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ABSTRACT 

The measurement and understanding of user aesthetic 
preference for form is a critical element to the product 
development process and has been a design challenge for many 
years. In this article preference is represented in a utility 
function directly related to the engineering representation for 
the automobile headlight. A method is proposed to solicit and 
measure customer preferences for shape of the automobile 
headlight using a choice task on a main-effects conjoint survey 
design to discover and design the most preferred shape. 

1. INTRODUCTION 
It has been said that the eyes are the window into a 

person’s soul. In the same way, the headlights of a vehicle give 
a glimpse into its underlying character. While the form of most 
vehicles is captured through many components working in 
concert, the headlights are unique attributes that stand out. 
Many vehicles are identifiable solely by their headlights, which 
communicate the brand, vehicle class, and overall aesthetic. 

Engineers need to account for the headlight placement 
within the vehicle, ensuring that a proper spread of light will 
contact the road. There needs to be enough room to 
accommodate the grill and provide a joint between the hood 
and front bumper. The overall area of the headlight is an 
indication of the potential brightness of the headlight. 

Designers want a headlight that supports the gestalt of the 
vehicle, especially the front and ¾ views. The shape of the 
headlight is important due to its position. It is the foremost 
feature in the ¾ view leading into the beltline and the front 
quarter panel. 

In this work, we consider a headlight from the front view 
of a vehicle. In particular, we have chosen the Honda Accord 
from the 2003 model year, since testing of different headlight 

forms is most effective when compared on the same platform. 
A 2-D Bezier curve representation of a headlight is used in 
conjunction with discrete choice analysis and conjoint analysis 
to capture form preference of a consumer for a set of headlight 
design alternatives. 

Understanding user aesthetic preference for form has been 
a design challenge for many years. In many instances, the 
aesthetic properties of products hold equal importance to their 
functionality. Research has explored how to address the 
representation of design space and the design elements to 
facilitate design exploration. Agarwal & Cagan (1998), and 
Chau et al. (2000) used shape grammars to understand the 
design space used for product development. Further, Giannini 
et al. (2006) sought to maximize the impact of aesthetics (form 
included) in the CAD environment by investigating 
relationships between shape geometry and aesthetic character. 
Van Breemen et al. (1999) have studied the relationship 
between aesthetic form and its perception by the user. Most 
relevant to this work, McCormack et al. (2004) modeled 
vehicle brand and Orsborn et al. (2006) modeled vehicle 
classes using shape grammars. 

In product development, the measurement of user 
preference is essential to the understanding and application of 
this preference to future designs. Preference has been 
successfully represented using vector models (Petiot & 
Grognet, 2006), which provide the designer with a description 
of perceptible attributes. Semantics have been used to 
understand qualitative attributes related to product form and its 
implications (MacDonald et al., 2006). Semantic differential, 
combined with robust design, has been used to ascertain form 
preference related to vehicles (Lai et al. 2005). Thurston et al. 
(1994) used utility functions to optimize the mechanical design 
process based upon modeling the engineering constraints. 
Utility functions have also been used in a variety of decision-
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based design applications to model preferences of the designer, 
the producer, or the consumer (Lewis et al., 2006). In 
particular, several authors have made use of established 
quantitative techniques common to market research: Li and 
Azarm (2000, 2002) developed a product selection approach 
using conjoint analysis survey-derived utility functions to 
explicitly measure consumer preferences and account for them 
in design optimization; Wassenaar and Chen (2003, 2005) used 
discrete choice analysis with revealed preference data to predict 
expected profit as a function of product attributes and 
demographic information; and Michalek et al. (2005, 2006) 
applied the analytical target cascading (ATC) decomposition 
methodology to coordinate models of engineering and market 
performance, including Bayesian estimation of a mixed logit 
specification to model heterogeneity of preferences in the 
market and design a line of products. In the proposed work, 
preference is represented in a utility function, directly related to 
the engineering representation for the automobile headlight, 
and choice-based conjoint survey data is used to measure shape 
preferences and optimize for the most desirable design.  

