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Balancing Marketing and
Manufacturing Objectives
in Product Line Design
The product development process involves communication and compromise among inter-
acting and often competing objectives from marketing, design, and manufacturing per-
spectives. Methods for negotiating these perspectives play an important role in the pro-
cess. For example, design for manufacturing (DFM) analyses aim to incorporate
manufacturing requirements into product design decision making to reduce product com-
plexity and cost, which generally increases profitability. However, when design charac-
teristics have market consequences, it is important to quantify explicitly the tradeoffs
between the reduced cost and reduced revenue resulting from designs that are less ex-
pensive to manufacture but also less desirable in the marketplace. In this article we
leverage existing models for coordinating marketing and design perspectives by incor-
porating quantitative models of manufacturing investment and production allocation. The
resulting methodology allows a quantitative assessment of tradeoffs among product func-
tionality, market performance, and manufacturing costs to achieve product line solutions
with optimal profitability. �DOI: 10.1115/1.2336252�
Introduction
The era of globalization has influenced both product portfolio

ariety and the architecture of the manufacturing systems produc-
ng these products. Product designers work to reduce the cost of
heir products while offering product characteristics demanded by

heterogeneous market. Tools such as quality function deploy-
ent �QFD� have helped designers organize thinking about the

elationship between design decisions and stakeholder prefer-
nces, and research in design for manufacturing �DFM� has of-
ered practical methods for improving designs with respect to
anufacturing considerations �1–3�. However, few methods incor-

orate quantitative models for making tradeoffs between the rev-
nue and cost consequences of design changes that are less costly
o manufacture but also less desirable in the marketplace. For
xample, Taylor et al. �4� discuss how the strategy of “design to fit
n existing environment �DFEE�” can significantly reduce costs
y adapting new designs to fit the capacity and capability con-
traints of existing manufacturing equipment. In cases where de-
ign compromises have significant market consequences, how-
ver, an open question remains about how much to compromise
he desirable features of a new design in order to improve the
ccommodation on existing equipment.

Recent design research has explored the coordination of
erformance-based engineering design decision models with mod-
ls of business objectives. In particular, decision-based design
DBD� research has focused on utilizing the framework of deci-
ion theory to examine design decisions under uncertainty with
espect to a single objective function, called designer’s utility �5�.
his designer’s utility function is typically implemented in terms
f the producer’s downstream business objectives, such as profit
r market share, and consequently, research on understanding and
tilizing models that predict the effects of product characteristics
n these firm-level objectives has become critical to defining
BD problem statements fully �6�.
An array of methods has emerged, both within and outside the

Contributed by the Design for Manufacturing Committee of ASME for publica-
ion in the JOURNAL OF MECHANICAL DESIGN. Manuscript received February 24, 2005;
nal manuscript received December 14, 2005. Review conducted by David Kazmer.

aper presented at the ASME DETC DAC.

196 / Vol. 128, NOVEMBER 2006 Copyright ©
DBD label, to consider quantitatively the link between technical
decisions and business objectives �for example, �6–11��. Most of
these methods address the design of a single product; however,
two methods in particular address decision making for lines of
products, a more useful scope for the consideration of manufac-
turing investment and production allocation. Li and Azarm �11�
proposed a two-stage method that involves generating a set of
designs that approximates the Pareto surface and selecting candi-
date designs from this set to compose the product line. This
method is suited for products with characteristics that are mono-
tonically preferred by the entire consumer population, so that a
common Pareto set is defined for all potential users. An extension
to product characteristics that have different ideal values through-
out the population, such as the example examined in this paper, is
not obvious. Michalek �10� proposed an alternative method for
product line design using analytical target cascading �ATC� �13� to
coordinate a product planning subproblem with a set of engineer-
ing design subproblems. In this formulation the product planning
subproblem sets profitable target product characteristics for the
line based on a heterogeneous model of consumer preferences,
and each engineering design subproblem attempts to achieve tar-
get product characteristics for one product in the line subject to
engineering constraints. This second method, which determines
the optimal decisions for designs and prices in a product line, is
adopted here and extended to simultaneously determine optimal
decisions for manufacturing equipment investment and the fea-
sible allocation of component manufacturing tasks to purchased
machines. The result is a methodology that considers engineering
design decisions quantitatively in order to resolve tradeoffs not
only among performance objectives, but also between market
preferences and manufacturability.

The proposed methodology can be viewed as an approach to
facilitating communication in concurrent engineering. Research in
concurrent engineering �12� has aimed to move the product devel-
opment process from a sequential approach, Fig. 1, toward a con-
current process where the goals, preferences, and decisions of
interrelated disciplines are negotiated iteratively, Fig. 2. Herrmann
et al. �3� summarize: “As industries have grown in size and com-
plexity, marketing, design, and manufacturing departments have
evolved into separate organizations, each with �its� own special-

ized knowledge. While this makes the streamlined creation of
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omplex products possible, it has also increased the knowledge
nd communication barriers between these areas. In practice, en-
ineered systems are usually too complex to truly consider all
ssues simultaneously. More commonly, concurrent engineering
and DFM� is accomplished through an iterative “spiral” design
rocess. . . in which marketing experts, designers, manufacturing
ngineers, and other personnel jump back and forth between the
dentification of customer needs, design of the product, and as-
essment of manufacturing issues.” It is this iterative coordination
rocess that the proposed ATC methodology aims to address rig-
rously via the coordination of mathematical models from each
iscipline. Previous work has shown that the ATC coordination
rocess produces optimal solutions from a firm’s perspective that
re superior to those produced through a sequential approach
9,10�.

