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ABSTRACT 
We propose a deterministic approach for global 

optimization of large-scale nonconvex quasiseparable 
problems encountered frequently in engineering systems 
design, such as multidisciplinary design optimization and 
product family optimization applications. Our branch and 
bound-based approach applies Lagrangian decomposition to 1) 
generate tight lower bounds by exploiting the structure of the 
problem and 2) enable parallel computing of subsystems and 
the use of efficient dual methods for computing lower bounds.  

We apply the approach to the product family optimization 
problem and in particular to a family of universal electric 
motors with a fixed platform configuration taken from the 
literature. Results show that the Lagrangian bounds are much 
tighter than convex underestimating bounds used in 
commercial software, and the proposed lower bounding 
scheme shows encouraging efficiency and scalability, enabling 
solution of large, highly nonlinear problems that cause 
difficulty for existing solvers. The deterministic approach also 
provides lower bounds on the global optimum, eliminating 
uncertainty of solution quality produced by popular 
applications of stochastic and local solvers. For instance, our 
results demonstrate that prior product family optimization 
results reported in the literature obtained via stochastic and 
local approaches are suboptimal, and application of our global 
approach improves solution quality by about 10%. The 
proposed method provides a promising scalable approach for 
global optimization of large-scale systems-design problems. 

 
Keywords: Global optimization, design optimization, 
quasiseparable, Lagrangian decomposition, branch and 
bound 

1. INTRODUCTION 
Many important optimization problems in engineering 

design, computational chemistry, molecular biology and 
logistics are modeled as nonconvex formulations that exhibit 
multiple local optima [1,2]. These problems create difficulty 
for local solvers, which can become trapped in suboptimal 
solutions that are strongly dependent on the starting point. 
Heuristics such as the use of multiple random starting points 
have been employed to alleviate this defect, but while these 
methods provide some insight regarding the nature of the 
problem and existence of multiple local optima, they cannot 
guarantee global optimality and even do not provide definitive 
information about the global quality of the local solutions 
found. Global optimization algorithms aim to avoid these 
difficulties by searching for global solutions. 

Global optimization algorithms can be classified as either 
deterministic or stochastic: Deterministic approaches find 
solutions within a selected tolerance of the global optimum in 
finite time [1,3]. These include outer approximation [4,5], 
cutting plane methods [6,7] and generalized Benders 
decomposition [8,9] for convex mixed integer nonlinear 
programming (MINLP) problems and branch and bound 
methods [10-12] for nonconvex problems. Stochastic 
techniques include random search methods, genetic algorithms 
(GAs) [13,14], simulated annealing [15], tabu search [16], and 
response surface techniques [17], among others. While 
stochastic methods can often provide good solutions to 
difficult problems in practice, they offer no guarantee 
regarding optimality of the solution in finite time, they are 
usually quite sensitive to tuning parameters, and they do not 
eliminate the risk of premature convergence to local optima. 



In mechanical design applications, optimization problems 
are almost always highly nonlinear and nonconvex. Stochastic 
techniques – particularly genetic algorithms – have been 
popular approaches to address these problems; however, 
because they offer no lower bound on global optimality, the 
modeler is usually left to hope without conclusive evidence 
that a near-global solution has been found when the algorithm 
converges. For instance, a challenging problem in product 
family design is the simultaneous optimization of platform 
selection and variant design for a family of products to 
minimize manufacturing cost and deviation from variant 
performance targets [18]. This problem implies a nonconvex 
MINLP optimization formulation. More than 40 different 
approaches have been developed to address variants of the 
problem by either 1) reducing problem scope, 2) hybridizing 
heuristics with local optimizers, or 3) using stochastic global 
optimizers. All such approaches are incapable of ensuring 
global optimality for the general problem [19].   

In contrast, rigorous deterministic global optimization 
techniques have been developed for solving nonconvex 
nonlinear programming (NLP) and MINLP problems in 
chemical engineering, including application to protein folding, 
chemical equilibrium, and process system engineering [20-25]. 
Generally speaking, most optimization problems in the 
aforementioned applications are very large scale problems that 
1) can be formulated as factorable programs 1  [26], 2) are 
mostly linear except for a relatively small number of nonlinear 
terms, and 3) have nonconvexities that are limited to bilinear 
or multilinear terms. To solve these problems, algorithms 
convert the original NLP and MINLP formulations to linear 
programming (LP) and mixed integer linear programming 
(MILP) formulations by first using tight nonlinear convex 
underestimators to convexify nonconvex terms followed by 
piecewise linearization of the convex functions to enable 
application of efficient LP and MILP solvers [27-31]. Due to 
the specific nature of these problems, the convexification and 
linearization strategy typically provides tight lower bounds in 
the context of global optimization, resulting in efficient 
convergence. However, in large-scale mechanical engineering 
applications, these methods may fail to locate the global 
optima within a reasonable time when the presence of many 
nested nonconvex terms in the problem formulation leads to 
very weak convex underestimations.   