2. ENGINEERING MODEL 
It has been shown (Orsborn et al., 2006) that most 

headlight shapes can be represented in 3D using four (top, 

bottom, inner, outer) 4-control point Bezier curves. Since the 
endpoints of each curve are connected, the result is 12 control 
points each with three degrees of freedom. To simplify our 
representation, we have considered the headlight only from the 
front view of the vehicle i.e. a 2-D representation. This results 
in a total of 24 variables: 12 independent control points, each 
with a horizontal and vertical coordinate.  The parametric form 
of a cubic Bezier curve is B(x) = P0t3 + P1t2(1-t) + P2t(1-t)2 + 
P3(1-t)3, where 0 1 2 3, , ,P P P P  are the control points 

and [0,1]t ∈ . Rather than use these control points as variables, 
we pose an alternative reparameterization in Table 1. A 
geometric representation of these variables is provided in 
Figure 1. In the new parameterization, Li is the tangent length, 
which, for a given end point of the interior polygon, is the 
distance between the tangent intersection (with neighboring 
tangency) and the given end point. The distance between an 
interior control point and its closest end point is calculated as a 
percentage si of Li. Another variable to be considered is alpha 
(αi), which is the angle between w of the interior polygon and 
the tangent line. Finally, r is the position vector of the interior 
polygon and is measured in terms of its coordinates rx and ry 
shown in reference to the entire vehicle in Figure 2. 

This parametric representation allows each variable to 

 
Figure 1: Pictorial Explanation of Variables 
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have a shape “meaning” that is as “independent” as possible 
from the others. To the extent that consumer’s preferences for 
each of these parameters are independent of the other 
parameters, a main-effects conjoint design, discussed in the 
next section, will be sufficient to estimate preference. While 
parameterization in terms of the coordinates of the curve 
control points will clearly not be independent (people do not 
have preferences for “control point positions” directly), the 
parameterization shown in Figure 1 allows each parameter to 
roughly represent a particular aspect of the shape.  Specifically, 
h and w represent size, alpha represents skewness, and s 
represents sharpness.  It is important to note, however, that the 
proposed representation restricts the set of possible headlights 
that can be drawn, although it is possible to generalize the 
parameterization to relax this constraint.  

 

 
Figure 2: r-vector and feasible design space 

 
Table 1: Variable List for Headlight Representation 
Variable Description Unit Upper 

Bound 
Lower 
Bound 

Height (h) Height of 
Interior 
Polygon 

Inches 
(in) 

N/A N/A 

Width (w) Width of 
Interior 
Polygon 

Inches 
(in) 

N/A N/A 

Percentage 
(s) 

% of L N/A 100 0 

Alpha (α) Angle 
between 
interior 
polygon and 
tangent line 

 π/2 
radian 
(90 
degrees) 

0 radian 
(0 
degrees) 

rx + w + 
C2max 
≤ WT 

rx ≥ WG 
+ 
C4max 

Position 
Vector  
 
r = rx, ry 

Position 
Vector of 
Interior 
Polygon 

Inches 
(in) 

ry + h + 
C1max 
≤ HH 

ry ≥ HB 
+ 
C3max 

 

Also, to ensure that all possible designs lay within the 
feasible design space, the Grill Width (WG), Track Width (WT), 
Height of Bumper (HB) and Height of the Hood (HH) of the 
vehicle were used as parameters to constrain the feasible design 
space, as shown in Figure 2. These values are listed in Table 2. 
Furthermore, the horizontal and vertical coordinates of the 
position vector r have upper and lower bounds to ensure the 
headlight stays within the above bounded area. 

The horizontal width and vertical height of the headlight, 
which must also be within the bounded area, are a combination 
of w, h, and Ci

max. To calculate Ci
max, each curve was discretized 

into ten points as shown in Figure 3. Ci
max is the maximum Bi 

value (y for the upper and lower headlight curves, x for outer 
and inner headlight curves) for a given curve.  

