 
decision variables that reflect product attributes observed by 
consumers, as opposed to design variables controlled by 
designers under technical tradeoffs. We refer to the focus on 
product attributes as product positioning, in contrast to product 
design. These prior product positioning problems assume that 
all combinations of discrete variables are feasible, thus no 
additional constraint functions are considered. Horsky and 
Nelson [9] used historic automobile market data to construct a 
logit demand model and cost function using four product 
attribute decision variables. With five levels for each of their 
four variables, they applied exhaustive enumeration to solve for 
equilibrium prices of all 625 possible new product entrant 
combinations using first-order condition equations. Rhim and 
Cooper [10] used a two-stage method incorporating genetic 
algorithms and first-order conditions to find Nash solutions for 
new product positioning problems. The model allows multiple 
new product entries to target different user market segments. 
The product in the study is liquid detergent with two attributes. 
Recently, Lou et al. [11] conducted a study for optimal new 
product positioning of a handheld angle grinder under Nash 

                                                           
5 The ideal point model assumes that each consumer has an ideal point in 

the product attribute space, and utility of a product is calculated as a function 
of the Euclidean distance between the ideal point and the product. 

price competition in a manufacturer-retailer channel structure6. 
There are six product attributes with various levels in the 
problem, resulting in 72 possible combinations. Similar to 
Horsky and Nelson [9], the study also used a discrete selection 
method, but the design candidates were pre-screened to a 
smaller number in order to avoid full exhaustive enumeration, 
and the profits of a few final candidates at Nash price 
equilibrium were calculated through a sequential iterative 
optimization approach.  

Prior approaches to product design and positioning under 
price competition suffer from inefficient computation and 
convergence issues due to iterative strategies to identify 
equilibria and combinatorial limitations of discrete attribute 
models. We propose an alternative approach to find optimal 
design and equilibrium competition solutions in single step. Our 
approach poses a nonlinear programming (NLP) or mixed-
integer nonlinear programming (MINLP) formulation for new 
product profit maximization with respect to prices and design 
variables subject to first-order necessary conditions for 
competitor Nash price equilibrium7. We examine three case 
studies from the literature and show that accounting for 
competitor price competition can result in different optimal 
design decisions than those determined under the assumption 
that competitors will remain fixed. The approach is well-suited 
to engineering design optimization problems, requiring little 
additional complexity and offering greater efficiency and 
convergence stability than prior methods, particularly for the 
highly-constrained problems found in engineering design.  

The remainder of the article is organized as follows: In 
Section 2, we explain the detailed formulation of the proposed 
approach with Nash and Stackelberg competition strategies, and 

                                                           
6  Lou et al.’s [11] study assumed the channel reaction follows a 

manufacturer Stackelberg scenario, but price setting at the retailer level is a 
Nash solution. This is distinct from taking the new product entrant as a 
Stackelberg leader. 

7  Such formulation is also called mathematical programming with 
equilibrium constraints (MPEC) [15]. The first-order price equilibrium 
equations can also be expressed in variational inequality [14] or mixed 
complementarity form [16], but in this paper we maintain the system equation 
form to represent equilibrium conditions. 

Table 1: Literature on new product design optimization under price competition 
Literature Solution approach Demand model Price equilibrium Case study Design constraints 

Choi et al. (1990) [2] 
Iterative variational 
inequality algorithm 

Ideal point logit Stackelberg Pain reliever Yes 

Horsky and Nelson (1992) [9] 
Discrete selection  

from FOC solutions 
Logit Nash Automobile No 

Rhim and Cooper (2005) [10] 
Two-stage genetic 

algorithm 
Ideal point logit Nash Liquid detergents No 

Lou et al. (2007) [11] 
Discrete selection and 
iterative optimization 

HB mixed logit Nash Angle grinder No 

This paper 
One-step NLP/MINLP  
with FOC constraints 

Ideal point logit and 
latent class model 

Nash and 
Stackelberg 

1) Pain reliever 
2) Angle grinder 
3) Weight scale 

Yes 
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we introduce a modified Lagrangian formulation to 
accommodate cases with price bounds. In Section 3, we 
demonstrate the proposed approach by solving three product 
design examples from the literature, and we conclude in Section 
4. 

 
2. PROPOSED METHODOLOGY 

We first construct price equilibrium optimization models 
for Nash and Stackelberg strategies for unconstrained prices. 
We then examine the special case where prices are constrained 
and develop a Lagrangian extension for this case. The 
assumptions for the proposed approach are: 1) The focal firm 
will design a set of differentiated products that will enter into a 
market with existing products sold by competitors; 2) 
competitors are Nash price setters for profit maximization with 
fixed products; 3) competitor product attributes and costs are 
known; and 4) price is continuous, and each firm’s profit 
function is differentiable with respect to its corresponding price.  

 
2.1 Profit Maximization under the Nash Strategy 

The proposed formulation for new product design 
optimization under Nash price competition is: 
 

maximize ( )
k

k j j j
j J

q p c
∈

Π = −∑  

with respect to j j jp p ′x , ,  

subject to ( ) ( )j j=   ≤h x 0; g x 0 ; 

         
Π

0j

jp
′

′

∂
=

∂
  

where ( )j j j j j jq Qs p p ′ ′= , z , , z  

      ( )j jf=z x  

 ; k kj J j J k K k′′ ′∀ ∈ ∀ ∈ ∀ ∈; \  

 

(1) 

In the above formulation, the objective function is the total 
profit Πk of producer k, which is the sum of all its products Jk. 
Each new product j has design vector xj, attribute vector zj (as a 
function of the design zj= f(xj)), price pj, predicted market share 
sj, and predicted demand qj. The total size of the market is Q. 
The equality and inequality constraints, h(xj) and g(xj), define 
the feasible domain of the engineering design. Each competitor 
k′∈K\k has price decisions pj′ with fixed design attributes zj′ for 
all its products ∀j′∈Jk′.  