Large scale quasiseparable optimization problems, which 
are nearly separable into independent sub-problems except for 
a relatively small number of coupling constraints, arise 
frequently in engineering systems design problems [32-37]. 
Several decomposition methods have been introduced to 
convert the quasiseparable problem to a block separable one 
and then decompose it to smaller sub-problems that are easier 

                                                 
1  Factorable programs refer to a special class of nonlinear programming 
problems in which the objective function and constraints are defined in terms 
of factorable functions, where a factorable function is any function that can be 
formed by taking recursive sums and products of univariate functions – a very 
broad class of functions. 

to solve [38-44]. However, all proposed methods either 1) 
employ local solvers and guarantee the global optimality only 
under certain convexity assumptions [33,34,37-39,41,42,44] 
or 2) rely on stochastic techniques such as GAs [36]. For 
deterministic global optimization, the special structure of these 
problems can be exploited to develop efficient lower bounding 
schemes that improve the convergence rate of global solvers 
considerably.  

In this paper, we propose a deterministic global 
optimization technique for solving large scale quasiseparable 
nonconvex problems using Lagrangian decomposition for 
generating tight lower bounds in the branch and bound 
framework. It is shown that the lower bounds generated by 
this approach are much tighter than those created via 
convexification of the original problem using available 
commercial software, and the scalability of the approach is 
dramatically improved. 

2. BACKGROUND 
The branch and bound algorithm and its variants are 

popular approaches to deterministic global optimization [45]. 
Branch and bound refers to a set of methods that solve 
optimization problems by recursively 1) estimating lower and 
upper bounds for the original problem; 2) branching the 
domain of the problem into smaller sub-domains; and 3) 
fathoming branches known not to contain the global solution. 
Lower bounds are generated by solving a relaxed version of 
the problem that is much easier to solve by enlarging the 
feasible region and convexifying the objective function. Upper 
bounds can be found by applying heuristics or local solvers to 
find good feasible points. Branching of the problem into 
smaller sub-domains (nodes) generally reduces the gap 
between the original problem and its relaxation within the sub-
domain, improving tightness of lower bounds. Nodes 
containing no feasible solutions or with lower bounds greater 
than the best-known upper bound at any point in the 
algorithm’s progress are fathomed without risk of excluding 
the global minimum; thus branch and bound accomplishes 
implicit enumeration without the need for computation in all 
sub-regions of the space2. 

The branch and bound process typically terminates when 
the difference between the upper and lower bound is less than 
some user-specified tolerance, and the algorithm returns the 
best-known upper bound and the value of the lower bound. 
The tightness of the lower bounds has a strong impact on the 
convergence rate of branch and bound methods. 

For a general nonconvex MINLP problem, the difficulty 
preventing application of local solvers arises from the 
nonconvex terms and integrality constraints (i.e. the 
constraints that force the variables to take discrete values); 
therefore, a lower bound can be generated by dropping the 
integrality constraints and convexifying the problem using 
                                                 
2  The general branch and bound method is convergent by applying the 
following strategies: 1) an exhaustive partitioning method, 2) consistent 
bounding operation and 3) bound improving node selection [46]. 



convex underestimations [27,29-31]. One of the most 
successful implementations of this method, called branch and 
reduce [46], applies a recursive algorithm to decompose 
factorable functions into sums and products of univariate 
functions (monomial, logarithmic and power forms) and 
constructs nonlinear convex underestimators of those 
functions, followed by polyhedral outer-approximation of the 
nonlinear convex functions to enable use of efficient linear 
programming techniques [47]. While quite robust for 
problems with relatively few nonlinear nonconvex terms, the 
recursive nature of the convexification approach can lead to 
poor lower bounds for highly nonconvex large scale problems 
with deeply nested factorable forms, such as those commonly 
found in mechanical engineering applications. 

Another powerful tool for obtaining lower bounds for 
nonconvex problems is Lagrangian relaxation [48-51], which 
produces relaxations that are tighter than comparable convex 
underestimating relaxations [52]. In this approach, 
complicating constraints that make the problem difficult to 
solve are relaxed by Lagrangian duality. This approach is 
specifically useful when relaxation of the complicating 
constraints makes the problem much easier to solve. One 
important example is the case where complicating constraints 
are coupling constraints that prevent the problem from being 
separable. Relaxation of coupling constraints in order to 
generate independent subproblems is called Lagrangian 
decomposition and has been the primary motive for applying 
Lagrangian relaxation to many large-scale MILP problems 
[53-56]. Nowak [57] applied Lagrangian decomposition to 
solve mixed integer quadratic problems by formulating the 
Lagrangian dual as an eigenvalue optimization problem. 
Karupiah and Grossman [58] proposed a Lagrangian-based 
branch and cut algorithm for solving large-scale nonconvex 
quasiseparable MINLP problems. In this approach, lower 
bounds were obtained by first applying Lagrangian 
decomposition to generate valid cuts and then convexifying 

the original problem with Lagrangian cuts added to it. The 
approach was applied to solve an integrated water network 
problem. Adhya et al. [59] applied a Lagrangian relaxation 
approach for developing lower bounds for the pooling 
problem; however, in both previous approaches, the 
application was a large scale, primarily linear problem with 
some bilinear terms, which have known closed form convex 
envelopes4 [10]. 

