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ABSTRACT 
The analytical target cascading (ATC) optimization 

technique for hierarchical systems demonstrates convergence 

properties only under assumptions of convexity and continuity. 

Many practical engineering design problems, however, involve 

a combination of continuous and discrete variables resulting in 

the development of mixed integer nonlinear programming 

(MINLP) formulations. While ATC has been applied to solve 

MINLP problems, convergence and global optimality are not 

guaranteed. In this paper, we exploit the large-scale, 

decomposable structures of certain nonconvex MINLP models 

by adopting a Lagrangian based branch-and-cut algorithm in the 

ATC context to solve these models to global optimality. It is 

shown that the Lagrangian based branch-and-cut format fits into 

the Lagrangian motivated ATC framework, and is implemented 

using ATC notation. The resulting deterministic global 

optimization methodology is illustrated through the 

optimization of the joint product family platform selection and 

design problem from literature.  

 

1. INTRODUCTION 
 Engineering design optimization problems often involve 

large complex mathematical formulations that are difficult to 

solve directly. Many methods have been developed to the assist 

in solving these design problems. A frequently used technique 

to solve these design problems is to decompose the overall 

system into several interlinking subsystems, and further 

coordinate these subsystem solutions such that an optimal 

solution is obtained for the overall system. Analytical target 

cascading (ATC) is one such method for optimizing such large, 

complex systems by decomposing the overall problem into 

hierarchies of subsystems and coordinating optimization at the 

subsystem level while attaining a consistent solution for the 

overall system. ATC has been applied to architecture [1], 

multidisciplinary product development problems [2, 3] and 

automotive design problems [4]. ATC achieves optimal system 

solutions by setting targets at each level of the hierarchy for the 

subsystems at that level below in order to achieve targets passed 

by the elements above. This procedure is iterated at each level 

of the system until convergence.  Various approaches have been 

proposed to achieve consistency between the target and 

response values and enable parallel computing. In the early 

ATC literature, a quadratic penalty method was used as a 

consistency relaxation technique, and Michelena et al. [5] 

proved that iteratively optimizing individual elements of the 

hierarchy using specific coordination strategies will generate an 

optimal overall system solution. Further, Michalek and 

Papalambros [6] proposed an efficient weighting update method 

to reduce the inconsistencies between subsystems if the top 

level targets are unattainable.  Lassiter [7] then posed a 

Lagrangian relaxation formulation as an alternative to the 

quadratic penalty approach, which was extended to an 

augmented Lagrangian (AL) formulation [8, 9] that combines 

both the quadratic penalty and Lagrangian methods to improve 

computation properties and applicability. However, a 

noteworthy limitation of the AL method is that it involves non-

separable sub-problems. Li et al. [10] applied diagonal 

quadratic approximation (DQA) by linearizing cross terms of 

the AL function to create separable subproblems and also 

enable parallel computing. To further reduce computational cost 
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a truncated DQA (TDQA) method was posed that limits the 

number of iterations of DQA. All these methods rely on 

convexity assumptions for convergence [10]. This assumption is 

violated by any formulation with discrete variables, as is the 

case with mixed integer nonlinear programming (MINLP) 

formulations. ATC has been used to solve MINLP problems but 

issues of convergence and optimality have not been resolved 

since most previous approaches do not consistently provide 

optimal results without an exhaustive search over the discrete 

space. Kim et al. [4] used mixed discrete algorithms to optimize 

subsystems involving discrete variables; however, Michalek and 

Papalambros [11] demonstrated that this approach can produce 

suboptimal results and proposed the use of branch-and-bound as 

an outer loop to ATC. This approach generates optimal 

solutions since each node of the branch-and-bound tree is 

solved in a continuous domain, thus avoiding any violations of 

the convexity assumptions necessary for global convergence of 

ATC. A major limitation of this method is the computational 

burden that results from the addition of the nested loop and 

inefficiency for large problems with many discrete variables. In 

this paper, we demonstrate the use of a deterministic, 

Lagrangian based branch-and-cut algorithm that is adopted in 

the context of ATC. Prior work on Lagrangian based branch-

and-cut [12] enables global optimization without solving a full 

all-in-one (AIO) MINLP formulation. 