In the Nash game, each producer observes the prices and 
attributes of other products as exogenous parameters. The 
proposed formulation determines the profit-maximizing new 
product design xj and price pj that are in Nash equilibrium with 
competitor prices pj′, ∀j′∈Jk′, ∀k′∈K\k. More precisely, for each 
competing product j′, price pj must satisfy the first-order 
necessary conditions for Nash price equilibrium. If the profit 

function is concave with respect to price, which is common8, the 
first-order condition is sufficient. However, in the case of 
nonconcavity, the solutions found by the proposed method must 
be verified as Nash post hoc. The mathematical expression of a 
Nash equilibrium is given by [13]: 

* * * * *
1 1( , , , , ) ( , , , , )

,  
k j J k j J

k

p p p p p p

j J k K

Π ≥ Π

    ∀ ∈ ∀ ∈

… … … …

 (2) 

where the * denotes the decisions at Nash equilibrium. This 
formulation states that no unilateral change to a single firm’s 
price decision can result higher profit for that firm than its Nash 
price, or, alternatively, each firm is responding optimally to the 
others. To test this condition, we take the FOC solution and 
optimize each individual producer’s profit with respect to its 
own pricing decisions while holding other producer decisions 
fixed. If no higher profit is found throughout the test, the price 
solutions are Nash prices. 
 
2.2 Profit Maximization under the Stackelberg 
Strategy 

For the proposed Stackelberg competition strategy, it is 
assumed that the new product enters the market as a leader, 
while other competitors react as followers. Followers observe 
one others’ price decisions, including the new product price, as 
exogeneous variables and compete with one another to reach a 
Nash price equilibrium. The new product leader is able to 
predict its followers’ Nash price settings within its optimization, 
giving it an advantage9. The formulation for new product design 
optimization with the Stackelberg pricing strategy is: 
 

maximize ( )
k

k j j j
j J

q p c
∈

Π = −∑  

with respect to j jpx ,  

subject to ( ) ( )j j=   ≤h x 0; g x 0  

where ( )j j j j j jq Qs p p ′ ′= , z , , z ; ( )j jf=z x  

     
Π

 satisfies 0j
j

j

p
p

′
′

′

∂
=

∂
  

 ; k kj J j J k K k′′ ′∀ ∈ ∀ ∈ ∀ ∈; \  

 

(3) 

 The Stackelberg formulation appears similar to the Nash 
case in Eq. (1), but the meaning is largely different. It can be 
seen that the Stackelberg formulation contains only new product 
design and price as decision variables. Competitor prices 
satisfying Nash equilibrium equations are included in the 

                                                           
8 Anderson et al. [17] proved that there exists a unique price equilibrium 

under logit demand when decision sets are convex and the profit function is 
strictly quasi-concave. 

9 CDH [2] used a duopoly game to prove that a Stackelberg leader 
strategy can always receive at least as high a payoff as a Nash strategy if a 
Stackelberg equilibrium exists. 
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objective function for giving predicted price and market share 
information to the new product leader. Computationally, this 
can be thought of as the Nash condition enforcing price 
conditions only at the solution, whereas the Stackelberg 
condition calculates reaction prices at each intermediate 
iteration of the algorithm. 
 
2.3 Incorporating Price Variable Bounds 
 Furthermore, we consider the special situation in our 
proposed formulation when finite price equilibrium solutions do 
not exist within the domain of the demand model’s trusted 
region (i.e.: the region based on interpolation of measured 
survey or past purchase data). For example, in a general sense, 
increasing price induces decreasing utility, holding all other 
factors constant. However, some consumers may assume, within 
some range, that products with higher prices have higher quality 
or better non-visible characteristics [18]. A model built on such 
data will predict that higher prices result in greater demand, and 
thus higher profit if no other tradeoff exists. As a result, no price 
equilibrium exists within the measurable price range, and 
extrapolation leads to infinite prices. In order to account for the 
ability to restrict firm reactions to the domain covered by the 
demand model, we incorporate variable bounds and introduce 
Lagrange multipliers to the Nash equilibrium conditions. 
 

maximize ( )
k

k j j j
j J

q p c
∈

Π = −∑  

with respect to j j jp p ′x , ,  

subject to ( ) ( )j j=   ≤h x 0; g x 0  

       L U
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L U L L
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p
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µ µ

µ µ
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′
′ ′

′

′ ′

′ ′ ′ ′

′ ′

∂
+ − =

∂

− ≤ − ≤

− = − =
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;

; ;

; ;

; ;

 

where ( )j j j j j jq Qs p p ′ ′= , z , , z  

      ( )j jf=z x       

 ; k kj J j J k K k′′ ′∀ ∈ ∀ ∈ ∀ ∈; \  

 

(4) 

This formulation introduces lower bounds pL and upper 
bounds pU on the prices of all firms, and the associated 
Lagrange multipliers µ enforce the first order Karush-Kuhn-
Tucker (KKT) conditions [19]. Note that any solution with an 
active price-bounding constraint implies that more data is 
needed to extend the domain of trusted predictions made by the 
demand model. 

Similarly, the price-constrained Stackelberg pricing 
strategy is: 
 

maximize ( )
k

k j j j
j J

q p c
∈

Π = −∑  
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 ; k kj J j J k K k′′ ′∀ ∈ ∀ ∈ ∀ ∈; \  

 

(5) 

Compared to the solution approaches in literature, the 
proposed method has significant advantages in several aspects. 
First, the approach is able to solve the problem in a single step 
if a unique design solution with price equilibrium exists10. 
Second, since the approach employs first-order condition 
equations to find equilibrium prices, the convergence of the 
whole formulation is faster and more stable than prior 
approaches that use iteration loops. Third, the formulations can 
be solved using commercially-available NLP solvers with 
minimum additional programming effort. When discrete design 
variables exist, the NLP model becomes a MINLP problem. 
However, the price equilibrium constraints remain in the 
continuous domain, and commercial MINLP solvers can be 
used to solve Eq. (4) and Eq. (5) [20-22]. 
 
2.4 Strategy Evaluation 

In order to compare profitability of the new product design 
arrived at under different modeling assumptions, we define 
three profit terms: 

1) Predicted profit: Profit of the design and price solution 
to a particular model as predicted by that model. 

