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ABSTRACT 

The analytical target cascading (ATC) methodology for 
optimizing hierarchical systems has demonstrated convergence 
properties for continuous, convex formulations. However, 
many practical problems involve both continuous and discrete 
design variables, resulting in mixed integer nonlinear 
programming (MINLP) formulations. While current ATC 
methods have been used to solve such MINLP formulations in 
practice, convergence properties have yet to be formally 
addressed, and optimality is uncertain. This paper describes 
properties of ATC for working with MINLP formulations and 
poses a solution method applying branch and bound as an outer 
loop to the ATC hierarchy in order to generate optimal 
solutions. The approach is practical for large hierarchically 
decomposed problems with relatively few discrete variables. 
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1. INTRODUCTION 

Analytical target cascading (ATC) is a method for 
optimizing large, complex systems by decomposing them into 
hierarchies of subsystems and coordinating optimization of 
each subsystem (each hierarchy element) in order to achieve a 
consistent solution that is optimal for the overall system (Kim, 
2001). ATC has been applied to automotive design (Kim et al., 
2002), architecture (Choudhary, 2004), and multidisciplinary 
product development domains (Michalek et al., 2005, 2006). 
Allison et al. (2005) provide a detailed comparison between 
ATC and other approaches to multidisciplinary design 
optimization (MDO). The methodology achieves optimal 
system solutions by setting targets at each element in the 
hierarchy for its subsystems at the level below (its children) in 

order to achieve targets passed by elements above (its parent). 
This procedure is iterated at each level of the hierarchy until 
convergence. Early approaches used a quadratic penalty 
function to restrict deviation between target and response 
values, and Michelena et al. (2003) proved that iteratively 
optimizing individual elements of the hierarchy using certain 
coordination strategies will generate a solution that is optimal 
for the full (relaxed) system. Michalek and Papalambros 
(2005a) showed that the resulting solution will contain 
inconsistencies between subsystems if the top level targets are 
unattainable, and they proposed a method for reducing these 
inconsistencies within user-defined tolerances. Lassiter (2005) 
posed a Lagrangian relaxation formulation as an alternative to 
the quadratic penalty formulation, and Tosserams et al. (2006a) 
and Kim et al. (2006) extended this to an augmented 
Lagrangian formulation that improves applicability and 
computational properties. All of these approaches rely on 
convexity assumptions for convergence (Bertsekas, 1995), but 
any formulation involving discrete variables violates the 
continuity assumption. In practice, this limitation has been 
handled in one of three ways: (1) fix discrete variable values 
during optimization (ex., Choudhary, 2004); (2) relax the 
discrete variables to a continuous domain, either rounding the 
resulting solution or imposing penalty functions to produce 
integer solutions (ex., Michalek et al., 2006); or (3) use mixed-
discrete algorithms to optimize any subsystem involving 
discrete variables (ex., Kim et al., 2002). The first approach 
reduces the problem to a form that eliminates the discrete 
domain, so solutions are optimal with respect to the reduced 
problem; however, enumeration of all possible values for the 
fixed discrete parameters is necessary to identify the solution of 
the full problem. The second approach is a heuristic that can 
generate poor solutions to some problems (Wolsey, 1998). In 
the third approach, properties of the resulting solution have not 
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yet been determined. While it is clear that MINLP formulations 
do not satisfy the conditions of the ATC convergence proof, it 
is not known whether a more general proof might exist. In this 
paper, we demonstrate that this approach can produce 
suboptimal results, and we propose the use of branch and bound 
as an outer loop to achieve optimal solutions to MINLP ATC 
problems. 

 
2. ANALYTICAL TARGET CASCADING 

Several alternative notational systems have been used to 
describe and define ATC, depending on the application (Kim, 
2001; Michelena et al., 2003; Michalek and Papalambros, 
2005b; Tosserams et al., 2006a). Using Tosserams’s notation 
here for simplicity and generality, a system with a hierarchical 
structure of M elements at N levels (see Figure 1) is described 
so that objective fij and constraint functions [gij, hij] are 
organized by element: All variables local to only one element j 
at level i in the hierarchy are collected into the vector xij. For 
any variables common to element j and its parent element, two 
copies are created: the target tij, which is treated as a variable 
for the parent element, and the response rij, which is an output 
of the child element calculated by the element’s analysis 
function aij, so that rij = aij(xij, t(i+1)k1, ..., t(i+1)kcij) where {k1, …, 
kcij} indexes the set of children of element j at level i. With this 
notation, any linking variables shared by two elements that do 
not have a parent-child relationship are handled by creating 
copies of the variable at a shared parent element further up the 
hierarchy or by using a nonhierarchical decomposition 
(Tosserams et al., 2006b). The resulting formulation is nearly 
separable by element except for the condition that tij – rij = 0. In 
ATC, these consistency constraints are relaxed and moved to 
the objective function (using penalty functions or duality 
theory) by introducing a deviation function π(tij – rij) for each 
target-response pair in place of the constraints. Each subsystem 
Pij in the hierarchy solves the problem 
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In earlier versions of ATC π(tij – rij) = ||wij ○ (tij – rij)||2
2, where 

the ○ symbol designates term-by-term multiplication of vectors. 
This penalty function formulation does not yield separable 
subsystems, but constraint separability permits use of block 
coordinate descent (Bertsekas, 1995), and solutions can be 
obtained with arbitrarily small consistency deviation by 
choosing appropriate penalty weights w (Michalek and 
Papalambros, 2005a). More recently, Lagrangian relaxation has 
been proposed as alternative approach where the Lagrangian, 
λij