 

 
      Figure 3: Bezier Curve Discretization 

 
Table 2: Parameter List for Engineering Model 

Parameter Description Unit 
Grill Width (WG) Width of Grill 16.23 Inches (in) 
Track Width(WT) Track Width of Car 34.40 Inches (in) 
Bumper 
Height(HB) 

Height of Bumper 19.25 Inches (in) 

Hood Height(HH) Height of Hood 35.80 Inches (in) 
 
The control points Pij for each curve j are found from the 

geometry shown in Figure 1. These are detailed as follows, 
where r = [rx, ry], h = [0, h], and w = [w, 0]: 

(1) 
P01 = P34 = r + h  
P11 = r + h + [s1 L1 cos (α1), s1 L1 sin (α1)] 
P21 = r + h + w + [-s2 L2 cos (α2), s2 sin (α2)] 
P31 = P02 = r + h + w 
P12 = r + h + w + [s3 L3 sin (90 - α2),- s3 L3 cos (90 - α2)] 
P22 = r + w + [s4 L4 sin (90 - α3), s4 L4 cos (90 - α3)]      

  
P32 = P03 = r + w 
P13 = r + w - [s5 L5 cos (α3), s5 L5 sin (α3)] 
 
P23 = r + [s6 L6 cos (α4), -s6 L6 sin (α4)] 
P33 = P04 = r 
P14 = r + [-s7 L7 sin (90 - α4), s7 L7 cos (90 - α4)] 
P24 = r + h + [-s8 L8 sin (90 - α1), -s8 L8 cos (90 - α1)] 
 
si is expressed as a percentage of Li. In order to find Li 

(Figure 1), the Law of Sines was applied, as shown in Eq.(2). 
Given a set of input variables, the calculation of these tangent 
lengths was an intermediate step in the calculation of the si 
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values. Together, these were used to calculate the distance 
between an interior control point and its closest end point given 
by si Li. 

(2) 
1 2

2 1 1 2

3 4

3 2 2 3

5 6

4 3 4 3

7 8

1 4 1 4

,
sin( ) sin( ) sin(180 ( ))

,
sin(90 ) sin(90 ) sin( )

,
sin( ) sin( ) sin(180 ( ))

,
sin(90 ) sin(90 ) sin( )

L L w

L L h

L L w

L L h

α α α α

α α α α

α α α α

α α α α

= =
− +

= =
− − − −

= =
− +

= =
− − − −

 

 
With this, a 2-D Bezier curve representation of a number 

of possible headlight design alternatives can be generated 
within the feasible design space. The next step was to conduct a 
design of experiments to determine user preference for specific 
product attributes with the purpose of determining the design 
alternative with maximum utility.  

A conjoint study along with a discrete choice analysis was 
employed to do this, as described in the subsequent section.  

3. PREFERENCE MODEL 
Conjoint Analysis. To determine which specific product 

attributes were important to users, a conjoint analysis was 
performed. Conjoint Analysis has been used to develop 
efficient survey designs by applying design of experiments 
(DOE) techniques to the design of surveys. Notable literature 
on conjoint analysis and experimental design include 
Louviere’s (1988) seminal paper and Green and Srinivasan’s 
review (1990). A main-effects, fractional factorial survey 

design was constructed for this conjoint analysis (Wu and 
Hamada, 2000). 

Because conjoint relies on “stated choice” survey data, 
rather than observed “revealed preference” data from the 
marketplace, there is always a concern that what consumers say 
on a survey may not match what they do in practice. The 
alternative, to use econometric analysis of past purchase data in 
the marketplace, involves a number of difficulties and 
significant assumptions on the structure of the market (such as 
endogeneity), since the experimenter is unable to do a 
controlled experiment. Additionally, such studies make it 
difficult to test consumer reaction to new product concepts that 
have not yet been produced. While it is possible to combine 
both types of data to reduce potential biases (Louviere et al, 
2000), for purposes of the current study, the conjoint survey 
was determined to be most appropriate.  

In a conjoint study, respondents are presented with a set of 
products or product descriptions which they have to evaluate. 
One way for respondents to indicate their preference is by 
either ranking or rating their preferred options from the given 
set. Here, a choice-based conjoint study is employed where 
respondents are asked to choose one alternative when presented 
with a set of alternatives so as to indicate form preference.   