 An important example of a MINLP problem is the case of 

product family optimization, where a major challenge is to 

resolve the tradeoff between maximizing platform commonality 

and the ability to achieve distinct performance targets at the 

individual product level. The presence of the combinatorial 

platform-selection variables adds an additional level of 

complexity and computational cost to the joint product family 

problem. Product family optimization has received a significant 

amount of attention over the past decade.  Simpson et al. [13] 

provide an extensive review and comparison of forty 

approaches addressing the product family optimization 

problem. In particular, Kokkolaras et al. [14] employed ATC to 

solve the product family problem, but the design variables 

defining product platforms are not treated as variables and are 

fixed a priori in the optimization process, thus limiting the 

scope of the study. Prior methods to solving the joint product 

family problem use either stochastic methods like genetic 

algorithms (GAs) [15, 16] or heuristic methods like penalty 

functions [17-19]. However, neither approach can ensure global 

optimality and each requires a considerable amount of time in 

parameter tuning and algorithm design. Thus, an alternative 

approach is to use a deterministic global search method in place 

of the stochastic and heuristic approaches. In this paper we take 

advantage of the large-scale, decomposable structures of 

nonconvex MINLP product family problems by demonstrating 

the use of Lagrangian based branch-and-cut algorithm in the 

context of ATC to solve these models to global optimality. 

Major similarities and differences between the decomposition 

techniques used in ATC and Lagrangian based branch-and-cut 

are highlighted.  

This paper is organized as follows: The next section 

presents a review of Lagrangian decomposition, a discussion of 

existing methods for solving MINLP problems, and finally 

application of Lagrangian based branch-and-cut method in the 

context of ATC (LBC-ATC). In Section 3, a case study for 

applying the LBC-ATC methodology for optimizing of a family 

of pressure vessels is presented, and our conclusions are 

summarized in the last section of the paper.  

 

2. THE LBC-ATC APPROACH 

 

2.1 ATC FORMULATION  
In the proposed methodology, systems optimization 

formulations with decomposable structures use ATC to organize 

and coordinate decisions between subsystems in order to 

achieve optimal solutions for the overall system.    Hierarchical 

decomposition of a system can be advantageous in assisting the 

management of complex systems and in reducing 

dimensionality, since subsystem models typically have fewer 

variables. According to the ATC framework, the original AIO 

problem with a hierarchical structure is decomposed into a top 

level system and a hierarchy of subsystems, so that the 

subsystems are nearly separable except for a few linking 

variables. This term “linking variables” is generally used in 

decomposition literature to refer to variables shared between 

any two subsystems. In ATC literature, however, the term 

sometimes refers to variables shared only between subsystems 

at the same level of the hierarchy. In this paper, we use the more 

general definition. Conceptually, top level targets are passed to 

the subsystems after which each subsystem level is optimized 

separately to meet its target as closely as possible. These lower 

level responses are then passed up to the top level system where 

they are rebalanced. This process is iterated until convergence.  

Figure 2 presents a simple example of a vehicle system model 

decomposed using ATC. Targets (tc,tE) set at the top level are 

passed on to the engine and chassis subsystems respectively. 

The analysis models at the subsystems in turn take the design 

variables, parameters and lower level responses as inputs and 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: ATC decomposition of vehicle system model 
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return responses (rc,rE) to the vehicle system. Different 

notations are used in describing and defining ATC based on the 

intended application [5, 20-22]. We adopt the generalized 

notation of Tosserams et al. [22] here. In this notation, models 

representing the hierarchy of subsystems are organized so that 

variables common to an element j at level i and its parent p at 

level i-1 are treated as targets tij set at the parent to be matched 

by responses rij (see Figures 1 and 2).   
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The above non-decomposed problem is written such that all 

elements local to an element j at level i in the hierarchy are 

collected into the vector xij; tij represents all the variables 

common to element j and its parent element (linking variables), 

while aij represents the analysis response models  introduced for 

subsystem calculations that define variable interrelationships. Ei 

is the set of elements at level i, and gij and hij are the local 

inequality and equality constraint functions that ensure 

feasibility of the overall system.  
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In order to decompose equation (1) such that each 

individual subsystem can be solved separately, duplicate 

response copies rij are created for each target variable tij and 

constraints are added such that tij- rij = 0. The target is treated as 

a variable in the parent element, while the response is treated as 

a constant. The resulting problem (Eq. 2) is separable except for 

the consistency constraint tij- rij = 0.  

In ATC literature, several different consistency constraint 

relaxation approaches have been used to coordinate consistency 

among subsystems, including quadratic penalty functions [5, 6, 

20], ordinary Lagrangian relaxation [7], and augmented 

Lagrangian relaxation [8, 10, 22]. These approaches require 

convexity or continuity with global optimality of subproblems 

to prove convergence to optimal solutions [10]. The ordinary 

Lagrangian (OL) formulation is selected in this work. This 

method is based on Lagrangian duality theory [23, 24], where 

λλλλΤ is the vector of Lagrange multipliers. Under the OL method, 

optimality is expected [10].  

 

2.2 MIXED INTEGER NONLINEAR PROGRAMMING  
 When any of the variables in ATC are restricted to the 

discrete domain, convergence is no longer guaranteed due to the 

violation of the continuity assumption. Michalek and 

Papalambros [11] demonstrated that solving MINLP 

subproblems in elements of the ATC hierarchy can result in 

suboptimal solutions even for very simple formulations. 