While much research in concurrent engineering and DFM fo-
uses on the early conceptual stages of product development, in
his paper we will assume that the general architecture of the
roduct and components have already been decided, and hence the
ocus will mainly be on determining physical properties such as
imensions of components across several products in the optimal
roduct line. Therefore, the proposed approach facilitates commu-
ication at later design stages where parametric models can be
alled upon to resolve tradeoffs quantitatively. The expected ben-
fits from such coordination and optimization can motivate the
evelopment of appropriate models in cases where models from
ome disciplines have not yet been built.

The remainder of the paper is organized as follows: In Sec. 2,
e review the ATC methodology and derive the mathematical
odels for the marketing planning, manufacturing investment,

nd engineering design subproblems. In Sec. 3, we provide a nu-
erical study to demonstrate an application of the proposed
ethod and compare how the product line decisions may vary due

o initial capacity portfolio. We conclude and present future work
n Sec. 4.

Fig. 1 A sequential product development process
Fig. 2 A concurrent process

ournal of Mechanical Design
2 Methodology
In the proposed methodology, shown in Fig. 3 with symbols

defined later in the text, decision models from design, business,
and manufacturing are coordinated with one another to make
tradeoffs with respect to a firm-level objective and thus reach a
consistent solution that is optimal for the firm. The coordination of
interdisciplinary decisions is built on models developed by
Michalek �10�. These formulations use analytical target cascading
�ATC� to organize and coordinate models from engineering design
and marketing in order to achieve jointly optimal product line
design solutions. ATC is a mathematical optimization technique
for decomposing a system into a hierarchy of subsystems and
coordinating optimization of each subsystem in such a way as to
achieve a consistent, optimal design for the overall system. Hier-
archical decomposition of a system can be advantageous in assist-
ing management of the system and reducing practical difficulties
associated with problem dimensionality, since the models of each
subsystem typically have fewer variables and constraints than the
combined full system model. ATC, unlike many multidisciplinary
design optimization �MDO� methods, is focused on models of
hierarchical systems, where each system in the hierarchy sets tar-
gets to be achieved by its subsystems. ATC has been applied to
automotive systems �13�, architecture �14�, and to multidisci-
plinary product development �9,10�.

ATC achieves joint solutions by setting targets at each level of
the hierarchy for the subsystems at the level below in order to
achieve targets passed by supersystems above. This procedure is
iterated at each level of the hierarchy until convergence. It was
proven by Michelena et al. �15� and later clarified by Michalek
and Papalambros �16� that separately solving subsystems in the
ATC hierarchy using certain coordination strategies can produce a
solution arbitrarily close to the solution obtained when the full
undecomposed system is solved altogether. Tosserams et al. �17�
also offer an alternative ATC formulation using augmented La-
grangian relaxation, which we adopt here. Li provides a compre-
hensive review and comparison of alternative approaches to coor-
dinating ATC sybsystems �30�.

In the present formulation marketing, design, and manufactur-
ing models are solved separately and coordinated via ATC to pro-
duce solutions that are optimal from the firm’s perspective. The
earlier model �10� accounts for marketing and design, but not
manufacturing. The new formulation includes manufacturing
models based on work by Sriraman et al. �18�. This extension is
nontrivial, and it adds substantial complexity to the ATC process.

The ATC hierarchy contains a marketing subproblem, a manu-
facturing subproblem, and one design subproblem for each prod-
uct j= �1,2 , . . . ,J� in the product line. The task of the marketing
subproblem is to set the price for each product in the line along
with targets for each product’s characteristics, production volume,
and cost, so that the predicted profit is maximized over a fixed
time period. Here, the term “product characteristics” refers to
quantitative aspects of the product observed by the customer re-
sulting from the detailed engineering design decisions. If impor-
tant aspects of the product cannot be quantified directly, other
methods are available for modeling perceptual attributes �e.g.,
Wassenaar et al. �19��, but this is beyond the scope of this paper.
Profit is predicted as a function of cost and demand, where de-
mand depends on the characteristics and prices of the products.
Without information from the manufacturing and design subprob-
lems, marketing would set low cost, high production volume, and
desirable product characteristics to maximize profit; however, co-
ordination with the other subproblems will ensure that these tar-
gets are mutually realizable at the solution. Target costs and prod-
uct characteristics passed to the product design subproblems are
achieved as closely as possible by manipulating the design of each
product. Likewise, production volume targets are achieved by al-
locating design of the product’s components to available machines
while ensuring that each component can only be made on ma-

chines capable of manufacturing the component design.

NOVEMBER 2006, Vol. 128 / 1197
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Life-cycle and dynamic manufacturing issues are not consid-
red in the model. Instead, it is assumed that a set of candidate
achine types are available for purchase, and the manufacturing

ubproblem manages decisions of how many machines of each
achine type will be purchased to match the cost targets set by
arketing, while simultaneously providing sufficient machine ca-

acity for producing the components designed in each engineering
esign subproblem. The production volume achievable for each
roduct depends on the amount of machine time available for that
roduct, so linking variables are included to coordinate machine
ime requests and allotments between the engineering design sub-
roblems and the manufacturing subproblem. In the following
ections, the mathematical formulation of each subproblem will
e described in detail.