The product attributes in this preference model were taken 

directly from the variables described earlier in the mathematical 
model: r, w, h, s, and α. This re-parameterization was chosen 
with the assumption that interactions between variables could 
be ignored and main effects would be enough. There was 
concern that unless the relationships between rx & w, and ry & 
h were further constrained that some potential designs would 
fall outside the allowable design space. Each of these four 
variables were broken into 3 distinct levels (covering the 
parametric space) and then combined into 8 levels, leaving out 
the combination of the largest values.  The eight s-values were 
each broken into four levels: 0%, 33%, 66%, and 100%. 

Table 3: Variable Discretization for Conjoint Analysis 
 Variable Unit 1 2 3 4 5 6 7 8 

x1 Rxw in Rx1w1 Rx1w2 Rx1w3 Rx2w1 Rx2w2 Rx2w3 Rx3w1 Rx3w2 
x2 Ryh in Ry1h1 Ry1h2 Ry1h3 Ry2h1 Ry2h2 Ry2h3 Ry3h1 Ry3h2 
x3 s1 % 0 33 66 100     
x4 s2 % 0 33 66 100     
x5 s3 % 0 33 66 100     
x6 s4 % 0 33 66 100     
x7 s5 % 0 33 66 100     
x8 s6 % 0 33 66 100     
x9 s7 % 0 33 66 100     

x10 s8 % 0 33 66 100     
x11 α1 radian 0.314 0.63 0.94 1.256     
x12 α2 radian 0.314 0.63 0.94 1.256     
x13 α3 radian 0.314 0.63 0.94 1.256     
x14 α4 radian 0.314 0.63 0.94 1.256     
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Rx1 = 16.23 in Ry1 = 19.25 
i

w1 = 3.03 
i

w1 = 3.03 in. 
Rx2 = 22.29 
i

Ry2 = 24.77 
i

w2 = 6.06 
i

h2 = 5.52 in. 
Rx3 = 28.34 
i

Ry3 = 30.28 
i

w3 = 9.09 
i

h3 = 8.28 in. 
 
The four α-values were likewise broken into six equal 

levels between zero and π/2 radians. To prevent calculation 
errors and colinearities between α and s, the outside values of 
zero and π/2 were dropped to leave four increments: 0.31, 0.63, 
0.94, & 1.26. It was determined that the crisp corners on some 
headlight designs would then be possible by having an s-value 
of zero, regardless of the tangent angle. 

This produces a total of 14 product attributes from which 
the rest of the variables can be calculated. These variable 
discretizations used in the conjoint analysis are summarized in 
Table 3. A full factorial of these attributes would produce over 
1 billion possible designs. 

Utilizing the statistical software SAS (Kuhfeld, 2003), it 
was found that 72 questions (each with 3 alternatives) 
involving 64 designs would be sufficient to estimate main- 
effects. While this might seem like a large number of questions, 
it was determined that the amount of time to answer each 
question is actually short due to the fact that the task is simply a 
comparison of pictures. The resulting survey is such that all 
designs are easily distinguishable from one another. While 
respondent fatigue is often a concern when designing surveys 
(Rea & Parker, 1997), based on feedback obtained from 
respondents, it was determined that respondent fatigue is not of 
major concern here.  

 

 
Figure 6: Example Survey Question  

 
It is interesting to note that each survey option (3 per 

question) consists of just a single drawing, as shown in Figure 
6. Respondents were asked to select one preferred design 
amongst the three alternatives presented in each question. The 
14 attributes are essentially hidden from the respondents, who 
only see a line drawing of a headlight being modified on a front 
view of a static vehicle. This survey was presented to 18 
graduate level mechanical engineers at Carnegie Mellon 
University. The results of the conjoint survey were 
subsequently used in determining the design with the maximum 
utility by  performing a discrete choice analysis, as described in 
the next sub-section. It is important to note that the preferences 
of the surveyed population are not representative of the U.S. 
market: The sample size is too small, and the respondent group 

is not representative; thus, the survey can be seen as a pilot 
study. Additionally, we do not account directly for preference 
heterogeneity in the population.  