In this paper, we propose an efficient branch and bound 
method for global optimization of large-scale nonconvex 
quasiseparable NLP problems encountered frequently in 
mechanical engineering. For obtaining tight lower bounds, the 
original problem is converted to a block-separable formulation 
by relaxing the coupling constraints using Lagrangian 
relaxation. The separable dual function is then decomposed 
into smaller sub-problems, which can be solved for global 
optima efficiently using available commercial software. The 
approximate optimal dual value, used as a lower bound, is 
obtained by employing a randomized incremental subgradient 
method specifically designed for solving large scale, separable, 
nondifferentiable, convex problems [60]. As an important 
application of large-scale quasiseparable optimization 
problems in mechanical engineering, the fixed platform 
product family design problem is considered, and a family of 
universal electric motors from the literature is solved for 
global optimality. Results show that the Lagragian-based 
lower bounding approach generates very tight lower bounds 
compared to those generated using convex underestimators. 
As a result, the proposed approach is more robust and 
converges much faster than solving the original problem using 
available commercial software.  

The remainder of the paper is organized as follows: In 
Section 3 the general formulation for the proposed method is 
developed. In Section 4 the product family optimization 
problem is defined and formulated using the proposed 
approach. The electric motor case study is presented in 

                                                 
4 The convex envelope, or convex hull, is the tightest convex extension of a 
feasible set. It is not always constructible. 
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Figure 1: Overview of the proposed approach 



Section 5. Finally, results and conclusions are discussed in 
Section 6.  

3. PROPOSED METHOD 
We consider large-scale quasiseparable nonconvex NLPs 

with the following structure: 
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where fi and xi are the objective function6 and design variables, 
respectively, for the ith sub-problem, Xi denotes the ground set 
(i.e. the set of constraints that are not dualized) for the ith sub-
problem, which is independent of other sub-problems; and gi 
represents the complicating constraints that couple the sub-
problems and prevent decomposition8. Note that the coupling 
constraints are taken to be additive among sub-problems to 
support decomposition. Many decomposable problems exhibit 
this structure directly, while others can be reformulated to 
exhibit this structure by introducing multiple copies of 
coupling variables [44,58].  

Figure 1 shows an overview of the proposed approach to 
solving this class of problems. As any branch and bound-
based optimization method, the proposed algorithm involves 
lower bounding, upper bounding, and branching steps. In the 
following sections, each of these steps is described in detail. 

3.1 LOWER BOUNDING 
By applying Lagrangian relaxation to the coupling 

constraints in Eq.(1), the Lagrangian function becomes: 

( ) ( ) ( )( )
1

x,λ x λ g x
n

T
i i i i
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L f
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= +∑     (2) 

And the dual function is: 
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T
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q f
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Equation (3) reveals that the dual function is block separable; 
therefore, for fixed λ the Lagrangian relaxation decomposes 
into n independent sub-problems, and the dual problem can be 
written as 

( )
1

maximize  
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λ

λ

λ g

n

ii

n

q
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Where ng  is the number of coupling constraints gi and: 
( ) ( ) ( )( )min

x X
λ x λ g x
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T
i i i i iq f

∈
= +      (5) 

                                                 
6 The additive form of the objective function implies separability. 
8 For parsimoniousness, we present only inequality constraints; however, 
extension to equality constraints is straightforward. 

The weak duality theorem ensures that any dual value 
q(λ) is a lower bound for the optimal primal value9 [61]. Thus, 
solving the dual problem (even approximately) provides a 
lower bound for the primal problem that can be used in the 
branch and bound algorithm. Moreover, the separable 
structure of the dual function allows for fast computation of 
the dual sub-problems, which is an important feature for 
efficiency of dual methods [48]. 

The approximate dual optimal value of Eq.(4) can be 
found using any nondifferentiable convex optimization 
approach10. Subgradient methods are some of the most popular 
nondifferentiable convex optimization methods [62], and they 
have been used extensively for solving the non-differentiable 
dual problem by generating a sequence of dual feasible points 
using a single subgradient at each iteration [48]: 

+1 = +k k k k
MP αλ (λ g )  (6) 

where gk and αk denote a sub-gradient of the function at xλk 
and a positive scalar step size at the kth iteration respectively. 
PM represents the projection over closed convex set M, which 
for Eq.(4) is M={λ | λ≥0, q(λ)>-∞}. 