2.1 Marketing Planning Subproblem. In the marketing sub-
roblem, shown in Fig. 3, decision variables include price pj,
arget production volume Vj

M, target unit material cost cj
M, and a

ector of target product characteristics z j
M set for each product j in

he product line, as well as a target for manufacturing investment
nd labor/operating cost CM. These variables are manipulated in
rder to maximize profit �. In the ATC framework, the target
alues are set in the marketing planning subproblem indepen-
ently of the corresponding values achieved by the manufacturing
CP� and engineering design �Vj

E, cj
E, z j

E� subproblems, which are
reated as fixed parameters in the marketing subproblem �see Fig.
�. The objective function contains additional terms � to minimize
eviation between each target value and its corresponding
chieved value, where deviation is measured using the augmented

Fig. 3 ATC coordination of marketing, eng
agrangian, following Tosserams et al. �17�. In this way the de-

198 / Vol. 128, NOVEMBER 2006
tails of the design, cost, and capacity allocation are handled out-
side of the marketing subproblem, but they are coordinated with
marketing targets for these values, which are driven by the profit
objective.

The predicted profit of the product line depends on the selling
price of each product, the costs incurred, and the demand for each
product. While price and cost targets are variables in the market-
ing subproblem formulation, demand is a function of the charac-
teristics and prices of the products. This functional relationship is
taken from Michalek �10�, who use discrete choice econometric
models fit to consumer choice data collected through a conjoint
survey to predict demand. A brief description of this model is
presented here, and interested readers may consult the reference
for full details.

The discrete choice demand model is a random utility model,
which assigns each individual a scalar utility value to each alter-
native in a choice set and models individual choice as a process of
selecting the alternative with the highest associated utility value.
Utility itself is not observed directly; however, aspects of the
choice situation, such as the characteristics of the product, can be
used to infer statistical patterns of choice through observation.
Specifically, the utility uij of a product j to an individual i consists
partly of a deterministic term �ij, based on observable, measurable
aspects of the choice scenario, and partly of a stochastic, unob-
servable error term �ij, so that uij =�ij +�ij. Utility is used to de-
scribe probabilistic choice, so that the probability Pij of individual
i choosing product j from a set of options is equal to the prob-
ability that uij �uij� for all alternatives j�� j in the set, so that

ering design, and manufacturing decisions
ine
Pij =Pr��ij +�ij � ��ij�+�ij��∀ j��j
�

Transactions of the ASME
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The observable component of utility �ij is a function of the
easured aspects of the choice situation. In the homogeneous

ase, only aspects of the product j are measured, not aspects of the
onsumer i, so �ij =� j = f�z j , pj�. This function can take different
orms, and here it is a spline interpolation of the main-effects
odel of the discretized product characteristics and price. Proce-

urally, z j and pj are compiled into a single vector of “attributes”
ith elements indexed by �; the domain of each attribute is dis-

retized into a finite number of levels �� indexed �=1,2 , . . .��;
binary dummy variable 	 j�� is defined such that dj��=1 if prod-
ct j has attribute � at level �, and 	 j��=0 otherwise; and finally
j =�����
��	 j���, where 
�� is the “part worth” or component
f utility associated with attribute � at level �. The values for the
�� coefficients in this main-effects model are determined by con-
ucting a choice-based conjoint survey generated using experi-
ental design techniques, where the levels of each attribute are

ystematically varied to reduce biases in estimating the model
sing a small number of survey questions �experiments�. Each
espondent is shown product profiles in a series of choice sets and
sked to choose one from each set. The resulting data are used to
stimate the best fit values of 
�� using classical maximum like-
ihood techniques or Bayesian methods.

In order to account for the heterogeneity of preferences in the
onsumer population, the 
�� coefficients may be assumed to vary
cross the population. In the present model the 
�� coefficients of
ndividuals are distributed following a mixture of multivariate
ormal distributions, and the parameters defining the mixing com-
onents are fit to the data using Bayesian Markov Chain Monte
arlo �MCMC� techniques. Finally, 
i�� coefficients are drawn

or a random set of individuals i from the mixture distribution,
nd a natural cubic spline function �i� is fit through the 
i��

oefficients at levels �=1,2 , . . . ,�� for each attribute � to inter-
olate 
 values of intermediate attribute levels for that individual.
sing these splines, �ij =�i0�pj�+���i��z j��, where price p is in-
exed as attribute �=0. Now, with the spline-interpolated function
or �ij estimated using survey data, it is possible to calculate the
bservable component of utility �ij for a product j with any given
roduct characteristics z j and price pj.
The form of Pij with respect to �ij depends on assumptions

bout the distribution of the unobserved error term �ij. The two
ommon assumptions are as follows: �1� Take �ij to be normally
istributed, resulting in the probit model, which requires multidi-
ensional integration to evaluate; or �2� take �ij to follow the

ouble exponential distribution, resulting in the logit model,
hich produces nearly indistinguishable results from the probit
odel for small to moderate data sets and results in a simple

losed form solution:

Pij =
exp��ij�

� j�
exp��ij��

�1�

his logit form is preferable for optimization, because it is quick
nd precise to evaluate. Finally, the demand qj for a product j can
e calculated by evaluating the average Pij across a number of
ndividuals i=1,2 , . . . , I and multiplying by the size of the repre-
ented population S. This model of product demand is summa-
ized in Fig. 3, and greater depth regarding the development of the
odel is available in Michalek �10�.
If the target production volume Vj

M of each product j is less
han or equal to demand, the resulting profit � can be calculated
s

� = � j
Vj

M�pj − cj
M� − CM �2�

f production volume were to be greater than demand, profit
ould be calculated in terms of demand rather than Vj

M, but here
constraint is included to ensure that Vj

M �qj �see Fig. 3�. It is
M
rue that Vj =qj at the solution, since it is not profitable to pro-

ournal of Mechanical Design
duce more or less than demanded, so it is not necessary to allow
Vj

M to deviate from qj in the formulation; however, this relaxation
speeds up convergence without compromising solution accuracy
since the profit objective ensures that the Vj

M 
qj constraint is
active at the solution.