Discrete Choice Model. Discrete choice analysis has 
enabled the modeling of consumer choices with uncertainty, 
where it is assumed that consumers exhibit utility maximizing 
behavior (Train, 2003). In our study, random utility models 
(RUMs) are used to relate aesthetic headlight attributes to 
observed individual choices. The derivation of this model 
assumes the existence of a set of J product alternatives 
numbered j = 1, 2,….., J, where each consumer (respondent) 
obtains a certain utility level from each alternative. The 
probability that the choice of alternative j is observed implies 
that alternative j possesses the highest utility:  

' ' 'Pr[ , ].j j j j j jP v v Jξ ξ= + ≥ + ∀ ∈          (4) 

Here, utility is composed of an observable, deterministic 
component vj for a product j, and an unobservable, error 
component ξj. The assumed distribution of this random error 
component determines the nature of the discrete choice model. 
For instance, choice probabilities take on a well-known closed 
form expression if they are derived under the assumption that 
the unobservable utility component is independently and 
identically distributed following the extreme-value distribution, 
as is the case for the popular logit model used here. 

In order to map product characteristics onto utility, a linear 
mapping of product characteristic levels (conjoint part-worths) 
is employed. Part-worths of discrete values provide no 
information about intermediate values, which are necessary to 
optimize over continuously valued product characteristics. In 
this work, cubic splines were used to interpolate between 
intermediate values. In the discrete case, the observable 
component of utility vj for a product j is:  

,
1 1

kLK

j kl jkl
k l

v β δ
= =

= ∑∑                (5) 

where δjkl is a binary dummy variable. Here, δjkl = 1 
indicates that alternative j possesses characteristic k at level l, 
and βkl is the part-worth coefficient of characteristic k at level l. 
Given a set of observed choice data, the preference coefficients 
β can be estimated such that the likelihood of the model 
predicting the observed data is maximized. A standard 
maximum likelihood formulation is used for estimation of the 
coefficients conditional on the data (Loviere et al., 2000).  

Once the coefficients were found, the values of the 
attributes that maximize utility can be found conditional on the 
β‘s. This was accomplished in two ways. For the α and s 
attributes, the β-values were plotted against the discretized 
attribute values and a cubic spline was matched to the points. 
An example is provided in Figure 7. Additional plots of β part-
worth coefficients versus α and s attribute values generated 
have been included in the Appendix. The peak of the cubic 
spline was found and thereby, the maximum β-value and its 
associated attribute value were estimated.  
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Figure 7: β vs. s2 

 
The Rxw and Ryh combinations are two-dimensional 

attributes, which were plotted against the β-values as the third 
dimension (Figure 8). There was a single point missing in the 
grid which had to be estimated before the optimal part-worth 
coefficients could be calculated. The β-value for this point was 
found using a truncated finite element method. Since the values 
surrounding this point are clearly below the maximum, it was 
determined that this was sufficient. The maximum β-value was 
then found using the coordinate descent method, which 
involves solving a multivariate problem by iteratively 
performing univariate search along each direction.  
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Figure 8: Rx & w vs β 

 
Preference Model Results. The maximum β-values and 

their related attribute values for the 14 attributes are 
summarized in the following table. It should be noted that 
while Rx & w and Ry & h share a maximum β-value, they have 
distinct attribute values. 

 
Table 3: Maximum β and Related Attribute Values 

 s1 s2 s3 s4 s5 s6 s7 s8 
βmax 0.7 0.7 0.5 0.8 0.9 0.7 0.6 0.9 
value 100 50 80 21 18 24.4 71.3 30 

 
 Rx w Ry h α1 α 2 α 3 α 4 
βmax 1.8 1.6 0.6 0.8 0.7 0.8 
value 22 6.8 24 5.9 1.3 0.3 0.3 0.3 

 

These β-values give a utility value, Umax = 9.18. When 
inserted into the formulation described earlier, this corresponds 
to the most preferred headlight design. For a comparison, the 
maximum utility of any of the sample designs used in the 
survey was 6.17. 