It should be noted that the subgradient direction is not 
necessarily a descent direction, and Eq.(6) may not improve q 
for all values of α. However, the key property to success of 
the subgradient method is that a small move from λk along any 
subgradient at λk decreases the distance to the optimal 
multiplier vector λ*. There are various schemes for 
determining the step size in Eq.(6). We adopt the diminishing 
step size rule, which converges to a maximizing point of q 
over M, if the sequence αk satisfies the following conditions 
[48]:  

( )2

1 1

0     k k k

k
k k

α α α
∞ ∞

→∞
= =

= = ∞ < ∞∑ ∑lim , ,  (7) 

An example of the above scheme is αk=a/(b+k), where a 
and b are scalars tuned for the problem. Several variants of the 
subgradient method have been introduced to accelerate 
convergence of the basic method. In particular, Nedic and 
Bertsekas [60] proposed incremental subgradient methods for 
solving the dual function with the additive form in Eq.(4), 
which corresponds to separable primal functions. The idea of 
the incremental method is to sequentially take steps along 
subgradient directions of the component functions qi, with 
intermediate adjustment of the multipliers after processing 
each component function, thus:  

                                                 
9 Since here there is no convexity assumption for the objective function and 
constraints, strong duality does not hold, and a duality gap may exist. 
10 When deciding about the dual optimization method, the following two 
important factors should be considered: 1) the dual is a concave problem 
(concave objective, convex constraint set) regardless the nature of the primal; 
and 2) it can be shown that, if there exists a duality gap, the dual function is 
nondifferentiable at every dual optimal solution, and therefore the 
nondifferentability cannot be ignored in dual computational methods [58]. 
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where ψk
i represents a vector in the dual space resulting from 

an intermediate subgradient step with respect to sub-problem i 
at the kth iteration. The incremental subgradient method 
achieves faster convergence than the non-incremental method, 
particularly when the number of component functions is large 
(i.e. large-scale separable primals) [60]. As a variant of this 
method, a single randomly-selected component function can 
be evaluated in each iteration for updating multipliers instead 
of the whole set. Nedic and Bertsekas [60] showed this 
randomized incremental subgradient method improves the 
convergence rate of the basic method, and we adopt it for our 
case study using the following updating rule: 

1  
k

k k k k
w

+ = +λ λ s g  (9) 
where wk is a random integer chosen from the set {1, 2, ..., n} 
indicating which component function should be processed at 
the kth iteration. In each iteration, one sub-problem is chosen at 
random and is solved for global optimality; next the 
multipliers are updated according to Eq.(9); and the iterative 
process continues for a predefined number of iterations (kmax). 
Therefore, a lower bound (LB) for Eq.(1) can be computed as 
follows: 

max

1

n
k

i
i

LB q
=

=∑ (λ )        (10) 

3.2 UPPER BOUNDING 
In general, any feasible point of Eq.(1) can serve as an upper 
bound to the global minimum of the optimization problem. 
These bounds enhance the algorithmic convergence by 
pruning the nodes of the branch and bound tree that cannot 
contain any solution better than the best currently available 
point. Therefore, incorporating an effective mechanism to 
update the value of the upper bounds while the algorithm 
progress reduces the overall computational cost considerably. 
In the proposed approach, in every node of the branch and 
bound tree Eq.(1) is locally optimized following the lower 
bounding step using the dual optimal value found from the 
lower bounding step as the starting point11. The local solution 
is compared with the best available feasible point, and the 
upper bound (UB) is updated accordingly. 

3.3 BRANCHING 
If (UB-LB) falls within the user-specified tolerance, the 

process terminates, and the best-known upper bound is 
returned; otherwise, the feasible region is divided into two 

                                                 
11 Optimizing the dual problem usually leads to a near optimal but infeasible 
solution that can be employed as a good starting point for solving the primal. 
In case of a feasible dual solution, the solution is used as an upper bound for 
the overall problem, and the corresponding node is fathomed.. 
13 For example, S1 = [1 0 0; 0 0 1] and y = [y1, y2, y3]T indicates that y1 and y3 
are shared with sub-problem 1, but y2 is not. 

disjoint sub-regions, and two new nodes are created and added 
to the list of open nodes for further consideration. We adopt a 
depth-first search rule for node selection. Branching decisions 
can be made by computing a violation that measures the dual 
infeasibility introduced by relaxing the complicating 
constraints with respect to the primal problem. In our 
application, the complicating (coupling) constraints are 
consistency constraints set to ensure that copies of variables in 
each sub-problem have identical values at the solution. For 
this case, the variance of each linking variable among its sub-
problems is calculated, and the linking variable with the 
maximum variance (i.e. maximum violation of the consistency 
constraints) is selected as the branching variable, using the 
mean value of that variable among its copies as the branching 
point. It is possible to apply alternative branching strategies. 