2) Realized profit: Profit of the design and price solution to 
a particular model as predicted via post-hoc computation of 
competitor price equilibrium. The realized profit represents the 

                                                           
10 For the cases of multiple local optima and price equilibria, multi-start 

can be implemented to identify solutions. 
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profit that a particular design and pricing solution would realize 
if competitors adjust prices in response to the new entrant. 
Realized profit is equal to predicted profit for the Nash and 
Stackelberg case, but if the new entrant is optimized while 
assuming fixed competitors, the difference between predicted 
and realized profit measures the impact of ignoring competitor 
reactions. 

3) Price-adjusted profit: Profit of the design solution to a 
particular model as predicted via post-hoc computation of price 
equilibrium of all firms (including the new entrant). The price-
adjusted profit represents the profit that a particular design 
solution would realize if all firms adjust prices in response to 
the new entrant. Price-adjusted profit is equal to predicted profit 
for the Nash and Stackelberg case, but if the new entrant is 
optimized while assuming fixed competitors, the difference 
between predicted and price-adjusted profit measures the 
impact of ignoring competitor reactions on the design of the 
product, assuming that poor pricing choices can be corrected in 
the marketplace after product launch. 
 
3 CASE STUDIES 

We examine three product design case studies from the 
literature to test the proposed approach and examine the 
improvement that Stackelberg and Nash strategies can make 
with respect to methods that ignore competitive reactions. Each 
case study involves different product characteristics, utility 
functions, demand models, variable types, and design 
constraints. For each case, we solve the problem using the 
traditional fixed competitor approach and compare to Nash and 
Stackelberg competition strategies. 
 
3.1 Case study 1: Pain Reliever 

The pain reliever problem was introduced by CDH [2]: 
Price and product attributes of a new pain reliever product are 
to be determined for maximizing profit in the presence of 
fourteen existing competitor products in the market. Each 
product has four attributes of pharmaceutical ingredient weight 
(unit in mg), including aspirin z1, aspirin substitute z2, caffeine 
z3 and additional ingredients z4. The product specifications11 
and initial prices of competitor products are listed in Table 2. 
There are two highlights in the model. First, the product H is 
assumed a generic brand, which has a fixed price of $1.99 [2]. 
The generic brand does not participate in the price competition. 
Second, there are five products, A, C, I, K and L, with identical 
product attributes and costs. The demand model is an ideal 
point model with observable utility v, given by: 

( )2C P

1

N

ij in nj in i j i
n

v z z p b i jβ β
=

 = − − + +      ∀ 
 
∑ ,  (6) 

                                                           
11 The values of aspirin substitute are the weighted combination of 

acetaminophen and ibuprofen. The numbers are not provided in the original 
paper [2]. We obtained the attribute data from the mixed complementarity 
programming library (MCPLIB) [23] and verified with original author. The 
data of consumer preference weightings (30 individuals) are also included in 
the data file. 

where znj is the value of product attribute n on product j, zC
in is 

consumer i’s desired value for attribute n, βin is consumer i’s 
sensitivity of utility to deviation from the ideal point, βP

i is 
consumer i’s sensitivity of utility to price, and b is a constant 
utility term. In this formulation, product attributes that deviate 
from ideal attributes cause reduced utility, which is less 
preferred by consumers. Under the standard assumption that 
utility uij is partly observable vij and partly unobservable εij so 
that uij=vij+εij, and that the unobservable term εij is an IID 
random variable with an extreme value distribution, the 
resulting choice probability is defined in logit form with a unit 
dummy outside good [24]: 

1

1

ij
ij J

ij
j

v
s i j

v

χ

χ
=

=   ∀
+∑

exp( )
,

exp( )

 
(7) 

The weighting coefficient χ is arbitrarily given by χ=3.12 The 
profit function is: 

1

1 I

j j j ij
i

Q p c s j
I =

Π = −    ∀∑( )  (8) 

In this problem, the market demand and profit are based on a 
simulated market size of 30 people. The first-order condition 
for the price equilibrium is (the detailed derivations shown in 
Appendix A.1): 

P

1

1 1 0( )( )
I

j
ij i j j ij

ij

s p c s
p

χβ
=

∂Π
 = − − − =   ∂ ∑  (9) 

Two constraint functions on the new product design are given 
by the ingredient weight limitations [2]: 

                                                           
12 The weighting coefficient affects the degree of competition, where χ=3 

is defined by CDH [2]. 

Table 2: Specification of existing pain reliever 
products in the market 

Prod-
uct 

Aspn. 
(mg) 

Aspn.  
sub.  
(mg) 

Caff.  
(mg) 

Add. 
ingd. 
(mg) 

Cost 
Initial 
price 

 z1 z2 z3 z4 c p 
A 0 500 0 0 $4.00 $6.99 
B 400 0 32 0 $1.33 $3.97 
C 0 500 0 0 $4.00 $5.29 
D 325 0 0 150 $1.28 $3.29 
E 325 0 0 0 $0.98 $2.69 
F 324 0 0 100 $1.17 $3.89 
G 421 0 32 75 $1.54 $5.31 
H 500 0 0 100 $1.70 $1.99 
I 0 500 0 0 $4.00 $5.75 
J 250 250 65 0 $3.01 $4.99 
K 0 500 0 0 $4.00 $7.59 
L 0 500 0 0 $4.00 $4.99 
M 0 325 0 0 $2.60 $3.69 
N 227 194 0 75 $2.38 $4.99 

Cost  0.3 0.8 0.4 0.2 cost unit: $/100mg 
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1 1 2325 0j jg z z= − − ≤  

2 1 2 500 0j jg z z= + − ≤  
(10) 

By applying the above equations into Nash and Stackelberg 
formulations of Eq. (4-5), the model was solved using Matlab13. 
The solutions to the pain reliever problem with fixed 
competitors, Nash, and Stackelberg strategies are presented in 
Table 3, with CDH’s Stackelberg solution shown in the last 
column. Several interesting observations are found from the 
results. First, the fixed competitor solution has overestimated 
profit and market share predictions by presuming that 
competitors will not act. When competitors are allowed to react 
by altering prices under Nash competition, the realized profit 
shows a profit reduction from predicted. Second, the price-
adjusted and realized profits are nearly identical (to significant 
digits). The price-adjusted profit from the fixed competitor case 
is lower than the Nash and Stackelberg cases, implying the 
attribute decisions determined by assuming fixed competitors 
are suboptimal, even if the new entrant’s price is adjusted 
optimally in response to market competition. Third, we found 
the solution under the Stackelberg strategy has a different 
design and price point, resulting in slightly higher profit than 
Nash14, which supports the claim that Stackelberg is a better 
strategy when promoting new product development [2]. Fourth, 
we found the CDH’s Stackelberg solution is not fully converged 
since our Nash test (Eq. (2)) results showed that producers are 
able to find alternative price decisions that have higher profit. 
Moreover, the realized profit has a significant gap from the 
CDH’s predicted profit, which shows the solution is not a stable 
one. Table 4 lists the price, market share and profit details of all 
products in market. A further evidence that CDH’s solutions had 
not converged is that CDH has different solutions15 among 
products A, C, I, K and L, while our proposed method 
converged to a consistent answer16. Since these five products 
have identical attributes, their solutions should be identical at 
market equilibrium. 