The objective function of the marketing subproblem is to maxi-
mize profit � and minimize the deviation functions � measuring
deviation between targets and responses of the investment and
operating cost CM, unit material cost cj

M, product characteristics
z j

M, and production volume Vj
M, for all products j. The full formu-

lation of the marketing planning subproblem and its relationship
to the other subproblems is shown in Fig. 3.

2.2 Manufacturing Investment Subproblem. It is assumed
that a fixed set of machine types m= �1,2 , . . . ,M� is available
from which to choose and the firm must decide how many ma-
chines �m of each machine type to purchase. Here the possibility
of leasing or salvaging equipment is not considered; it is assumed
that equipment is purchased only for this product line; and the
cost of product-specific tooling is ignored; however, alternative
scenarios could be explored using the same general methodology.
For example, in Sec. 3 we explore a scenario where the firm owns
equipment at initial conditions. The manufacturing subproblem is
tasked with dividing up the purchased machine time among prod-
ucts in the line by setting decision variables Tjm

P , indicating the
amount of time on machine m allocated to product j. Only allo-
cation of machine time is considered here. Production issues such
as machine configuration, reliability �20� and sequencing �21� are
left for future work. If the parameter T represents the amount of
machine time available per machine in a fixed period �i.e., the
number of working hours over the period�, then �mT is the total
time available from �m machines. Therefore, Tjm

P is constrained
such that

� j
Tjm

P 
 �mT . �3�

In practice, each �m must be a non-negative integer �0,1,2,…�
because it is not possible to pay for a fraction of a machine at a
fraction of the cost to receive a fraction of the capacity. However,
the formulation is designed so that this requirement can be re-
laxed, permitting the purchase of fractional numbers of machines.
The solution to this relaxed problem will provide an upper bound
on the amount of profit achievable by the more realistic situation,
where �m is restricted to integers. One way to restrict �m to inte-
ger values is to do so explicitly in the formulation, resulting in a
mixed integer nonlinear programming problem, which requires
additional techniques �31�. However, to avoid using integer vari-
ables in this formulation, it is possible to restrict the �m terms to
integer values while working entirely in a continuous space: For a
particular value of a, the following constraint:

�� j
Tjm

P − aT��a + 1 − �m� 
 0 �4�

coupled with simple boundary constraints restricting Tjm
P �0, en-

sures that when fewer than �a+1� machines are purchased �i.e.,
when �m�a+1�, the total machine time allocated must not be
greater than aT, the time provided by a machines. A set of these
constraints for all a= �0,1 ,2 , . . . � enforced together ensures that at
least a machines must be purchased in order to use a machines
worth of time, for all values of a. In implementation, values of a
need only be considered up to the maximum number of machines
amax expected to be purchased. As a practical issue, the modeler
can generally estimate the order of magnitude of amax; however, if
the maximum value assumed for amax is too small, the solution
will yield �m�amax for some m, and the modeler will know to
increase amax. While this set of constraints enables operation in a
continuous domain and results in integer solutions for �m, it does
not resolve all difficulties. This set of constraints creates a non-

convex “stair step” shaped feasible region, and given the shape of

NOVEMBER 2006, Vol. 128 / 1199
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he objective function, there are many cases where the shape of
he feasible region creates several local minima: each at an integer
alue. Therefore, while the formulation allows operation in a con-
inuous domain, solving for the optimum integer value of �m re-
uires global search.

The strategy used here is to solve the relaxed problem �without
he constraints in Eq. �4�� to obtain an upper bound on the profit
chievable by the more restrictive problem. Next, starting from
he optimum of the relaxed problem, penalty functions represent-
ng Eq. �4� are added to the objective function with a penalty
oefficient parameter that increases over time until the solution is
orced out of the infeasible region. This procedure results in a
ocal minimum that is nearby the solution to the relaxed problem.
he solution is not guaranteed to be the global solution; however,

f it is within an acceptable deviation from the solution of the
elaxed problem, it may be considered an acceptable and useful
ocal solution.

Additionally, the cost of purchasing �m machines of type m is
iven by �mcm

I , where cm
I is the investment cost per machine of

ype m. The total cost to operate the machines of type m is

j�cm
OTjm

P �, where cm
O is the cost per unit time to operate machine

ype m �labor cost plus machine use cost�. The total production
ost CP is composed of investment and operating cost, so that

CP = �m �cm
I �m + � j

cm
OTjm

P � �5�

inally, the objective of the manufacturing subproblem is to mini-
ize the functions � measuring deviation from the cost targets
M passed from the marketing subproblem and the machine time

llocation linking variables Tjm
E , requested by each engineering

esign subproblem. The full formulation of the manufacturing
ubproblem is provided in Fig. 3.

2.3 Engineering Design Subproblems. In each engineering
esign subproblem, the product characteristics z j

E �the aspects ob-
ervable by the customer� are predicted as a function of the design
ariables x j �the aspects manipulated by the engineer� so that z j

E

a�x j�, where a is a typical parametric engineering analysis
odel or simulation. The engineering variables defining the de-

ign x j are optimized to achieve resulting product characteristics

j
E as close as possible to the targets z j

M set by marketing. Each
ngineering design subproblem must also attempt to meet produc-
ion volume targets Vj

M and unit material cost targets cj
M set by

arketing as well as match the machine capacity Tjm
P allocated by

anufacturing, as shown in Fig. 3 using the deviation functions �,
s before.