Mixed-integer optimization provides a useful framework 

for modeling optimization problems that involve discrete and 

continuous variables. The last few years have witnessed a 

noticeable increase in the development of MINLP models [25]. 

Mechanical engineering design problems often involve MINLP 

formulations. Solving MINLP problems, however, is known to 

be hard for two main reasons. Firstly, the presence of 

nonlinearities in the objective and constraint function often 

implies nonconvexity and the potential existence of multiple 

local solutions. Secondly, the presence of both continuous and 

discrete variables causes a large combinatorial problem [26]. 

Together, the combinatorial nature of mixed-integer 

programming (MIP) and multiple local minima in nonlinear 

programming (NLP) significantly increase the complexity of 

MINLP problems. While solving combinatorial problems as a 

whole continues to be computationally challenging, it is 

possible to exploit the decomposable nature of a MINLP 

problem in terms of its MIP and NLP subclasses, which can 

each be solved to global optimality. As a result, significant 

progress has been achieved in the MINLP area from the 

theoretical, algorithmic, and computational perspective [27].  

Several methods have been developed to solve subclasses 

of MINLP problems, most of which exploit their decomposable 

nature under certain assumptions of convexity and separability. 

A comprehensive yet thorough review of MINLP algorithms is 

provided by Grossmann and Biegler [27]. In the seminal work 

of Geoffrion [28] on Generalized Benders Decomposition 

(GBD), a sequence of upper and lower bounds are generated at 

each iteration of the MINLP problem that converge within a 

finite number of iterations. The upper bounds are obtained by 

fixing the integer variables to a certain 0-1 combination which  
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Figure 1: ATC Hierarchy Element Notation 
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results in an NLP subproblem (primal), while the lower bounds 

are obtained using duality theory [24] which results in a MILP 

problem (master). The Outer Approximation (OA) [29] 

approach, akin to GBD, involves the sequential generation of 

upper and lower bounds from solving the primal and master 

problems respectively. The OA algorithm uses the solution of 

the primal problem to generate linearizations (outer 

approximations) of the objective and constraint function values 

around that point, which improve the relaxation and thus the 

lower bound on the original MINLP problem. This process is 

repeated iteratively until convergence. OA, however, is 

designed for convex formulations. Another commonly used 

MINLP algorithm is branch-and-bound (BB) [30], which works 

by relaxing all integer variables to real numbers and solving a 

sequence of optimization problems in the relaxed domain while 

adding constraints to force the relaxed variables to integer 

values eventually. Michalek and Papalambros [11] used BB as 

an outer loop to the ATC hierarchy to achieve optimal solutions 

to MINLP ATC problems.  

 Many practical design optimization problems today 

involve nonconvexities. Often, it is required to obtain a global 

solution to such nonconvex problems. For MINLP models, 

algorithms such as OA and GBD will yield globally optimal 

solutions only under assumptions of convexity. Pörn and 

Westerlund have proposed an Extended Cutting Plane (ECP) 

[31] algorithm for globally optimizing MINLPs. Sahinidis and 

Tawarmalani have proposed a branch-and-reduce algorithm 

which utilizes McCormick convex estimators [32], on which the 

commercial solver BARON [33] is based. BARON, which is 

used in this study, integrates conventional branch and bound 

with a wide variety of range reduction tests that are applied to 

every subproblem of the search tree in pre- and post- processing 

steps to contract the search space. A useful review on recent 

advances in deterministic global optimization techniques for 

both NLP and MINLP problems is provided by Floudas et al. 

[34]. Most recently, Karrupiah and Grossmann [12] have 

proposed a global optimization algorithm for solving 

nonconvex MINLP problems with decomposable structures by 

using a branch-and-cut framework, involving cuts that are 

derived from Lagragnian decomposition. The proposed method 

uses these Lagrangian cuts to generate tight relaxations and 

stronger lower bounds that exploit the decomposable structure 

of large-scale models. This is a desirable property in the ATC 

context, especially since the aforementioned Lagrangian 

inspired ATC framework fits well into the Lagrangian Branch-

and-Cut framework. Also, ATC maps a hierarchical system 

problem into a quasi-separable problem by creating copies of 

target-response pairs. The result is a subclass of the class of 

problems posed by Karrupiah and Grossmann, whose branch-

and-cut method will be adopted for ATC and is detailed in the 

next subsection using ATC notation.  

 

2.3 LAGRANGIAN BRANCH-AND-CUT FOR ATC (LBC-

ATC) 
In this section, a deterministic branch-and-cut algorithm is 

described for ATC, the steps for which are summarized in 

Figure 2.    