We compare the computational time and convergence 
stability of the proposed method vs. the variational inequality 
diagonalization algorithm [14] used in the CDH paper. The 
results are shown in Table 5. The computer system setup is 
comprised of Pentium D 2.80Hz processor with 1.0 GB RAM. 
When solving the competition problem under the Nash 

                                                           
13 We use the sequential quadratic programming (SQP) solver, fmincon, 

in the Matlab Optimization Toolbox. 
14 CDH [2] compared their Stackelberg solution with optimal new 

product solution of competitor fixed at Nash prices (suboptimal solution) and 
concluded Stackelberg resulted higher profit. However, the comparison for the 
two strategies should base on fully converged equilibrium solutions. 

15 The Stackelberg price solutions for the five identical-attribute products 
reported by CDH are A=$2.41, C=$2.39, I=$2.39, K=$2.41, and L=$2.39, 
which are not consistent values. To be noticed, the CDH prices listed in Table 4 
are the prices calculated for realized profit based on CDH’s optimal product 
attributes, not the original price solutions from CDH’s paper. 

16 The proposed approach is able to reach 12 consistently significant 
digits for the five identical products at market equilibrium. This shows the 
superior convergence of the proposed approach in solving this case study. 

scenario, the proposed approach is three times faster than the 
iterative method on CPU time benchmarking. It has superior 
convergence precision at 10-12, while the iterative method 
cannot find the equilibrium solution when the convergence 
tolerance tightened to 10-8. For the Stackelberg case, the 
proposed formulation is able converge to a stable equilibrium 
solution at tolerance 10-12 and iterative method fails to reach a 
valid solution even with fairly loose convergence tolerances 
(10-3). Furthermore, the proposed approaches are less sensitive 
to the choice of starting point. 

 
Table 3: Design attribute and pricing solutions of the 

new product entrant for the pain reliever problem 

 
Fixed 

competitors 
Nash Stackelberg CDH 

Price $3.74 $3.86 $3.74 $3.77 
Aspirin z1 124.0 101.8 101.5 102.1 

Aspirin sub. z2 201.0 223.2 223.5 222.9 
Caffeine z3 0 0 0 0 

Add. ingd. z4 0 0 0 0 
Cost $1.98 $2.09 $2.09 $2.38 

Market share 16.26% 14.69% 15.74% 16.13% 
Predicted profit $8.60 $7.78 $7.80 $8.16 
Realized profit $7.68 $7.78 $7.80 $7.80 
Adjusted profit $7.68 $7.78 $7.80 $7.78 

 
Table 4: Comparison of solution strategies for the 

pain reliever problem on realized profits 
Price Realized Market Share Realized Profit Prod

-uct Nash Stkg. CDH Nash Stkg. CDH Nash Stkg. CDH 
A $6.27 $6.29 $6.28 3.45% 3.41% 2.34% $2.35 $2.34 $2.34 
B $2.26 $2.26 $2.26 6.18% 6.16% 1.72% $1.73 $1.72 $1.72 
C $6.27 $6.29 $6.28 3.45% 3.41% 2.34% $2.35 $2.34 $2.34 
D $2.28 $2.28 $2.28 7.79% 7.73% 2.33% $2.34 $2.32 $2.33 
E $1.97 $1.97 $1.97 11.47% 11.3% 3.40% $3.42 $3.39 $3.40 
F $2.18 $2.19 $2.19 9.16% 9.08% 2.76% $2.78 $2.76 $2.76 
G $2.47 $2.47 $2.47 4.63% 4.62% 1.29% $1.29 $1.29 $1.29 
H $1.99 $1.99 $1.99 7.57% 7.56% 0.66% $0.66 $0.66 $0.66 
I $6.27 $6.29 $6.28 3.45% 3.41% 2.34% $2.35 $2.34 $2.34 
J $4.76 $4.77 $4.77 3.36% 3.29% 1.74% $1.76 $1.74 $1.74 
K $6.27 $6.29 $6.28 3.45% 3.41% 2.34% $2.35 $2.34 $2.34 
L $6.27 $6.29 $6.28 3.45% 3.41% 2.34% $2.35 $2.34 $2.34 
M $4.26 $4.26 $4.26 11.46% 11.2% 5.62% $5.70 $5.59 $5.62 
N $3.93 $3.95 $3.95 6.33% 6.11% 2.89% $2.93 $2.88 $2.89 

New $3.86 $3.74 $3.77 14.7% 15.7% 7.80% $7.78 $7.80 $7.80 
 

Table 5: Comparison of computational time and 
convergence accuracy 

 Nash Stackelberg 

 
CPU time 

(sec) 
Convg. 

tolerance 
CPU time 

(sec) 
Convg. 

tolerance 
Proposed 
methods 

2.547 10-12 6.969  10-12 

CDH 
methods 

9.969 10-7 Unstable 
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Figure 1: Comparison of four strategies for the pain 

reliever problem 
 

Figure 1 presents a visual comparison of the realized 
profits for the four different approaches. The fixed-competitor 
strategy has the worst performance when market competition is 
present, while Stackelberg leads to a higher profit than Nash, 
and CDH’s realized profit does not quite reach the true 
Stackelberg equilibrium due to incomplete convergence. 
Compared to the fixed competitor case, Nash and Stackelberg 
strategies result in a realized profit 1.22% and 1.46% higher 
than the fixed competitor case, respectively, in this problem. 
 