Production volume Vj
E of each product j is achieved by produc-

ng sufficient quantities of the components that comprise the prod-
ct, so the individual components l= �1,2 , . . . ,L� composing each
roduct j must be considered. The parameter �l defines the num-
er of units of component l contained in each product. Each com-
onent l may require several manufacturing operations n
�1,2 , . . . ,Nl�; for example, the production of a single component
ay require shearing, drawing, and bending operations. The pro-

uction of the operations n on the components l that make up the
roduct j must be allocated to machines m= �1,2 , . . . ,M� in such
way that each component design meets the capability require-
ents of each machine on which it is made and the total time

equests made for each machine do not exceed the amount of time
llocated. It is assumed that none of the designs in the product line
hare components. This is a limitation since it is common to de-
ign product families that share specific components among dif-
erent product designs in a line to save costs �22,23�; however,
uestions of commonality add significant complexity, and it is a
easonable first step to rule out this possibility.

The component production volume variable Vjlmn represents the
umber of units of component l in design j on which operation n

M
s performed by machine m. The production volume target Vj

200 / Vol. 128, NOVEMBER 2006
passed from marketing is achieved by producing enough of each
component to assemble Vj

M complete products, so Vj
E is con-

strained such that the manufacturing operations performed for
each component Vjlmn are sufficient to generate the parts for Vj

E

products.

�
m

Vjlmn � �lVj
E; ∀ j,l,n �6�

Second, the total amount of time needed to execute manufacturing
operations specified by Vjlmn must not exceed the amount of time
Tjm allocated to product j on machine type m. If rlmn�x j� is a
function specifying the time per unit to execute operation n on
component l with machine m for a design with variables x j, this
constraint can be represented as

�l �n
Vjlmnrlmn�x j� 
 Tjm

E ; ∀ j,m �7�

Finally, the production of a component l on a particular machine
m may only take place �Vjlmn�0� if machine m has the capability
to execute operation n on component l of product j. If glmn�x j� is
a vector of constraint functions that define the feasibility of ex-
ecuting operation n on component l with machine m as a function
of the design x j of product j, then Vjlmn can be greater than zero
only if glmn�x j�
0. If any constraint in glmn�x j� is positive, then
the machine constraints are not satisfied by the product compo-
nent, so operation n of component l cannot be performed on ma-
chine m,and Vjlmn must be exactly zero. This restriction can be
represented by the following set of constraints

Vjlmnglmn�x j� 
 0; ∀ j,l,m,n �8�

Taken in conjunction with the condition that Vjlmn�0, these con-
straints ensure the specified relationship, allowing designs x j the
freedom to be altered to meet machine constraints and ensuring
that components are not produced on machines if the design does
not meet machine constraints. While these constraints can be
implemented directly, it is advisable to implement them as penalty
functions to avoid numerical problems with the near-colinearity of
the gradients of Eq. �8� and the Vjlmn�0 constraint for large val-
ues of glmn.

Finally, the unit material cost cl
S of each component l is a func-

tion of the design x j, so that the total material cost cj
E

=�l�lcl
S�x j� is manipulated by changing design variables x j to

minimize the deviation from the unit material cost targets cj
M set

by marketing. The entire formulation for each engineering design
subproblem is shown in Fig. 3.

3 Example
To demonstrate the methodology described in the previous sec-

tion, the example from Michalek �10�, a dial-readout scale, is

Fig. 4 Design variables of the dial-readout scale „from
Michalek et al. †9‡…
extended to include manufacturing. Fig. 4, from Michalek et al.
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9�, shows the design variables x j used to define the design, and
able 1 lists fixed parameters. In the example, the case of four
roducts in the product line �J=4� is examined. The product char-
cteristics observed by the customer z j include z1�weight capac-
ty, z2�aspect ratio, z3�platform area, z4�gap size between dial
ick marks, and z5�size of dial numbers. The functions a�x� map-
ing x to z, and the constraints g�x� maintaining design feasibility
re listed in Table 2. Additionally, the heterogeneous demand
odel described earlier and implemented by Michalek �10� using

eal choice-based conjoint survey data, is used here in all calcu-
ations.

The software package DFMA: Design For Manufacture and
ssembly, by Boothroyd Dewhurst �24� was used to provide es-

imates of the manufacturing steps involved in producing the com-
onents of dial readout scales. For the example, the scope was
imited to the manufacture of five components: l=1, the cover; l

Table 1 Engineering design model parameters

escription Value

1: Gap between base and cover 0.30 in.
2: Minimum distance between spring and base 0.50 in.
3: Internal thickness of scale 1.90 in.
4: Minimum pinion pitch diameter 0.25 in.
5: Length of window 3.0 in.
6: Width of window 2.0 in.
7: Dist. top of cover to window 1.13 in.
8: Number of lbs measured per tick mark 1.0 lbs.
9: Horizontal dist. spring to pivot 1.10 in.
10:Length of tick mark � gap to number 0.31 in.
11: Number of lbs that number spans 16 lbs
12: Aspect ratio of number �length/width� 1.29
13: Min. allow lever dist. base to centerline 4.0 in.