4. APPLICATION: PRODUCT FAMILIES 
A product family is a set of product variants that share 

some subsystems or components. A main challenge in product 
family design is to introduce common components where 
possible to reduce manufacturing cost while maintaining 
variant distinctiveness to attract a range of market segments. 
Various approaches have been developed to address this trade-
off. An extensive review of methods for product family 
optimization can be found in [18]. The general problem of 
finding the optimal selection of common components and 
design of the product variants is a large scale nonconvex 
MINLP problem. Among more than 40 proposed approaches 
in the literature, there is no approach that guarantees global 
optimality for the general problem. All existing methods either 
use gradient-based local optimization techniques [33,37,63,64] 
or rely on stochastic global optimization methods [36,65-67]. 
In this paper, we assume that the platform configuration has 
been selected a priori. The resulting problem is a large scale 
nonconvex problem that can be formulated as follows: 
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where fi and gi denote the performance objective and vector of 
constraints for the ith product, respectively; xi is the vector of 
variables for the distinct components of the ith product variant; 
y is the vector of r common variables, each shared among a 
subset of the product variants; and Si is a selection matrix13 
with binary elements that identify which terms of y are present 
in the ith sub-problem. Hence, individual product designs are 
coupled through the common variables y. However, Eq.(11) 
can be reformulated as a quasiseparable problem by 
introducing copies of the common variables for each variant 
present in that platform and adding consistency constraints 
forcing these copies to be equal14  

                                                 
14 There are alternative methods for formulating the consistency constraints, 
and the representation has an important effect on convergence rate of the 
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The consistency constraint in Eq.(12) simply requires that 
each copy of each variable in y is equal to the average of all of 
its copies. The notation accounts for y variable copies that 
each appear in a different subset of the sub-problems: The yiβ 
symbol indicates the ith sub-problem variable copy of the βth 
dimension of the vector y, and [1] denotes a matrix of 1’s with 
rows equal to the total number of y variable copies and 
columns equal to m; thus, ϕ has the same length as y, and it 
counts the number of sub-problems in which each y term 
appears. Copies of y that are not selected by Si fall out of the 
problem and are taken as equal to zero, and the set Si is the 
subset of {1,2,...,r} selected by Si. 
 Comparing Eq.(12) with Eq.(1), one finds the above 
optimization problem follows the general form of the 
quasiseperable problems introduced in Section 3 by treating 
the variant design constraints as the ground set and the 
consistency constraints as coupling constraints15. Hence, by 
relaxing the consistency constraints and applying Lagrangian 
decomposition, the ith Lagrangian sub-problem becomes: 
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Therefore, the lower bounding step involves global 
optimization of an individual random product variant followed 
by subgradient updates of the multipliers, following Eq.(9), for 
a predefined number of iterations. We select as a branching 
variable the term in y with the largest variance among its 
corresponding copies at each node, and the branching point is 
the mean value of those copies. 

5. CASE STUDY: UNIVERSAL ELECTRIC MOTORS 
The universal electric motor product family example was 

first created by Simpson et al. [68] and has since been applied 

                                                                                     
subgradient method. Our numerical experiments applying different schemes 
show the above formulation leads to the tightest lower bounds after a finite 
number of iterations. 
15 Note that in this case the coupling constraints are equality constraints and 
the ground set is defined by gi. 

as a case study to compare the efficiency of various 
optimization approaches. In this example, the goal is to design 
a scale-based product family of electric motors that satisfy a 
variety of torque requirements while reducing manufacturing 
cost through commonality. The detailed analysis including all 
equations can be found in [68]. According to the original 
formulation, the design of a single motor involves eight design 
variables (Table 1), two equality constraints and four 
inequality constraints (Table 2), with the objective of 
minimizing the mass and maximizing the efficiency. We 
follow the reformulation proposed in [36] in which the 
equality constraints are used to solve for two of the design 
variables (Awa and L) as a function of other variables. Hence, 
the number of design variables is reduced to 6 for each motor, 
and the two equality constraints are replaced by four 
inequality constraints representing lower and upper bounds for 
the omitted design variables. 

Various formulations for representing the objective 
function of the electric motor product family have been 
proposed; in this study, for comparison purposes, the 
following two alternatives are considered: 
1. The goal programming approach [64,69]: The objective 
is to minimize undesirable deviation of mass and efficiency 
from their targets, which are equal to 0.5 kg and 70% 
respectively; that is, all motors that weigh less than 0.5 kg and 
have an efficiency of 70% or more are considered equivalent, 
and the performance deviation is set equal to zero. 
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where di
m and di

η are the deviation terms from the mass and 
efficiency targets respectively and w1 and w2 are the 
corresponding weighting coefficients. 
 
2. Direct optimization of mass and efficiency [36]: The 
objective for each motor is formulated as the combination of 
the mass and efficiency using a fixed weighted sum: 

1 2
1

1 *( )
n

i i
i

f w w mη
=

= − +∑       (15) 

where mi* represents the normalized mass (mass/ mmax) for the 
ith motor, and w1 and w2 are the weight coefficients for 
efficiency and mass respectively. 