 
AIO formulation 

The class of decomposable MINLP problems considered in 

this work is generalized from Eq. (1) to include both continuous 

and discrete variables. The AIO problem before decomposition 

can be written as: 
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Here,
C

ijx , 
C

ijt  and 
D

ijx , 
D

ijt are the pairs of continuous and 

discrete variables respectively. In the first step of the algorithm, 

model (P) is locally optimized using OA to obtain an initial 

overall upper bound (OUB) z
U
 on the objective function. At this 

stage, the root node of the search tree is put into the queue. 

 

 

Model Reformulation 

In section 2.1, the parent element shares target variables 

with each of its children, which prevent the objective function 

and constraint sets from being fully separable. In order to allow 

for separability of each subsystem, response variable copies rij 

corresponding to the target variables tij are created. 

Additionally, to ensure consistency between the response and 

target variables a consistency constraint is introduced into the 

formulation as shown in (RP).  
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Figure 2: Flowchart for Lagrangian based branch-and-cut algorithm 
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Note that model (RP) is almost separable except for the 

consistency constraint (tij.- rij). The concept of Lagrangian 

decomposition is used to relax this constraint by introducing an  

 

 

 

 

inconsistency relaxation function π. Based on duality theory 
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Here, λλλλC
ij and λλλλ

D
ij are the vectors of Lagrange multipliers. 

Model (LRP) is then decomposed into the following sub-

problems (SPj) ; 1, 2,..., .ij E i N∀ ∈ =    
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Each of these subproblems has fewer numbers of variables and 

constraints than the full problem (P). Thus, these subproblems 

are typically easier to solve than the full space model (P). 

Following decomposition, each subproblem, generally a 

nonconvex MINLP, is globally optimized using a deterministic 

global optimization algorithm to obtain a set of solutions zn
*
, for 

n = 1,…,N. In this work, BARON’s branch-and-reduce 

algorithm is used as the global optimizer. Conventional 

Lagrangian decomposition dictates that the sum 
*N LB

ji
z z=∑ will yield a valid lower bound on the global   

optimum of (P) over a certain region of space. Further, to obtain 

a tighter lower bound, the Lagrangian dual problem is solved by 

iterating across different values of the Lagrange multipliers 

using the subgradient method [7]. If the problem is convex 

solving the dual will solve the original problem. If not, updating 

the multipliers via the subgradient method will generate cuts 

that are valid and may help convergence by strengthening the 

bounds. The dual problem (D) is given by: 
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Lagrangian cuts are generated by replacing the linking 

variables in the objective function of the subproblems with the 

original linking variables, and enforcing the condition that the 

resulting expression has to be greater than or equal to the global 

optimum zj
*
 of SPj [12]. For a given subproblem (SPj), the 

cutting plane (Cj) associated with it is given by: 
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 Karrupiah and Grossmann [12] prove that these cuts are 

valid and do not cut off any portion of the feasible region of the 

relaxed or full space of (P). The cuts are then added to model 

(P) to give (P’), as shown below. 
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(P’) is a nonconvex MINLP problem. To obtain a valid 

lower bound (P’) is convexified. This is accomplished by 

replacing the nonconvex terms with valid convex under- and 

over-estimators [32]. The resulting relaxed problem (R), which 

is either a convex MINLP
*
 or MILP, is then solved using OA to 

yield a valid lower bound on the solution of problem (P).  

Noteworthy here is the fact that the lower bound obtained by 

solving (R) is at least as strong as the one obtained by solving 

the convex relaxation of (P) and at least as strong as the lower 

bound obtained from Lagrangian decomposition when each 

subproblem is solved to global optimality [12].  

To calculate an upper bound the integer variables in (P) are 

fixed to the values obtained from solving (R) and the resulting 

nonconvex NLP problem (CP) is solved using a global 

optimizer. If this upper bound z
UB
 is found to be better than the 

current OUB, then z
UB 

is updated as the new OUB z
U,
 and 

becomes the best available feasible solution.  

At this stage of the algorithm, the node of the branch and 

bound tree can be pruned if one of the following termination 

criteria is met: 

(i) The lower bound at the node exceeds the OUB z
U
 . 

(ii) The approximation gap at the node is below a 

specified tolerance ε. This gap is defined as: 
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(iii) If z
U
 = -∞, implying the problem is unbounded. 