Table 2 Constraint a

Formula

z1=
4�x6x9x10�x1+x2��x3+x4�

x11�x1�x3+x4�+x3�x1+x5��
z2=x14/x15

z3=x14x15

z4=�x12/z1

z5=
�2 tan��y11/z1��� 1

2x12−y10�
�1+ �2/y12�tan��y11/z1��

g1 :x8� �x14−2y1�− � 1
2x12+y7�−x7−y9−x10

g2 : �x1+x2�2
 �x14−2y1−x7�2+ � 1
2x15−y�2

g3 :x7+y9+x11+x8
x14−2y1

g4 : �x3+x4�
x14−2y1

g5 :x5
x1+x2

g6 :x12
x15−2y1

g7 :x12
x14−2y1−x7−y9

g8 : �x14−2y1−x7�2+y13
2 
 �x1+x2�2

Table 3 Compone

Part
Parts per
product

Material
cost �$/part� n

Machine
operation

Cover 1 $2.35 1 Shearing+h
2 Bending

Base 1 $1.93 1 Shearing+h
2 Bending

Long lever 2 $0.28 1 Shearing
Short lever 2 $0.16 1 Shearing

Rack 1 $0.07 1 Shearing
ournal of Mechanical Design
=2, the base; l=3, the �two identical� long levers; l=4, the �two
identical� short levers; and l=5, the rack. There are two of each
lever and one of each other component in each complete scale, so
the number of components per unit produced is �l� �1,1 ,2 ,2 ,1�
for l= �1,2 ,3 ,4 ,5�, respectively. Each of these components is pro-
duced with stamping machines. The cover and base require two
operations �N1=N2=2�: a shearing operation �n=1� followed by a
bending operation �n=2�, each performed with a compound die.
The levers and rack are each produced with a single shearing step
in a progressive die �N3=N4=N5=1�.

Material cost cl
S was also estimated per part. For simplicity, the

unit material cost was treated here as constant, rather than as a
function of the component dimensions; however, inclusion of unit
material cost as a function of design dimensions is straightforward
if data are available. Since the unit material cost is treated as
constant in this case, it need not be passed back and forth as a
target, so the material cost calculation is included directly in the
marketing subproblem to reduce the computational load. Finally,
the force required to perform each operation was estimated based
on the machine suggestions made by the DFMA software, along
with the time to load and unload each part �with the exception of
progressive die operations, where the load unload time is included
in the stamping time�. These data are summarized in Table 3.

A set of eight available machine alternatives �M =8� was com-
piled using the software, with information on machine dimen-
sions, force capacity, speed, and operating costs. Machine pur-
chase cost estimates were obtained through informal discussions
with Minster Machine Company except for machine m=8, which
was invented for the example. In the scenario tested, the company
owns eight machines of type m=8 and no other machines at initial
conditions, so that the company is free to use up to eight machines
of type m=8 at an investment cost of zero, and any other ma-
chines must be purchased. These machine data are summarized in
Table 4.

response functions

cription

ight capacity �lbs�

form aspect ratio
form area �in.2�
of gap between 1 lb interval marks �in.�
of number �length, in.�

ficient rack length to span pivot and pinion
g lever attaches to top edge of scale

k shorter than base when pivot is rotated 90°
rt lever length less than base length
er joint location less than lever length
l diameter less than base width
l diameter less than base length minus spring plate
g lever at least y13 away from centerline for balance

nd operation data

Force required
�tons� Process

Strokes
per part

Load/Unload
time per part �s�

100 Compound die 3 8.35
100 Compound die 3 8.80
100 Compound die 3 8.32
100 Compound die 3 8.71
60 Progressive die 1 NA
32 Progressive die 1 NA
45 Progressive die 1 NA
nd

Des

We

Plat
Plat
Size
Size

Suf
Lon

Rac
Sho
Lev
Dia
Dia
Lon
nt a

ole

ole
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Given these data, the rate function rlmn can be calculated for
ach operation n on each machine m for each component l by
ividing the number of strokes required per part by the machine
ress speed and adding the load/unload time. In general, rlmn may
e a function of the design variables x j; however, for simplicity in
his example it is taken to be constant with respect to x j. The time
eriod of interest T is set to one year, encompassing 52 weeks,
ve days per week without holidays, and eight hours per day with
o downtime for a total of 7,488,000 s machine time per machine
urchased. It is assumed that all machines are purchased in full at
he beginning of the year for production during that year only.
his is quite conservative, since most machines in the industry are
urchased with multiple years of production in mind; however,
hanging time periods or including machine leasing or resale op-
ions could be accommodated using financial discounting. The

achine constraints glmn ensure that the component is small
nough to fit in the machine bed, and that the machine has suffi-
ient force capacity to meet the component force requirements.
oth of these conditions are enforced only for cases where the
roduct j is being produced on the machine m �when Vjlmn�0�, as
escribed previously. Specifically, the machine bed constraints ap-
lied to the cover, base, long lever, short lever, and rack, respec-
ively, specify that

l = 1: x12,x14 
 bed width

l = 2: x13 − 2yl,x14 − 2ylt 
 bed width

l = 3: x1 + x2 
 bed width �9�

l = 4: x3 + x4 
 bed width

l = 5: x8 
 bed width

inally, the force capacity constraints specify that the machine
orce is greater than or equal to the component required force for
ach component, operation, and machine, using the relevant data
rom Tables 3 and 4.