Table 1: Design variables and bounds for the electric motor 
product family 

Definition Lower 
bound

Upper 
bound

Number of wire turns on the armature: Nc 100 1500 
Number of wire turns on each field pole: Ns 1 500 
Area of armature wire (mm2): Awa 0.01 1.00 
Area of field wire (mm2): Awf 0.01 1.00 
Radius of the motor (m): ro 0.01 0.10 
Thickness of the stator (m): t 0.0005 0.10 
Current drawn by the motor (Amp): I 0.1 6.0 
Stack length of the motor (mm): L 1.0 100.0 

Table 2: Design constraints for the electric motor product 
family 

Torque (Nm)=Ti  
Power (W): P = 300 
Feasible geometry for all motors: t < ro 
Maximum magnetizing intensity for all motors: H < 5000 
Amp×turns/m 
Maximum mass of the each motor: mass ≤2 kg 
Minimum efficiency of each motor: η > 15% 

6. RESULTS: 
In order to highlight the need for deterministic global 

optimization, two examples employing a local optimization 
solver and a stochastic global optimizer were selected from the 
literature and solved for global optimality using BARON. 
BARON [46] implements an integration of constraint 
programming techniques within the branch and bound 
framework for the global optimization of nonconvex MINLP 
problems that can be formulated as factorable programs. 
Convex extensions [31] along with outer approximation 
techniques are employed to generate lower bounds for the 
nonconvex terms. In order to avoid numerical problems for 
generating the convex underestimators, all variables and NLP 
expressions in the model must be bounded within finite 
values; this can become problematic for formulations in which 
many nested functions are involved. Moreover, the set of 
supported non-linear functions include exponential, 
logarithmic and power functions; other forms such as 
trigonometric terms are not supported. In a recent 
comprehensive study, Nuemaier et al. [70] solved over 1000 
test problems from the literature using available commercial 
global solvers and showed that BARON is the fastest and most 
robust16. In all following examples the relative termination 
tolerance between upper and lower bounds was set to 0.01%17. 

                                                 
16 For large, highly nonlinear problems, BARON requires relatively detailed 
reformulation efforts to ensure that each nested term involved in defining each 
factorable function is expressed in such a way as to avoid numerical problems 
within the bounds of the problem, and algorithm performance can be sensitive 
to the selection of variable bounds. Our Lagrangian approach mitigates these 

Example #1: Messac et al. 2002 [71] solved for a family of 10 
electric motors with radius and thickness shared among all 
variants using the goal programming objective formulation 
and physical programming. The same problem was solved 
using BARON; results are listed in Table 3 and compared with 
[71]. As can be found from the table, by switching from the 
local to the global optimizer, the optimal family on average is 
8.7% more efficient and 7.7% less heavy. This example 
demonstrates that using local solvers for nonconvex 
formulations may lead to suboptimal solutions with significant 
performance losses in practice.  

Table 3. Optimal electric motor product family using local vs. 
global optimization solvers 
Messac et al.[71] BARON  Motor 

/Torque η(%)    Mass(kg) η(%)     Mass(kg) 
1.    0.05 76.0  0.395 88.6 0.385 
2.    0.10 72.1 0.513 83.4 0.500 
3.  0.125 70.3 0.562 78.3 0.500 
4.    0.15 68.5 0.606 72.9 0.500 
5.    0.20 65.1 0.678 70.0 0.590 
6.    0.25 61.8 0.734 67.8 0.680 
7.    0.30 58.8 0.775 63.5 0.725 
8.    0.35 55.9 0.803 59.2 0.759 
9.    0.40 53.1 0.821 54.9 0.783 
10.  0.50 47.9 0.830 45.8 0.797 

Mass: 7.41% Average Improvement: (%) Efficiency: 8.72% 
 
Example #2: Simpson et al. 2005 [18] solved for a family of 
10 electric motors to jointly determine the optimal platform-
selection and variant design using a GA. The direct objective 
formulation for mass and efficiency with the product family 
penalty function (PFPF) [64] as the commonality metric were 
used as objective functions. To demonstrate the suboptimality 
of solutions resulting from the stochastic nature of the GA 
approach, one of the Pareto optimal solutions with radius and 
thickness shared among all products was selected and 
optimized using BARON using the same platform 
configuration. The two corresponding optimal families are 
compared in Table 4. 

As can be found from this table, although GAs search the 
entire feasible region for global optima, they often fail to 
locate the global solution in finite time. As in the prior case, 
the reported solution is a product family which on average is 
8.4% less efficient and weighs 9.2% more than the global 
optimum. 