3.2 Case study 2: Angle Grinder 

The angle grinder case study, introduced by Luo et al. [26], 
determines the optimal attributes and price of a hand held 
power grinder [11,25-28]. The market demand model is a latent 
class model17 with four market segments and six discrete 
attributes, including price (3 levels, unit: dollar), current rating 
(3 levels, unit: ampere), product life (3 levels, unit: hour), 
switch type (4 levels) and girth type (2 levels). The part-worth 
utilities of product attributes and price at each level are shown 
in Table 6. The utility of the no-purchase option and the market 
size ratio in each segment are given in the last two rows of the 
table. 

In order to derive analytical expressions for price utility, we 
interpolate the discrete price part-worths into the underlying 
continuous space. Therefore, the observable utility component 
for product j in market segment m is given by: 

P

1

( )
nD

mj mj j mnd ndj
d

v v p w z
=

= +∑  (11) 

where m is the market segment index, vP
mj is the interpolated 

price utility for market segment m as function of price pj, wmnd is 
the part-worth utility at level d of attribute n in market segment 
m, and zndj is a binary indicator variable that is equal to 1 if 
product j contains attribute n at level d and 0 otherwise. Further, 
M is the number of segments and Dn is the number of levels for 

                                                           
17 The original demand model was presented in latent class model form 

with four market segments [23-24,26], while later fit with a hierarchical 
Bayesian method in mixed logit form [14]. 

attribute n. The price utility function in each segment is fit 
through the discrete levels with a quadratic function vP

mj = 
a2mp2

j + a1mpj + a0m, where a2m, a1m and a0m are coefficients 
determined via ordinary least squares regression. The four 
resulting price utility curves are plotted in Figure 2. It can be 
seen that the price responses in each segment are not 
monotonically decreasing when price increases within the range 
of $75-$130. This implies that the data will predict an unusual 
increase in demand with increasing price in segments 1, 2, and 
4, providing incentive for firms to charge high prices. 

The share of choice captured by product j in segment m in 
logit form is given by: 

( )
( ) ( )0

mj

mj

m mj
j

v
s j m

v v ′
′

=    ∀
+∑

exp
,

exp exp
 (12) 

Table 6: Conjoint part-worths in the angle grinder 
latent class model 

  Market segment 
Attribute Level Seg. 1 Seg. 2 Seg. 3 Seg. 4 

$79 -0.11 -0.09 0.005 -0.02 
$99 -0.89 -1.15 1.92 -0.24 Price p 
$129 1.00 1.25 -1.92 0.26 
New -0.55 0.45 2.21 -0.17 

A 0.18 1.06 -2.37 -0.20 
B 0.83 0.11 -1.59 1.15 

Brand z1 

C -0.47 -1.63 1.74 -0.79 
6 amps. 1.25 0.45 -1.48 -0.46 
9 amps. 0.13 -1.42 -0.65 -2.38 

Current 
rating z2 12 amps. -1.39 0.97 2.13 2.84 

80 hrs -0.86 -0.13 -4.72 0.80 
110 hrs 1.34 -0.47 -5.83 0.74 

Product 
life z3 150 hrs -0.47 0.60 10.5 -1.55 

Paddle 0.43 0.30 -3.29 -0.65 
Top slider -1.02 -0.65 -3.05 0.42 
Side slider 2.39 -0.07 2.46 0.56 

Switch 
type z4 

Trigger -1.81 0.43 3.87 -0.33 
Small 1.51 0.72 1.51 0.41 Girth size 

z5 Large -1.51 -0.72 -1.51 -0.41 
No-purchase -0.02 -0.02 -0.02 -0.02 

Market size ratio 37.8% 24.8% 12.1% 25.3% 
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Figure 2: Price part-worth fitting functions for the 

angle grinder demand model 
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Thus the profit function of product j is: 

1

( )
M

j m mj j j
m

q s p c j
=

Π = −   ∀∑  (13) 

where qm is the market size of segment m. The first-order 
condition for the Nash price equilibrium (derived in Appendix 
A.2) is: 

( )

( )( )

2 1
1

2

1 1 0

M
j

m mj m j m
mj

mj j j

q s a p a
p

s p c j

=

∂Π
= +∂

                   − − + =   ∀

∑
 (14) 

Based on the available price part-worth utility in the demand 
model, we confine the price decisions within a range of pL=$75 
to pU=$130. Furthermore, the specifications of competing 
products in the market are shown in Table 7. The estimated 
costs of product A, B and C are $68.15, $100.94 and $49.58 
respectively [14], and the new product cost is assumed to be 
$75, independently of the design. The total market size is 9 
million units. 

The profit maximization problem for this case forms a 
MINLP model because of the discrete design attributes and 
continuous price variables. The problem is solved by MINLP 
solver GAMS/DICOPT18 [20]. For the fixed competitor case, 
the optimal design attributes of the new product are current 
rating 12 amperes (level 3), product life 110 hours (level 2), 
side slider switch (level 3), and small girth size (level 1) with 
price at the upper bound of $130. The market shares and profits 
of all products are shown in the left block of Table 8. It can be 
seen that new product and product B dominate the market with 
relatively high shares and profits, while product A and C have 
low market shares. Solutions to the Nash price competition case 
are shown in the right block of Table 8. The design attributes 
and price of the new product are identical to the fixed 
competitor case, but it can be seen that all competitors revised 
their price decisions in response to the new entrant to increase 
profitability. As a result, all product prices reached the upper 
bound ($130) of the model, and the predicted market shares and 
profits of product A, B and C are higher than the no competition 
case. Stackelberg solutions are identical to the Nash solution 
because prices are constrained by the upper bound. If the upper 
bound is removed, no solution exists because all producers will 
tend toward prices of infinity in order to maximize profit.  