3.1 Results. The ATC problem was solved using as a starting
oint the optimal design from Michalek �10�, which includes mar-
eting and design variables but not manufacturing variables, and
ll machine purchase �m and time allocation �Tjm

E , and Tjm
P � vari-

bles are set to zero. The solution was obtained in three stages:
irst the relaxed problem �omitting Eqs. �4� and �8�� was solved.
ext, the penalty functions representing the machine feasibility

onstraints in Eq. �8� were added to the objective function with a
enalty coefficient increasing iteratively, thus gradually forcing
he solution out of infeasible regions to achieve the machine-
easible solution. Finally, the penalty function forcing � to integer
alues �Eq. �4�� was added to the objective function with a penalty
oefficient increasing iteratively, thus gradually forcing it � to
nteger values and achieving the final feasible integer solution.
he final solution is not necessarily the global optimum, but it is
local optimum near the solution to the relaxed problem.
In the scenario examined, the firm owns 10 units of machine

Table 4 Machi

m Machine
Bed width

�in�
FORCE
�tons�

1 Minister P2H-160 33.5 180
2 Minister P2H-100 26 112
3 Minister OBI#4F 9 32
4 Minister OBI#5F 12 45
5 Minister OBI#6F 14 60
6 Minister OBI#7F 14 75
7 Minister E2-200 36 200
8 Legacy # H01 10.5 160
ype m=8, with a bed width of 10.5 in. �see Table 4�. This ma-
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chine cannot produce cover and base components �l=1,2� large
enough to achieve the scale shape �z2� and size �z3� desired in the
market. This raises the following question: Should the designs be
compromised in order to make them fit on existing equipment and
save cost, or is it worth the extra cost to produce designs the
market wants?

The proposed methodology resolves this question by finding the
most profitable compromise. To illustrate this compromise, three
separate cases are examined by enforcing case constraints on the
formulation. In the first case none of the products are compro-
mised �Vjlmn=0; ∀ l=1,2 ;m=8�, and the most marketable prod-
ucts are produced. In the second case the smallest product is re-
stricted to have edge lengths x13, x14
10.5 in. to allow
production of the base and cover on machine type m=8. In the
third case, the size of the smallest two products are restricted to
10.5 in. to allow production of the base and cover on machine
type m� 8. The results for the three cases are shown in Table 5.

In case 1, none of the four products in the line are compro-
mised, and each product has a length x13 or width x14 greater than
10.5 in. The cover and base cannot be made on machine type m
=8, so 24 units of machine type m� 2 are purchased for produc-
ing the cover and base of all four products. One machine of type

characteristics

ss speed
kes/min�

Machine
rate �$hr�

Operator
rate �$/hr�

Machine cost
�$thousands�

40 $22.10 $25.00 $335
60 $19.40 $25.00 $250
90 $16.30 $25.00 $75
85 $16.70 $25.00 $60
75 $17.40 $25.00 $90
70 $18.00 $25.00 $100
36 $22.80 $25.00 $200
60 $19.40 $25.00 $400

Table 5 Results from the three cases

Case 0 1 2
Revenue �mil� $95.8 $95.4 $94.2

Cost �mil� $28.6 $26.5 $25.7
Profit �mil� $67.3 $68.9 $68.5

�1
0 0 0

�2
24 17 15

�3
0 0 0

�4
0 0 1

�5
1 1 1

�6
0 0 0

�7
0 0 0

�8
8 8 8

j=1 Share 25.4% 24.2% 27.1%
j=2 Share 20.9% 18.9% 15.4%
j=3 Share 18.8% 20.6% 19.0%
j=4 Share 11.8% 12.1% 13.1%

Total Share 76.7% 75.7% 74.6%

j=1
x13

11.7 11.7 11.8
x14

10.3 10.3 11.9

j=2
x13

11.9 11.9 9.7a

x14
10.3 10.3 10.4a

j=3
x13

9.9 9.9a 10.0a

x14
10.8 10.5a 10.5a

j=4
x13

11.7 11.7 12.4
x14

11.9 11.9 11.3

a

ne

Pre
�stro
Dimensions compromised to fit on existing machine.
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=5 is purchased for producing the long levers, and machine type
=8 is used only for producing the short lever and rack �l
4,5�, resulting in a 12% capacity utilization of machine type
=8 and a 74% capacity utilization overall.
In case 2, the smallest product �j=3� is compromised to fit on
achine type m=8. The cover, base, and long lever for product 3

re made on machine type m=8, bringing it to 95% capacity uti-
ization of m=8, 99% utilization overall, and reducing the needed
nits of machine type m=2 from 24 down to 17. This design
ompromise saves $2 million in cost, but it also changes the prod-
ct characteristics and affects market share. Because of cannibal-
zation and pricing effects, the change causes the market share of
ome products to increase while of others to decrease �see Table
�, but overall revenue is decreased only slightly, and the total
rofit increases by $1.6 million.

In case 3, the next smallest product �j=2� is also compromised
o fit on machine type m=8. The base and cover components for
roducts 2 and 3 are made primarily on machine type m=8, bring-
ng it to 100% capacity utilization of m=8, 99% overall utiliza-
ion; allowing the rack and levers to be made on less expensive
quipment; and further reducing the number of needed units of
achine type m=2 from 17 down to 15. This second design com-

romise results in an additional cost savings of $0.8 million, but it
lso changes the product characteristics and affects market share.
gain, because of cannibalization effects, the market share of

ome products increase while of others decrease, but overall rev-
nue drops by $1.2 million, outweighing the benefits of cost sav-
ngs in manufacturing.