                                                                                     
issues for quasiseparable formulations by reducing the size of the problems 
that BARON must solve.  
17 There are various termination options in BARON which can be controlled 
by the user. In this paper, we used the relative termination tolerance which is 
εr=100×(UB-LB)/UB% 



Table 4. Optimal electric motor product family using 
stochastic vs. deterministic global optimization solvers 

Simpson et al.[18] BARON  Motor 
/Torque η(%)    Mass(kg) η(%)     Mass(kg) 
1.    0.05 77.3 0.365 86.4 0.320 
2.    0.10 72.5 0.499 80.7 0.441 
3.  0.125 70.3 0.560 78.1 0.488 
4.    0.15 68.5 0.606 75.5 0.529 
5.    0.20 64.3 0.679 70.7 0.597 
6.    0.25 61.1 0.727 65.9 0.650 
7.    0.30 57.0 0.769 61.2 0.690 
8.    0.35 53.9 0.793 56.5 0.718 
9.   0.40 51.0 0.805 51.6 0.735 
10. 0.50 45.4 0.799 47.0 0.826 

Mass: 9.21% Average Improvement: (%) Efficiency: 8.42% 
 

In both previous examples, the problem was solved using 
BARON without Lagrangian decomposition. However, both 
cases are relatively small-scale and easy problems that can be 
solved with reasonable computational cost. In the next section, 
we will demonstrate the effect of increasing the problem size 
on the robustness and convergence rate of BARON and 
highlight the critical need for a robust decomposition approach 
for solving large scale problems efficiently. The motor product 
family example has been optimized for 5, 10, 15 and 20 
products respectively using Eq.(14) as the objective function; 
the corresponding platform configurations and torque 
requirements are listed in Table 5. First, for all cases, the 
original formulation was solved using BARON. The 
computational time for each family is listed in Table 5. Results 
show that while BARON is quite efficient for relatively small 
problems, it slows down significantly when increasing the size 
of the problem. That is, by increasing the number of products 
from 5 to 15, the computational time increases exponentially, 
and for the 20 product case the solver failed to find a feasible 
solution for the problem. As will be shown in the next section, 
this undesirable trend is due to weak lower bounds created by 
convex underestimations. We applied the proposed 
Lagrangian-based branch and bound approach to solve the 
same problem (Table 6) using a randomized incremental sub-
gradient method with a diminishing step size rule for lower 
bounding. In each iteration, one individual motor was selected 
randomly and optimized for global optimality using BARON18. 
Next the multipliers were updated using Eq.(9) and the 
process was repeated for a specified number of iterations. The 
CONOPT solver was applied as the local optimizer for upper 
bounding, using the solution to the Lagrangian problem as the 
starting point. As can be found from Table 6, while the 
method is slower than BARON for a family of 5 products, it 
outperforms BARON significantly as the number of products 
increases. The key feature of the decomposed algorithm is that 

                                                 
18 The electric motor example optimization formulation is a non-convex NLP 
problem; therefore, to find a valid lower bound, it should be solved using a 
deterministic global optimizer (e.g. BARON). 

it only uses BARON for optimizing a single product at a time, 
for which the algorithm is quite fast and efficient (less than 0.5 
seconds on average), to generate tight lower bounds using 
Lagrangian decomposition. These tight lower bounds, then 
enable fast convergence of the branch and bound tree.  

 
Table 5: Platform configuration and torque requirements for 

the electric motor product family case studies 
No. of 

products 
Platform 

configuration Torque 

5 
Awf: {P1: 1-5} 
r: {P2: 1,2; P3: 3-5} 
t: {P4: 1,2; P5:3-5} 

{0.1, 0.2, 0.3, 0.4, 0.5} 

10 
r: {P1: 1-5; P2: 6-10} 
t: {P3: 1-2; P4: 6-10} 
Ns: {P5: 1-10} 

{0.1, 0.125, 0.15, 0.2, 
0.25, 0.3, 0.35, 0.4, 0.5} 

15 
r: {P1: 1-5; P2: 6-10; 
P3: 11-15} 
t: {P4: 1-5; P5: 6-10; 
P6:11-15} 

{0.05, 0.1, 0.125, 0.15, 
0.2, 0.25, 0.275, 0.3, 
0.325, 0.35, 0.375, 0.4, 
0.425, 0.45, 0.5} 

20 

r: {P1: 1-5; P2: 6-10; 
P3: 11-15; P4:16-20} 
t: {P5: 1-10; P6: 11-20} 
Ns: {P7: 1-5; P8: 16-
20} 

{0.05, 0.1, 0.125, 0.135, 
0.15, 0.165, 0.175, 0.2, 
0.225, 0.25, 0.275, 0.3, 
0.325, 0.35, 0.375, 0.4, 
0.425, 0.45 , 0.475, 0.5} 

 
Table 6: Computational time for the electric motor product 
family using the original formulation and the decomposition 

approach 
Computational time (seconds) No. of 

products BARON (all-in-one) Proposed method 
5 26 31 

10 690 77 
15 2725 108 
20 --- 156 

 
Table 7 compares the lower bounds created at the root 

node of the branch and bound tree for each of the product 
families defined in Table 5 using the proposed Lagrangian 
decomposition approach vs. the convex underestimating lower 
bounds computed by BARON. It should be noted that 
BARON iteratively applies a number of range reduction 
techniques prior to convexification of the root node; therefore, 
the reported lower bounds are stronger than the bounds 
obtained by convexifying the original problem without range 
reduction (as is the case for dual bounds). As can be seen from 
Table 7, using Lagrangian decomposition the lower bounds 
found in the root node are within 1 percent of the optimal 
solution. Moreover, for all cases the local optimizer used for 
upper bounding located the global optimum at the root node 
due to the near optimal starting point obtained from 
Lagrangian lower bounding19. Therefore, although Lagrangian 
                                                 
19 It is noteworthy that using 1) solutions to the individually optimized motors 
(without commonality) or 2) randomized multistart to generate starting points 
for various local solvers (e.g. conopt, snopt and minos) resulted in failure to 
find a feasible point. 



bounds are computationally more expensive than the convex 
underestimating bounds, their high quality reduces the overall 
computational time of the branch and bound tree considerably. 