There are several practical observations for this case study. 
First, we demonstrate that the new product design with discrete 
variables under the proposed formulation can be easily solved 
by a MINLP solver without exhaustive search or heuristic 
selection used in prior methods [12,14]. Second, the fixed 
competitor model has significantly overestimated predicted 
profit by 22.5%. Third, since all product prices reach the upper 

                                                           
18 DICOPT implements the outer-approximation algorithm with equality 

relaxation methods to solve optimization problems with continuous and 
discrete variables [21]. It is a local MINLP solver, so that the solutions shown 
in the article are local optima found by the multi-start method. 

bound, price competition becomes ineffective, so that the fixed 
competitor model and the Nash and Stackelberg strategies all 
result in the same design solutions. Thus all the realized and 
price-adjusted profits in Table 8 are all identical. Fourth, as the 
detailed market shares in each segment show in Table 9, 
product B dominates market segments 2 and 3, while the new 
product is designed to dominate segments 1 and 4, which are 
the two biggest segments. In a heterogeneous market, design 
and pricing decisions are often coupled, and the best solution 
depends on the positioning of competitors; therefore, 
accounting for competitor reactions can be critical to 
successfully locating new products in the market. And finally, 
without applying an upper bound to price, we find that all price 
decisions diverge, and no finite price equilibrium solution 
exists. As we can see in Figure 2, extrapolating the price utility 
curves of segments 1, 2, and 4 results in higher utility for higher 
prices. Applying an upper bound creates finite equilibria, but 
the bound activity clearly suggests that the data do not support 
the solution. This model is problematic for the optimization 
application, and results suggest that more data should be 
collected beyond the existing range in order to measure the 
eventually-decreasing utility associated with increased price. It 
is also possible in this case that survey respondents inferred 
high quality from high prices in the survey, since they tend to 
see such correlations in the marketplace. 

Table 7: Specifications of existing angle grinder 
products in the market 

Product 
brand z1 

Price 
p 

Current 
rating z2 

Product 
life z3 

Switch 
type z4 

Girth 
size z5 

A $99 9 amps 110 hrs Side slider Large 
B $129 12 amps 150 hrs Paddle Small 
C $79 6 amps 80 hrs Paddle Small 

 
Table 8: Optimal new product solutions 

Scenario Fixed competitors Nash / Stackelberg 

Product Price 
Mkt 
share 

Predicte
d profit 

Price 
Mkt 
share 

Realized 
profit 

A $99 1.9% $5M $130 10.0% $56M 
B $129 34.4% $87M $130 34.0% $89M 
C $79 2.4% $6M $130 6.0% $43M 

New $130 60.3% $299M $130 49.3% $244M 
No-

purchase 
- 0.9% - - 0.7% - 

Predicted profit $299M   $244M 
Realized profit $244M   $244M 
Adjusted profit $244M   $244M 

 
Table 9: Market shares in each segment at equilibrium 
Market segment 1 2 3 4 Total 
Market size ratio 37.8% 24.8% 12.1% 25.3% 100% 

A 25.6% 0.9% 0% 0.2% 10.0% 
B 5.1% 70.8% 99.8% 10.0% 34.0% 
C 13.1% 3.6% 0% 0.6% 6.0% 

New product 55.6% 23.6% 0.1% 88.5% 49.3% 
No-purchase 0.6% 1.1% 0.1% 0.8% 0.7% 
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3.3 Case study 3: Weight Scale 
The weight scale case study was introduced by Michalek et 

al. [29-31]. Compared to the first two study cases, this model 
has more complicated design constraints and product attributes 
with a highly nonlinear formulation. The fourteen design 
variables x1–x14, thirteen fixed design parameters y1–y13 and 
eight design constraint functions g1–g8 for the new weight scale 
design are shown in Table 10. The five product attributes z1-z5 
and engineering constraint functions g1-g8 are shown in Table 
11 as functions of the design variables. Table 12 presents the 
part-worth utility of five attributes and price from the latent 
class model constructed in [31]. There are seven market 
segments, where the no-choice utility in each segment is fixed at 
zero during regression. The discrete part-worths are interpolated 
by using cubic splines [29], so that the utility of each attribute is 
expressed as a continuous spline function ψ. Thus the 
observable utility of product j in market segment m is given by: 

( ) ( )
5

P

1
mj mj j mnj nj

n

v p zψ ψ
=

= +∑  (15) 

And the logit choice probability of product j in segment m is: 

( )
( )1

exp
,

exp

mj

mj

mj
j

v
s j m

v ′
′

=    ∀
+∑

 (16) 

The profit function of product j is given by:  

F

1

( )
M

j m mj j j
m

q s p c c j
=

Π = − −   ∀∑  (17) 

where the segment market size qm is calculated by multiplying 
the total market size, $5 millions units, by the corresponding 
market size ratio listed in Table 13. The unit cost cj is $3, and 
the fixed investment cost cF is $1 million dollars [29]. The 
analytical expression of the first-order condition of Nash price 
equilibrium under the latent class model is obtained through the 
derivations in Appendix A.2. 

( ) ( )
P

1

1 1 0
M

j mj
m mj mj j j

mj j

q s s p c
p p

ψ

=

 ∂Π ∂
= − − + = 

∂ ∂  
∑  (18) 

Table 13 shows the specifications of four competing 
products, C1, R2, S3 and T4, in the market, where each product 

has a unique combination of product characteristics. We used 
Matlab solver with multi-start method and found multiple 
solutions that satisfy first-order conditions. After verifying post-
hoc with the Nash definition (Eq. (2)) the unique market 
equilibrium was identified. The optimal price and attribute 
solutions under the fixed competitors, Nash, and Stackelberg 
cases are presented in Table 14. The realized profits with price 
predictions and market shares under three strategies after new 
product entry are listed in Table 15. The fixed competitor case 
produces a distinct design solution from the other two, while 
Nash and Stackelberg cases have similar design attributes but 
significantly different price decisions. The design variables (not 

Table 11: Attribute design functions and engineering constraint functions 
Design attribute functions Engineering design constraint functions 

( )( )
( ) ( )( )

6 9 10 1 2 3 4
1

11 1 3 4 3 1 5

4 x x x x x x x
z

x x x x x x x

π + +
=

+ + +
 

1 12 14 12:g x x y≤ −  

2 12 13 1 7 92:g x x y x y≤ − − −  

1
2 13 14z x x−=  ( )3 4 5 13 12:g x x x y+ ≤ −  

3 13 14z x x=  4 5 2:g x x≤  

1
4 12 1z x zπ −=  5 7 9 11 8 13 12:g x y x x x y+ + + ≤ −  

( )( )( )
( )( )