 

                                                           
* The term “Convex MINLP” is used to refer to a MINLP formulation 

with convex objectives, convex inequality constraints, and linear equality 

constraints, even though the feasible region is non-convex due to integer 

restrictions 
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If the approximation gap between the lower and upper bound 

happens to be greater than the specified tolerance at the root 

node then the node is partitioned into new nodes in the search 

tree. This is called branching, and is performed on the linking 

variables (continuous or binary). The criteria for selecting 

branching variables is similar to the heuristics used by Caroe 

and Schutlz [36], and has been detailed by Karrupiah and 

Grossmann [12]. This branching process is repeated at each 

node until convergence is achieved or until all the possible 

nodes in the tree have been searched. The convergence of the 

branch-and-cut algorithm is guaranteed by the fact the search 

region can be sub-divided into a number of partitioned regions 

that yields a sequence of non-decreasing lower bounds and non-

increasing upper bounds which converge to the global optimum 

within a finite number of iterations [37]. An example is 

presented to illustrate the branch-and-cut algorithm.  

 

Example 

The original undecomposed problem (P) is 
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Figure 1: Nonconvex MINLP example problem 

 

The variables t
C
 and x1

D
 are continuous and integer variables 

respectively, while x2
D
 is a binary variable. Only t

C
 is treated as 

a linking variable in this model. The objective function is linear. 

The only source of nonconvexities arises from the first bilinear 

inequality constraint. This model is small and is solved in a time 

of the order of a tenth of a second using the commercial solver 

BARON, yielding a global optimum of -6.8 [t
C
 , x1

D
 , x2

D
 ] = 

[0.8, 0.5, 1]. To implement LBC, the original problem is locally 

optimized using a solver such as DICOPT, and with an initial 

starting point [t
C
 , x1

D
 , x2

D
 ] = [2, 2, 0], an upper bound of -5 [2, 

2, 0] is obtained which is the overall upper bound (OUB) z
U
 . 

Decomposing (P) using Lagrangian decomposition, we get 
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 (LRP) 

 

Here, t1
C
, t2

C
 are the duplicate variables corresponding to 

the linking variable t
C
, and λ denotes the Lagrange multiplier 

estimates employed in this Lagrangian relaxation. The model 

(LRP) is decomposed into two separate sub-problems (SP1) and 

(SP2), as shown below.  
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At the root node of the branch-and-cut tree, we start with 

initial values of the Lagrange multipliers set at zero (see Table 

1) and update them using the subgradient method discussed 

earlier. The results of solving the respective subproblems are 

summarized in Table 1.  

 

  Table 1: Numerical results of the subproblems at root node 

Root Node SP1 SP2 

Lower 

Bound 

Iteration λ t1
C
 x1

D
 z1 t2

C
 x2

D
 z2 zLB 

1 0 0.8 5 -5.4 5 1 -3.5 -8.9 

2 -0.93 6 0 -8.57 0 1 -1 -9.572 
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Since the lower bound obtained at the second iteration after one 

multiplier update is lower than the lower bound obtained at the 

first iteration, the values generated at the second iteration are 

discarded. By introducing cutting planes into model (P) using 

the results of the subproblem solutions (Table 1) at the first 

iteration, we get model (P’). 
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Using McCormick convex envelopes to convexify the 

bilinear constraint terms, we obtain (R).  Let w = xy1 .  

 

{ }

1 2

2

1

2

1

1

2

1

min  

s.t.    4,

        6,

5.4 0.5 ,

3.5 0.5 ,

6 5 30

0,

        

        0,1

        0 6

        0 5

C D D

C D

C D

C D

D C

D

D

C

D

t x x

w

t x

t x

t x

w x t

w

x Z

x

t

x

− − −

≤

+ ≤

− ≤ − −

− ≤ − −

≥ + −

≥

∈

∈

≤ ≤

≤ ≤

                                                                 (R) 

0 1 2 3 4 5 6 7
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

tc

x
1
D

f

Relaxation c1

c2

Node1

Node2

LBUB

 
Figure 2: Solution to relaxed problem with cuts (root node) 

 

The solution to the relaxed problem yields a lower bound of - 

7.4 [4.4,2,1]. By fixing the integer and binary variables in (P) to 

the values obtained from (R), we are left with a linear 

programming model (CP). 
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The solution to (CP) yields an upper bound of -5 [t
C
 = 2]. The 

relaxation gap between the lower and upper bound is 0.482 

which is within a tolerance of 10%. In order to reduce the 

relaxation gap to 0.1%, we branch down the tree. Since t
C
 is the 

only duplicating variable, it is selected as the branching 

variable. t
C
mid is calculated as the average of the t

C
 values 

obtained in the sub problems (SP1) and (SP2) of the root node 

of the branch and bound tree.  

1 2 2.9
2

C C
C

mid

t t
t

+
= =  

Two new nodes are created, one in which t
C
 ≤2.9 (node 1), and 

the other in which t
C
 ≥2.9 (node 2), as shown in Figure 3.  The 

results from solving node 1 and node 2 are summarized in Table 

2 and Table 3. 