Table7: Convex underestimation vs. Lagrangian bounds for 
the root node in the branch and bound tree 

No. of 
products 

Optimal 
Solution 

Lagrangian 
bounds 

Convex 
underestimating 

bounds 
5 1.748 1.736 0.1674 

10 3.426 3.419 0.323 
15 5.112 5.101 0.265 
20 6.646 6.638 0.015 

 
Finally, in order to illustrate the various steps of the 

proposed approach, the branch and bound tree for the 10 
product case is depicted in Figure 2 for a gap tolerance of 
εmax=0.01%. For each node in the tree, the lower bound was 
obtained after 20 iterations using the randomized incremental 
subgradiant method (each iteration contains optimization of a 
single motor using BARON followed by updating the 
multipliers according to Eq.(14)). First, Lagrangian 
decomposition was applied to the root node (labeled 0 in the 
figure) to generate the lower bound LB=3.4193. Using the dual 
solution as the starting point for CONOPT, an upper bound 
equal to UB=3.4260 was obtained. Since the relative gap was 
ε=0.2% which is greater than the termination gap, the node 
was branched into two new nodes. The first platform (denoted 
by P1 in the figure), the platform with largest variance, was 
selected as the branching variable with its mean value as the 
branching point (P1mean=2.216). Next, following the depth first 
search procedure, the node’s left child (labeled 1) was 
processed, resulting in a tighter lower bound LB=3.4247 and a 
relative gap ε=0.04%. Applying the same branching rule, 
nodes 2 and 3 were added to the queue with additional 
constraints on the third platform (P3); and node 2 was pruned 
since its lower bound exceeded the current upper bound value 
LB=3.4262>UB=3.4260. Next, node 3 was solved and 
branched to create nodes 4 and 5. By computing the lower 
bound for node 4, one finds LB=3.4258 and ε=0.006% which 
falls below the corresponding gap tolerance εmax=0.01%, and 
therefore node 4 is pruned. Next node 5 and 6 are considered 
for lower bounding respectively. In both cases the lower 
bound value exceeds the best known upper bound; therefore 
both nodes are fathomed, and f*=3.4260 is reported as the 
global minimum of the optimization problem (within 
εmax=0.01%). 

7. SUMMARY AND CONCLUSIONS 
In this study, we presented a deterministic global 

optimization approach for solving large-scale nonconvex 
quasiseparable NLPs. The decomposable structure of the 
problem was exploited to provide tight lower bounds for the 
branch and bound algorithm using Lagrangian decomposition 
and to enable application of efficient dual methods for 

speeding up convergence. As an important application in 
mechanical engineering, the product family optimization 
problem was considered, and a family of electric motors was 
solved for a range of product family sizes and platform 
configurations. Results were compared with those obtained 
from solving the problem using BARON. While BARON was 
efficient for the small case, increasing the number of products 
led to an exponential increase in computational time and 
difficulty solving larger cases. In contrast, the proposed 
approach proved to be scalable, and the Lagrangian lower 
bounding scheme was capable of generating very tight bounds 
in all cases. Moreover, due to the separablity of the dual 
function and the use of efficient dual methods, the lower 
bounds were obtained with reasonable computational cost. 

Unlike popular stochastic and local approaches to 
optimization of nonconvex problems in engineering design, 
deterministic global optimization offers the ability to ensure 
the global quality of solutions obtained. Results show that 
solutions reported in the literature using stochastic and local 
approaches can be significantly suboptimal, and without a 
lower bound the modeler cannot be sure of solution quality. 
Deterministic global solvers, such as branch and bound 
derivatives, have found wide use in chemical engineering and 
operations research; however, their application in mechanical 
design is limited because the highly nonlinear structure of 
most formulations can lead to weak lower bounds under 
convexification strategies. We see a need for efficient 
deterministic global optimization techniques that are designed 
for highly nonlinear and nonconvex problems encountered in 
mechanical design. Our proposed Lagrangian decomposition-
based approach takes a step in this direction, offering 
encouraging results for achieving scalability and robustness 
for quasiseparable problems. Our future work will involve 
testing the empirical properties of the approach on a broader 
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Figure 2: The branch and bound tree for a family of 

10 electric motors 



range of problems, including quasiseparable nonconvex 
MINLP formulations, such as the joint product family 
platform selection and design problem as well as problems 
outside of product family design. We also see opportunity for 
advancement of existing global optimization methods to 
address a broader class of large scale optimization problems. 
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