Trij, or augmented Lagrangian, ||wij ○ (tij – rij)||2
2 – λij

T(tij – 
rij), is used for π(tij – rij), and the dual is solved with an outer 
loop update of the Lagrange multiplier estimates λij using the 
subgradient (Lassiter, 2005; Kim et al., 2006) or the method of 
multipliers (Tosserams et al., 2006a). These methods have been 
shown to yield improved performance and solution accuracy. 
Whichever function is used, sequential solutions of each 
subsystem element are known to converge to local system 
solutions under certain coordination strategies for convex 
formulations. 

  
3. DISCRETE VARIABLES IN ATC 

 When the domain of any of the variables in x̄ is restricted 
to discrete values, the formulation is no longer convex on the 
real domain. It is tempting to hope that ATC coordination will 
successfully solve problems with discrete variables; however, 
even for some simple problems this turns out not to be the case. 
When using continuous variables, the deviation function π 
influences the objective function of each subsystem Pij such 
that small changes in the targets tij passed by the parent element 
produce small changes in responses rij achieved by the child 
element. However, when the child element contains integer 
variables in x̄ij, its responses rij are constrained to nonconvex 
regions by rij = aij(x̄ij). This means that when changes in target 
values become small relative to the discrete steps, the 
coordination strategy may converge prematurely. An example 
will illustrate the phenomenon: 
 
Example 

The following simple example is chosen for illustration 
because local variables, targets, response variables, and 
constraints can be plotted in a single two-dimensional space. 
The original non-decomposed problem is 
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with the solution x* = [2, 2]T. The relaxed problem, in which x 
∈\ 2, yields the solution x* = [22/13,

34/13]
T ≅ [1.6923, 2.6154]T, 

as shown with a * in Figure 2. In the ATC decomposition, 
introducing an identity response function and using the 
quadratic penalty function, the top level problem, labeled 
element 0 at level 0, is written as 
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Figure 1: ATC Hierarchy Element Notation 
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and the bottom level element, labeled element 1 at level 1, is 
written as 
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The ATC solution procedure for solving the relaxed 

(x∈\ 2) and non-relaxed (x∈] 2) cases of this two-element 
ATC hierarchy are examined using π(tij – rij) = ||wij ○ (tij – 
rij)||2

2 with w = [4,4]T. The ATC iteration history for solving the 
relaxed problem is shown graphically in Figure 2, where circles 
denote values of t11, squares denote r11, and the dotted line 
indicates the ATC iteration progress starting from the point x = 
t11 = r11 = [2,4]T. The final solution is t11 = [1.7470, 2.8617]T, 
r11 = [1.6047, 2.7905]T, which approaches the solution to the 
non-decomposed problem.1 Now suppose that we wish to solve 
the original MINLP problem in Eq.(2) using the same 
decomposition, but solving the subsystems using an algorithm 
capable of handling mixed-integer formulations (Floudas, 1995; 
Grossmann, 2002). The first iteration of the parent problem 
Eq.(3) yields t11 = [2,4]T, shown with a circle in Figure 3. Next, 
the solution to the child subsystem Eq.(4) is r11 = x11 = [1,4]T, 
the closest feasible integer value to the target. In the second 
iteration, the optimal solution for t11 in the parent formulation 
Eq.(3) is [2,4] or [1,4], depending on the value of w, and the 
solution to the corresponding child subsystem remains 
unchanged at r11 = x11 = [1,4]T, causing convergence. However, 
this result is far from the correct integer solution t11 = r11 = x11 
= [2,2]T, as shown in Figure 3.  

This example demonstrates that solving mixed integer 
subsystems in elements of the ATC hierarchy can result in 
incorrect solutions, even for this simple example containing 
                                                           
1 It is clear from the figure that the result produced by ATC using w = [4, 4]T 
has not reached the non-decomposed solution. This is expected, since the 
system targets are unattainable (Michalek and Papalambros, 2005a). A choice 
of larger w or use of the augmented Lagrangian formulation will yield a more 
accurate solution. These weights were chosen to illustrate the phenomenon. 

only a quadratic objective function, linear response functions, 
and a linear constraint. Thus, solving individual MINLP 
subsystems in the ATC hierarchy cannot be trusted, in general, 
to produce an optimal solution. 