1
11 1 12 10

5 1 1
12 11 1

2 tan 0.5

1 2 tan

y z x y
z

y y z

π

π

−

− −

−
=

+
 

( ) ( )6 8 13 1 12 7 7 9 102 0 5: .g x x y x y x y x≥ − − + − − −  

( ) ( ) ( )2 2 2

7 1 2 13 1 7 14 12 0 25 2: .g x x x y x x y+ ≤ − − + −  

 ( ) ( )2 2 2
8 1 2 13 1 7 132:g x x x y x y+ ≥ − − +  

 

Table 10: Design variables, parameters and constraint 
functions in the weight scale design problem 

 Description Unit 
Up/lower 
bounds 

x1 Length from base to force on long lever in. [0.125, 36] 
x2 Length from force to spring on long lever in. [0.125, 36] 
x3 Length from base to force on short lever in. [0.125, 24] 
x4 Length from force to joint on short lever in. [0.125, 24] 
x5 Length from force to joint on long lever in. [0.125, 36] 
x6 Spring constant lb/in [1, 200] 
x7 Distance from base edge to spring in. [0.5, 12] 
x8 Length of rack in. [1, 36] 
x9 Pitch diameter of pinion in. [0.25, 24] 
x10 Length of pivot horizontal arm in. [0.5, 1.9] 
x11 Length of pivot vertical arm in. [0.5, 1.9] 
x12 Dial diameter in. [9, 13] 
x13 Cover length in. [9, 13] 
x14 Cover width in. [9, 13] 
y1 Gap between base and cover in. 0.30 
y2 Min. distance between spring and base in. 0.50 
y3 Internal thickness of scale in. 1.90 
y4 Minimum pinion pitch diameter in. 0.25 
y5 Length of window in. 3.0 
y6 Width of window in. 2.0 
y7 Distance from top of cover to window in. 1.13 
y8 Number of lbs measured per tick mark lb 1.0 
y9 Horizontal dist. spring to pivot in. 1.10 
y10 Length of tick mark plus gap to number in. 0.31 
y11 Number of lbs that number spans lb 16 
y12 Aspect ratio of number (length/width) - 1.29 
y13 Min. allow lever dist. base to centerline in. 4.0 
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shown) vary arbitrarily within the space of feasible designs that 
produce optimal attributes in this model. Similar to the 
observations in the previous two cases, the fixed competitor 
assumption gives the highest predicted profit, but the realized 
profit demonstrates the prediction is actually overestimated 
when market competition is taken into account. Accounting for 
competition when designing the new product results in a 3.4% 
increase in realized profit. The price-adjusted profit is 1.6% 
higher than realized profit, which implies that poor pricing is a 
significant component of the realized profit loss in the fixed 
competitor case, but poor design is a larger component. Finally, 
Figure 3 compares the realized profits of three cases. It shows 
that the Stackelberg strategy leads to a higher expected profit 
than Nash. The Nash and Stackelberg strategies are able to 
produce 3.0% and 3.4% higher realized profits than the fixed 
competitor case. In this case, the new product Stackelberg 
leader has the lowest product price, but the strategy is able to 
gain the highest market share and profit. This case study again 
demonstrates that incorporating price competition in product 
design can not only avoid overestimation of profitability, but 
also help designer make the best strategic design decisions. 

Table 13: Specifications of weight scale competitors  

Product 
Weight 

capacity z1 
Aspect 
ratio z2 

Platform 
area z3 

Gap  
size z4 

Number 
size z5 

Price 
p 

C1 350 1.02 120 0.188 1.40 $29.99 
R2 250 0.86 105 0.094 1.25 $19.99 
S3 280 0.89 136 0.156 1.70 $25.95 
T4 320 1.06 115 0.125 1.15 $22.95 

 
Table 14: New product design solutions for the weight 

scale problem 
 Fixed competitors Nash Stackelberg 

Price $18.24 $16.87 $15.80 
z1 258 261 261 
z2 1.046 1.039 1.040 
z3 132 140 140 
z4 0.117 0.119 0.119 
z5 1.350 1.385 1.385 

Predicted 
Profit 

$24.07M $13.86M $13.92M 

Realized 
Profit 

$13.46M $13.86M $13.92M 

Adjusted 
Profit 

$13.68M $13.86M $13.92M 
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Figure 3: Realized profits under various strategies for 

the weight scale design problem 
 
4. CONCLUSIONS 

Prior profit maximization methods in engineering design 
ignore competitive reactions. We propose an approach to solve 
the new product design problem for profit maximization while 
accounting for competitive reactions under Nash and 
Stackelberg price competition strategies. Our approach accounts 
for competitive reactions through inclusion of equilibrium 
conditions as constraints in the optimization framework, and we 
propose a Lagrangian extension for cases with price bounds. 
This approach requires little additional complexity and offers 
greater efficiency and convergence stability than prior methods. 
Because the equilibrium conditions are set only with respect to 
competitor pricing decisions, it is not necessary to know 
competitor cost structures or internal competitor product 
engineering details, and the equilibrium conditions can be 
added to any existing product design profit optimization 
problem, including those with black box simulations or discrete 
variables, with appropriate solvers.