 

 
Figure 9: Headlight with Maximum Utility 

 
It is difficult to compare the final result directly to the 

existing headlight on the 2003 Honda Accord because the 
chosen Bezier curve representation is more restrictive than that 
needed to recreate the existing design. Still, the results are 
encouraging in that the headlights appear reasonable, the shape 
is relatively conventional (as would be expected when 
“averaging” preferences over a population with the aggregate 
logit model), and the solution is more conventional than most, 
if not all, of the alternatives in the survey. Future work could 
include generalization of the parametric shape class and a 
follow up survey to verify that the solution is indeed preferred 
by the respondents. 

4. CONCLUSIONS 
The measurement and understanding of consumer 

preference is a critical element to the product development 
process. Previous attempts at understanding qualitative 
attributes of product form and its implications have included 
the use of vector models, semantics and utility functions. In this 
paper preference is represented using utility functions directly 
related to the parametric form representation for a broad class 
of automobile headlight shapes and based on consumer survey 
choice data. Discrete choice conjoint models are used to 
measure consumer choices among a set of alternatives and 
determine which specific product attributes are important to the 
consumer. The study allows quantitative measurement of 
consumer preferences for a broad class of organic shapes and 
optimization of the design to maximize desirability. 

There are a number of possible areas for future 
improvements to the proposed approach. First, survey 
respondents for this study included a small group (18) of 
graduate engineering students who do not represent the ideal, 
diversified target market. Capturing the preferences of a 
diversified and statistically significant group of individuals 
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who characterize the target consumer demographic would make 
study results more practical for supporting vehicle design in 
practice. Furthermore, heterogeneity of preferences in the 
consumer population is not captured in the present model 
because the basic logit model aggregates preferences across the 
population. Mixture models could be used in the future to 
account for heterogeneity in order to determine which segment 
of the population is attracted to a particular design and to 
design product lines with variants that attract different 
segments (Michalek et al., 2006; Shiau et al., 2007). Inclusion 
of cost and profitability models in the future could also extend 
scope.    

The main-effects model used to design our survey is based 
on the assumption that interaction effects between headlight 
attributes can be assumed negligible. In the future, it would be 
insightful to determine if any of the interaction effects should 
be included and account for interaction effects between the 
attributes of the headlight as well as interaction effects between 
headlight attributes and other vehicle attributes. In good vehicle 
design there is a gestalt between the different individual 
features – the headlight and the grill, fender, hood line (see 
Lewin, 2003). In our study the headlight was varied 
independently of the body design, which remained fixed. Also, 
the current model is a 2-D representation of the headlight 
system. It would be useful and interesting to extend this to 
include a 3-D representation to add realism and include side 
views of the vehicle. However, as the complexity of the form 
increases, more variables will be required to describe the 
attribute space.  This, in turn, will create computational 
difficulty.  Orsborn et al. (2007) have shown that multi-
dimensional scaling techniques can be effective in reducing the 
design space while maintaining fundamental shape 
relationships. 

The parameterization used in the proposed model resulted 
in seventy-two questions (fractional factorial); so increasing the 
number of parameters to generalize the design space or 
attempting to account for interaction effects would make the 
conjoint survey very large. This could be addressed by giving 
respondents different sub-surveys or using adaptive conjoint 
techniques. However, exploring all curves on a vehicle body 
using the proposed method is not possible without a significant 
change in the approach. 

In conclusion, this paper presents a 2-D Bezier curve 
representation of a Honda Accord (2003 model year) headlight, 
which is used in conjunction with discrete choice analysis and 
conjoint analysis to capture form preference for a set of 
headlight design alternatives. The resultant headlight design 
with maximum utility (Figure 9) appears to be a reasonable and 
conventional design most preferred by survey respondents.  
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APPENDIX - SPLINE INTERPOLATED PART-WORTHS 
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Part-worth vs alpha 1
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