A comparison of these cases shows that while compromising
he design of a single product produces substantial cost savings
ith minimal market consequences, compromising two products

ufficiently reduces the desirability of the product line and its
bility to cover the market such that the reduced revenue out-
eighs additional cost savings. From a manufacturing perspec-

ive, case 3 may be preferred because it has the lowest cost and
chieves full utilization of machine m=8. From a marketing per-
pective, case 1 may be preferred because it best covers the di-
erse preferences of the market, resulting in highest revenue.
owever, from a firm’s perspective, case 2 is preferred because it

chieves the most profitable compromise between manufacturing
nd marketing concerns. Details of the resulting product line for
ase 2 are shown in Table 6, along with predicted market shares,
roduction volumes, selling prices, and component allocation to
achines.

Conclusions
A large body of literature exists in DFM and related fields for

ltering designs to improve manufacturability and reduce manu-
acturing costs. Few of these methods quantify the tradeoff be-
ween the revenue and cost consequences of making design
hanges that are desirable from a manufacturing perspective but
ndesirable from a marketing perspective. The method and the
xample explored in this article demonstrated that it can be worth-
hile to compromise a design in order to reduce manufacturing

osts, but if the compromise is too great, the loss in revenue due
o decreased market appeal can outweigh the cost savings. The
oordination of quantitative models that predict manufacturing
nd market consequences allow the evaluation of various sce-
arios to determine the right compromises from an overall busi-
ess perspective.

While the majority of work in DFM and concurrent engineering
ocuses on conceptual design, the proposed approach aims to fa-
ilitate communication at later design stages where parametric
odels can be called upon in order to resolve tradeoffs quantita-

ively. The modularity of the ATC-based methodology allows ad-
itional considerations, such as the manufacturing subproblem in-
roduced in this paper, to be added to an existing hierarchy

ithout starting from scratch. This modularity provides an oppor-

ournal of Mechanical Design
tunity for models in various disciplines to be built and used as
they become available and appropriate to the scope of interest
with minimal restructuring. The well-defined interfaces among
disciplinary models also provide structure to communication and
enable automatic search for consistent, optimal solutions through
algorithmic iterations, rather than costly human iterations.

Manufacturing decisions typically involve a number of inher-
ently discrete decisions, such as how many machines to purchase.
In the proposed formulation, these discrete decisions were repre-
sented by relaxing the problem to a continuous space and impos-
ing constraints to enforce solutions with discrete values. This for-
mulation creates multiple local minima, and gradient-based search
algorithms guarantee only local optimality. This application high-
lights the need for further research to extend the ATC methodol-
ogy to problems with discrete variables so that more complex
problems involving manufacturing decisions can be solved.

The example presented here was examined only for the case of
four products in the product line. Determination of the optimal
number of products in the line requires a comparison of separate
optimization runs for each case, as in Michalek �10�. The manu-
facturing formulation presented here does not allow the determi-
nation of the optimal number of products because tooling costs,
such as the purchase of dies, and setup costs are not included in
the formulation. Without these costs represented, the model pre-
dicts that increasing product variety is always profitable. It is left
for future research to incorporate setup costs and tooling costs into
the model.

There exist alternative ways to decompose the marketing, engi-
neering design, and manufacturing subproblems. The formulation

Table 6 Product line design solution

Product �j�

1 2 3 4

Vj
M �mil� 1.21 0.94 1.03 0.61

Share 24% 19% 21% 12%
z1

299 260 200 259
z2

0.971 1.155 0.941 0.982
z3

140 123 104 140
z4

0.099 0.117 0.121 0.116
z5

1.19 1.36 1.29 1.34

p $23.77 $25.59 $23.63 $30.00
x1

11.20 11.25 7.98 10.52
x2

0.69 0.46 2.03 1.51
x3

6.91 4.53 3.56 3.91
x4

1.22 4.29 4.59 4.78
x5

0.17 0.14 0.78 0.24
x6

189.78 167.44 19.38 182.10
x7

0.50 0.50 0.50 0.50
x8

4.35 6.28 2.28 3.20
x9

0.62 0.35 0.81 0.35
x10

0.67 0.96 1.72 0.79
x11

1.88 1.85 1.44 1.90
x12

9.46 9.70 7.68 9.52
x13

11.66 11.90 9.88 11.72
x14

12.01 10.30 10.50 11.94

�l ,n� Machines used �∀m :Vjlmn�0�

�1,1� 2 2 8 2
�1,2� 2 2 8 2
�2,1� 2 2 8 2
�2,2� 2 2 8 2
�3,1� 5 5 8,5 5
�4,1� 8,5 8,5 8,5 8,5
�5,1� 8,5 8,5 8,5 8,5
presented was designed to allocate as much complexity as pos-
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ible to the engineering design subproblems in order to improve
calability to lines of many products: With the inclusion of many
roducts, the marketing and manufacturing subproblems grow in
imensionality; however, each engineering design subproblem re-
ains constant in size. Scalability is also supported because the

elaxed manufacturing subproblem is linear in constraints and
uadratic in the objective function. Of course, as with all optimi-
ation methodologies, if the product-specific models themselves
ecome large, complex, of high dimensionality, or expensive to
ompute, finding solutions in acceptable amounts of time can be
ifficult, so models should be built at an appropriate level of detail
nd results interpreted with modeling assumptions in mind.

Finally, the current model is static in the sense that market share
s a deterministic function of the product characteristics and price,
nd demand does not vary over the time period in question. A
umber of potential extensions are possible such as modeling mar-
et dynamics by considering investment time �25�, demand fluc-
uation �26�, competitive interactions �27�, considerations of prod-
ct life cycle economic modeling �28�, and machine
econfiguration �29�.
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