Table 12: Latent class model for the weight scale 
problem 

  Market Segments 
Attribute Level 1 2 3 4 5 6 7 

200 -1.34 -0.60 -0.38 -0.34 -0.92 -0.70 -1.19 
250 -0.36 -0.11 0.03 0.34 0.50 0.02 0.55 
300 0.06 0.21 0.08 0.70 0.37 0.04 0.34 
350 -0.21 0.05 -0.14 0.70 0.57 -0.09 -0.20 

Weight 
Capacity 

z1 (lb) 
400 -0.13 -0.15 0.20 0.51 0.55 -0.12 -0.19 
0.75 -0.79 0.20 -0.04 0.44 0.10 -0.18 -1.40 
0.88 0.07 0.70 0.15 0.50 0.32 0.23 -0.62 

1 0.38 0.79 0.20 0.55 0.51 0.29 -0.02 
1.14 -0.09 -0.07 0.12 0.54 0.16 -0.10 0.57 

Aspect 
Ratio 

z2 
1.33 -1.34 -1.73 -0.56 -0.08 0.09 -0.89 0.39 
100 0.01 -0.45 0.19 0.36 0.17 0.45 -0.45 
110 -0.04 -0.21 -0.02 0.28 0.09 0.10 -0.49 
120 -0.41 -0.03 0.00 0.50 0.05 -0.05 -0.01 
130 -0.68 0.10 -0.12 0.46 0.30 -0.48 0.00 

Platform 
Area 

z3 (in.2) 
140 -0.86 0.00 -0.27 0.31 0.45 -0.87 0.25 
2/32 -1.56 -0.55 -3.49 0.18 0.32 -0.39 -0.06 
3/32 -0.89 -0.21 -0.65 0.39 0.28 -0.15 -0.08 
4/32 -0.07 0.22 0.92 0.66 0.22 0.15 -0.13 
5/32 0.18 -0.02 1.48 0.49 0.00 -0.13 -0.28 

Gap size 
z4 (in.) 

6/32 0.37 -0.03 1.56 0.20 0.23 -0.33 -0.14 
0.75 -0.96 -1.20 -0.73 -0.35 -0.40 -1.24 -1.13 

1 -0.44 -0.51 -0.18 0.15 0.17 -0.72 -0.26 
1.25 0.12 0.34 0.25 0.58 0.22 0.17 0.07 
1.5 -0.30 0.32 0.21 0.72 0.60 0.48 0.17 

Number 
size 

z5 (in.) 
1.75 -0.39 0.47 0.24 0.81 0.48 0.46 0.46 
$10 0.47 0.13 0.43 0.70 3.19 1.64 0.24 
$15 -0.08 0.13 0.41 0.64 1.92 1.28 0.19 
$20 -0.22 0.02 0.03 0.52 0.40 0.36 0.03 
$25 -0.79 -0.02 -0.29 0.25 -1.48 -1.12 -0.34 

Price 
p 

$30 -1.35 -0.86 -0.79 -0.20 -2.97 -3.02 -0.81 
Outside good 0 0 0 0 0 0 0 
Mkt. size ratio 7.1% 19.2% 14.2% 19.8% 13.6% 15.8% 10.3% 
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Prior profit maximization methods in engineering design ignore 
competitive reactions. We propose an approach to solve the new 
product design problem for profit maximization while 
accounting for competitive reactions under Nash and 
Stackelberg price competition strategies. Our approach accounts 
for competitive reactions through inclusion of equilibrium 
conditions as constraints in the optimization framework, and we 
propose a Lagrangian extension for cases with price bounds. 
This approach requires little additional complexity and offers 
greater efficiency and convergence stability than prior methods. 
Because the equilibrium conditions are set only with respect to 
competitor pricing decisions, it is not necessary to know 
competitor cost structures or internal competitor product 
engineering details, and the equilibrium conditions can be 
added to any existing product design profit optimization 
problem, including those with black box simulations or discrete 
variables, with appropriate solvers. 

We show that failing to account for competitive reactions 
can result in suboptimal design and pricing solutions and 
significant overestimation of expected market performance. 
Application of the method to three case studies from the 
literature exhibits its ability to handle problems of interest in the 
engineering domain. The case study results indicate that the 
Stackelberg strategy is most preferred because of the capability 
to generate higher profits than Nash by anticipating competitor 
reactions. Both Nash and Stackelberg strategies avoid 
overestimation of market performance and potentially poor 
product design positioning resulting from the common fixed 
competitor model. 

We have focused on accounting for competitor pricing 
reactions, assuming that in the short-run competitors will not be 
able to change their design decisions in response to new product 
entrants. However, an important topic for future research is to 
account for long-run competitor design changes made in 
reaction to a new product entrant in order to support long-run 
competitive strategy in design optimization.  
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NOMENCLATURE 
a = Polynomial coefficient 
b = Constant utility term 
c = Cost 
g = Inequality constraint of new product design 
h = Equality constraint of new product design 
i = Variable index 
I = Number of individuals (observations) 
j = Product index 
J = Set of all products 
k = Producer index 
K = Set of all producers 
m = Index of market segments 
M = Number of market segments 
n = Index of product attributes 
N = Number of product attributes 
p = Price 
pL = Price lower bound 
pU = Price upper bound 
qm = Market size within segment m 
Q = Total market size 
s = Share of choice 
v = Observable utility 
vP = Price utility 
v0 = Utility of outside good (no-purchase option) 
x = Design variable 
x = Design variable vector 
y = Design parameter 
z = Product attribute 
zC = Consumer desired attribute 
z = Product attribute vector 
β = Preference coefficient 
Π = Profit 
ψ = Spline utility function 
ψ

P = Price utility in spline form 
χ = Utility weight coefficient 
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APPENDIX 
 
A.1 Derivation of first-order conditions for Nash price 
equilibrium under the ideal point logit model  

The first-order derivation of the choice probability in the 
disutility function is: 
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Therefore the first-order condition for profit maximization is: 
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A.2 Derivation of first-order conditions for Nash price 
equilibrium under the latent class model with multiple 
market segments 

We derive the following equations as the general case for 
multiple market segments. A demand model with a market 
without segmentation can be considered as a special case of 
general equation. We consider that each producer k has one 
specific brand-product j∈Jk. The share of choices for the 
product j in segment m is: 
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The first-order derivative of choice probability with respect to 
price for each segment is: 
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The profit function of product j is: 
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The first-order condition equation is:  
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Therefore, the necessary condition for profit maximization at 
price equilibrium is: 

1

1 1 0
M

j mj
m mj mj j j

mj j

v
q s s p c

p p=

 ∂Π ∂
= − − + = 

∂ ∂  
∑ ( )( )  

For the angle grinder problem, the price utility in each segment 
is a quadratic function. The first-order derivative has a closed 
form expression as ∂vmj/pj = 2a2mpj + a1m. Therefore, the 
equilibrium equation becomes: 
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For the weight scale problem, the part-worth price utility is 
interpolated with a piece-wise spline function ψ

P, which has 
first-order and second-order continuity. Thus the first-order 
condition is given by: 
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