 

Table 2: Numerical results of the subproblems at node 1 

Node 1 SP1 SP2 

Lower 

Bound 

Iteration λ t1
C
 x1

D
 z1 t2

C
 x2

D
 z2 zLB 

1 0 0.8 5 -5.4 2.9 1 -2.45 -7.85 

2 -1.3571 0.8 5 -6.5 0 1 -1 -7.5 

3 1.7679 0 5 -5 2.9 1 -7.577 -12.577 

 

Note from Table 2 that the third iteration resulted in a lower 

bound worse than the lower bound obtained at iteration 2. Thus, 

the values obtained at iteration 3 were discarded. After 

incorporating the resultant Lagrangian cuts into model (P) and 

convexifying it, we obtain models (P’) and (R) as shown earlier 

at the root node. The resultant lower bound from solving model 

(R) is -6.8 [0.8,5,1]. By fixing the integer and binary variables 

in (P) to the values obtained from (R) and solving the resulting 

(LP) model, an upper bound of -6.8 [t
C
 = 0.8] was obtained. 

Since the relaxation gap at node 1 is within a tolerance of 0.1%, 

this node can be pruned.  

Table 3: Numerical results of the subproblems at node 2 

 

Node 2 SP1 SP2 

Lower 

Bound 

Iteration λ t1
C
 x1

D
 z1 t2

C
 x2

D
 z2 zLB 

1 0 4 1 -3 5 1 -3.5 -6.5 

2 -1.5 2.9 1 -12 2.9 1 1.9 -10.1 

Lagrangian Cuts 
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Note from Table 3 that the second iteration resulted in a lower 

bound worse than the lower bound obtained at iteration 1. 

Therefore, the values obtained at iteration 2 were discarded. 

After incorporating the resultant Lagrangian cuts into model (P) 

and convexifying it, we obtain models (P’) and (R) as shown 

earlier at the root node. The resultant lower bound from solving 

model (R) is -6 [5,1,0].Further, by fixing the integer and binary 

variables in (P) to the values obtained from (R) and solving the 

resulting (CP) model, an upper bound of -6 [t
C
 = 5] was 

obtained. Since the relaxation gap at node 1 is within a 

tolerance of 0.1%, this node can be pruned.  

 

 

 

 

 

 

 

             

 

         

        

             Figure 3: Branch-and-cut tree 

Thus, after all the nodes of the branch-and-cut tree have been 

searched, the global optimum of -6.8 [0.8,5,1] is obtained at 

node 1.  

3. CASE STUDY: LBC-ATC FOR PRODUCT FAMILIES 
To demonstrate the aforementioned method for solving 

nonconvex MINLP models, a joint product family problem to 

the design of a family of pressure vessels is solved. The AIO 

formulation for optimizing a product family of n products is:  
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T
i
 represents the vector of the performance targets for the ith 

product, η
ij
 is the commonality decision variable, and x

i
 and x

j
 

are the index pairs of components in products i and j that are 

candidates for being shared. Also, ηmin shows the commonality 

target value for n products. Eq.(3) is a MINLP formulation with 

the commonality constraint possessing a bilinear non-convexity. 

An alternative representation for this commonality constraint 

that avoids the use of the bilinear non-convexity is one which 

uses the big-M formulation [26], as shown below.  
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Here, the value of M is calculated as: 

                      

          max min( )M x x= −                                       (5) 

 

As can be seen from the AIO joint product family platform-

selection and design problem in Eq.(4), if the commonality 

constraint is not enforced each product can be individually 

optimized. Thus, adopting the LBC-ATC decomposition 

framework, it is possible to decompose the AIO problem such 

that each subproblem optimizes the individual product problem 

where both the design variables and commonality variables are 

treated as linking variables. The resulting Lagrangian relaxation 

of the AIO problem is: 
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In which xk
i
 and xk

j
 are design variables collected in vector 

x for subproblems i and j, for a given component k. λλλλι
i(x)
 and 

λλλλι
i(e)
 are Lagrange multiplier vectors for the duplicated design 

variables x and commonality variables η  respectively. Here, m 
represents the number of components and n represents the 

number of products.  
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The optimization problem for the nth subsystem corresponding 

to an individual product subsystem is: 
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It is important to note the major similarities and differences 

between the decomposition techniques for Lagrangian branch–

and-cut and conventional ATC.  ATC maps a hierarchical 

system problem into a quasi-separable problem by creating 

copies of target-response pairs. The result is a subclass of the 

class of problems that Lagrangian branch-and-cut solves. Both 

methods use Lagrangian decomposition to coordinate 

consistency between subsystems. However, Lagrangian branch-

and-cut additionally includes cuts derived from the Lagrangian 

decomposition to improve computational efficiency of the 

algorithm. In essence, ATC can be considered to be a special 

case of the Lagrangian branch-and-cut method. 

In order to demonstrate how LBC-ATC can be used to 

solve non-convex MINLP problems with decomposable 

structures, the joint product family optimization problem to the 

design of a family of three pressure vessels was solved. The 

pressure vessel problem was first presented by Hernandez  [38] 

to design product platforms. Williams [39] later built on the 

work done by Hernandez to solve the same product family 

problem for a series of non-uniform demand scenarios. He 

points out that the pressure vessel problem is an appropriate 

“first example” to illustrate a methodology, allowing the reader 

to focus on the method instead of the engineering design details. 

Thus, this problem is deemed appropriate for illustrating the 

LBC-ATC methodology for solving the product family design 

problem.  

 

 

 

 

 

 

 

Figure 5: Schematic of Pressure Vessel [38] 

 

 

A schematic of the pressure vessel considered in this example is 

shown in Figure 5. Th and Ts are the thicknesses of the head and 

shell plate respectively, while R corresponds to the radius of the 

shell and head. L represents the length of the cylindrical shell. 

For module-based product family optimization, design variables 

are grouped according to the component to which they belong. 

In this example, the two components considered are the cap 

(head) and cylinder (shell) of the pressure vessel. These 

components and their corresponding design variables are 

depicted in Table 4. It is important to note that in product family 

design, commonality is measured based on component sharing, 

i.e. two products have common part if all of the corresponding 

design variables have the same value for both products.  

 

Table 4: Component list and their design variables 

 Component Name Associated Variables 

1 Cap (head) Th, R 

2 Cylinder (shell) Ts, R, L 

 

It is assumed that the pressure vessels are produced from carbon 

steel ASME SA 203 grade B. Sheets of this material are 

available in thicknesses ranging between 6.35mm and 76.2mm. 

Limited by available equipment, the maximum allowable radius 

and length are 1.5m and 7m respectively. The design of the 

pressure vessels must satisfy the following constraints.  
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                               (7) 

 

where P is the pressure, σy is the yield strength of the material 

(1077 MPa). Furthermore, the ranges of acceptable pressure 

and volume values for the family of products are: 10 Mpa to 30 

MPa for Pressure (P) and 10 m
3
 and 30 m

3
 for Volume (V).  For 

a given radius and length, the volume of the pressure vessel is 

calculated as follows:  

                            2 34

3
V R L Rπ π= +                             (8) 

While Williams presents a problem formulation where the 

objective in developing the product platform is to maximize the 

average profit of the entire market, the goal of the platform 

design in this study is to maximize a predefined set of 

performance related targets. In particular, the objective is to 

maximize the pressure and volume of the pressure vessel at the 

individual product level while still allowing for platform 

commonality through the sharing of the aforementioned 

components amongst the family of products.    

Two cases were considered for this study; the first was  

a family of two products, while the second was a family of three 

Cap (head) Cylinder (shell)Cap (head) Cylinder (shell)
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products. These targets were selected to illustrate the global 

optimization capabilities of LBC-ATC and also the usefulness 

of the Lagrangian cuts in generating tighter relaxations. The 

performance targets for both the two and three product families 

of pressure vessels are shown in Tables 4 and 5 respectively.   

 

Table 5: Performance Targets for the family of two pressure 

vessels  

Product 

Attribute 

Unit Pressure 

Vessel 1 

Pressure 

Vessel 2 

Pressure MPa 25 22 

Volume m
3
 20 27 

 

Table6: Performance Targets for the family of three 

pressure vessels 

Product 

Attribute 
Unit 

Pressure 

Vessel 1 

Pressure 

Vessel 2 

Pressure 

Vessel 3 

Pressure MPa 15 27 26 

Volume m
3 

12 22 18 

 

The above performance targets can be fully achieved at the 

individual product level when no commonality is enforced. The 

selection of targets is such that when no components are shared 

each individual product possesses a distinct set of product 

attributes. The benefit of commonality in the pressure vessel 

context is that it is possible to have multiple different products, 

each possessing distinct product attributes while sharing certain 

components. For example, two vessels may have different 

volumes as a result of having different cylinder lengths, but 

since their radii (R) and thicknesses of the head (Th) are the 

same they share a common cap. For the three product case 

considered here, the commonality levels can vary from no 

commonality at all to a maximum level of six, where all the 

three products are identical to one another.  

LBC-ATC is  first applied for optimizing a family of two 

pressure vessels for a commonality level (CL) of two. The 

linking variables for which copies are created are the design 

variables listed in Table 4. The termination criterion used was 

that the gap between the lower and upper bound should be less 

than the specified tolerance of 1%. For CL=2, using BARON to 

solve the problem, a global solution of 2 is obtained. To obtain 

an initial overall upper bound (OUB) the original nonconvex 

MINLP problem is solved using DICOPT, which yields an 

OUB of 2. Thereafter, in order to obtain a lower bound at the 

root node, Lagrangian relaxation is used as described above to 

formulate a total of two subproblems. Each subproblem is then 

solved to global optimality within 1% tolerance for the 

relaxation gap using BARON.  The Lagrange multipliers are 

then updated using the sub-gradient method (with z
U
=2, α1

=0.5 

and z
LB
 = 0). However, at the root node, no new cuts are 

generated as z
LB 

does not improve with multiplier updates.  

Following this, the overall problem is then convexified using 

convex estimators to yield a convex MINLP relaxation, which 

when solved to optimality using DICOPT yields a valid lower 

bound z
R
 of zero, which is as strong as the lower bound 

obtained from Lagrangian decomposition. At this point, using 

the criteria for branching mentioned earlier, we branch on one 

of the linking variables and repeat the process outlined in 

Figure 2 iteratively while performing a tree search. After 

searching about 10 nodes of the tree, the Lagrange multiplier 

updates result in several tighter relaxations that show improved 

lower bounds. Table 6 presents a comparison of the lower 

bounds obtained with and without cuts at several nodes of the 

search tree. 

 

Table 6: Comparison of Relaxations for CL =2 

Node 
Relaxation 

(with cuts) 

Relaxation 

(without cuts) 

10 0.352 0 

20 0.888 0 

24 0.55 0 

 

Due to the small size of the problem, the computational times of 

solving the original problem and its various relaxations are not 

analyzed. However, it is worthy to note that the algorithm does 

converge to the global optimum of 2 within a 0.1% termination 

tolerance (Table 7).  

 

Table 7: Optimal 2 product family configuration for CL =2 

Component 

Name 

Associated 

Variables 

Pressure 

Vessel 1 

Pressure 

Vessel 2 

Th 0.025 0.025 
Cap (head) 

R 1.5 1.5 

Ts 0.076 0.076 

R 1.5 1.5 Cylinder (shell) 

L 0.976 0.976 

Pressure MPa 25 27 

Volume m
3
 21 21 

 

Next, the case of three pressure vessels was solved for all levels 

of commonality (CL = 1-6). As commonality is increased 

beyond 50% for CL =3, performance loss grows more rapidly. 

As more components are forced to be common the attribute 

values of the variants converge and the family loses its 

differentiation. For the three product case, at commonality 

levels of 1, 2, and 3 the performance loss observed is still zero 

implying that it is still possible to share components without 

compromising on individual product distinctiveness. For these 

CLs, the algorithm trivially converges at the root node. 

However, for CL =4, a performance loss of 8 is observed when 

BARON is used to solve the problem.  When LBC-ATC is used 

to solve the same problem, the same global solution is obtained. 

Lagrangian cuts are also obtained at several nodes that yield 

stronger relaxations which help in reducing the size of the 

search tree. The global solution from solving this problem using 

LBC-ATC is shown in Table 8.  Note that pressure vessels 2 and 

3 share all components while pressure vessel 1 shares a single 
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component (cap) with the other vessels. However, it maintains 

unique cylinder dimensions, thus allowing for differentiation. 

 

Table 8: Optimal 32 product family configuration for CL =4 

Th 0.016 0.016 0.016

R 1.309 1.309 1.309

Ts 0.018 0.033 0.033

R 1.309 1.309 1.309

L 0.486 1.971 1.971

Pressure Mpa 15 27 26

Volume m
3

12 20 20

Cylinder 

(shell)

Pressure 

Vessel 3

Associated 

Variables

Pressure 

Vessel 1

Pressure 

Vessel 2

Cap (head)

Component 

Name

 
 

4. CONCLUSIONS 
Prior attempts at solving practical engineering design 

problems with discrete variables using ATC has met limited 

success since guaranteeing convergence and global optimality is 

uncertain. In this paper, we present a method for exploiting the 

large-scale, decomposable nature of nonconvex MINLP models 

by demonstrating the use of a deterministic Lagrangian based 

branch-and-cut method that is adopted in the context of ATC to 

solve these models to global optimality. The major similarities 

and differences between the decomposition techniques used in 

conventional ATC and Lagrangian branch-and-cut are 

highlighted, suggesting that ATC is a special case of Lagrangian 

branch-and-cut. The resulting LBC-ATC approach is used to 

optimize the joint platform selection and product family design 

problem to the design of a family of two and three pressure 

vessels respectively. It is shown that the Lagrangian cuts 

generated from the decomposition yields tighter relaxations at 

certain nodes, thus reducing the size of the search tree. 

Furthermore, it is shown that this alternative decomposition 

approach can solve nonconvex MINLPs to global optimality 

without solving a full AIO MINLP formulation. However, to 

fully establish the effectiveness of this method for globally 

optimizing problems with decomposable structures, larger 

examples need to be tested with the algorithm. 
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