4. THE BB-ATC APPROACH 
While integer solutions to individual ATC subsystems can 

produce unreliable results, it is still possible to use the branch-
and-bound technique as an outer-loop on the full ATC 
hierarchy to guarantee a correct integer solution when the non-
decomposed MINLP is convex on the relaxed domain.  

Branch and bound (BB) was first introduced as a technique 
for solving mixed integer linear programming problems by 
Land and Doig (1960). Dakin (1965) later modified the 
algorithm, making it more efficient and applicable to nonlinear 
problems. The basic method works by relaxing all integer 
variables to real numbers and solving a sequence of 
optimization problems in the relaxed domain while adding 
appropriate constraints to eventually force the relaxed variables 
to integer values. The sequence of optimization problems is 
generated as follows. First the relaxed problem is solved. If the 
value x* of a relaxed variable x at the solution is not an integer 
(x*∉] ), then two new problems are created, one in which the 
constraint x < ⎣x*⎦ is added to the formulation and another in 
which x > ⎡x*⎤ is added to the formulation. This is branching, 
and the two corresponding problems represent nodes of the 
branching tree. This branching process continues for each 
relaxed problem node until all relaxed variables have integer 
values at the solution or the node has been pruned. Pruning 
occurs either due to bounding or infeasibility: If the constraints 
of a particular node define a problem with no feasible solution, 
the node is pruned, and no further branching need take place. 
Bounding occurs when the optimal objective function value at 
one node in the tree is inferior to the best objective function 
value of a feasible integer solution previously found anywhere 
in the tree (the incumbent). This is true because the optimal 
solution of a relaxed problem provides a lower bound on the 
objective function value attainable by the integer solution. In 
this way, the branch and bound method performs implicit 
enumeration. Many variants of the basic algorithm have been 

 
Figure 2: ATC solution progress (w=4) Figure 3: ATC solution using integer algorithms at 

the subsystem level 
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proposed based on different branching and/or bounding 
strategies (Salkin, 1975; Taha, 1975; Wolsey, 1998). 

Critically, if the algorithm used to solve each node of the 
BB tree can produce global solutions, which is true for NLP 
techniques when the relaxed problem is convex, then BB will 
produce optimal integer solutions (Taha, 1975). Here, we wish 
to apply the BB technique to an ATC hierarchy. As noted 
previously, for convex problems the ATC hierarchy is proven 
to converge, within tolerance, to the solution of the 
corresponding non-decomposed problem. Since branch and 
bound involves solving a series of problems in the relaxed 
domain, the ATC hierarchy can be used in place of the non-
decomposed problem at each node of the BB tree without 
impacting BB convergence. Of course, this is only true if the 
inconsistency error between the ATC solution and the non-
decomposed solution is sufficiently small, so the augmented 
Lagrangian (Tosserams, 2006a) approach is recommended here 
over the simple quadratic penalty function (Michalek and 
Papalambros, 2005a) because it is able to find consistent 
solutions without the ill-conditioning caused by large weighting 
coefficients. If a local variable xij is an integer variable, the 
branching constraint is added only to xij in Pij, because xij is 
held constant in other subsystems. If a target-response variable 
pair (tij, rij) is an integer variable, the branching constraints are 
added both to tij in P(i-1)p and to rij in Pij.  

 
Example 

The example from Eq.(3)-(4) is solved here using BB with 
ATC. In this case, the BB tree is used to generate a series of 
relaxed problems. First, the fully relaxed problem is solved in 
the real domain, resulting in the solution x* = [22/13,

34/13]
T 

shown as an * in Figure 4. This is not an integer solution, so 
one of the variables is chosen for branching – in this case x2 is 
chosen arbitrarily, and two separate ATC hierarchies are 
created: one in which the constraint x2 < ⎣34/13⎦ = 2 is added to 
the child subsystem, and a second in which the constraint x2 > 
⎡34/13⎤ = 3 is added to the child subsystem. These two ATC 
hierarchies are solved separately, producing the solutions [2, 
2]T and [1.5, 3]T, shown as  and  in Figure 4 respectively. 
The first is an integer solution, but the second produces a non-
integer solution with an objective function value that is not 

bounded by the best known integer solution. So the non-integer 
variable x1 is used for a second branching step, and two more 
ATC hierarchies are created: one in which the constraint x1 < 
⎣1.5⎦ = 1 is added to the child subsystems, and another in which 
the constraint x1 > ⎡1.5⎤ = 2 is added to the child subsystems. 
The first of these two ATC hierarchies yields the solution 
[1,4]T, shown as  in Figure 4, which is bounded by the 
previous integer solution, and the second produces no feasible 
solution. Finally, the correct solution [2, 2]T is returned.  

Although the branching constraints are added only to 
subsystems of the ATC hierarchy that manipulate the relevant 
variables, the actual branching and bounding steps are 
performed as an outer-loop on the entire hierarchy, solving the 
hierarchy to convergence before adding new constraints for 
new nodes of the branch-and-bound tree. 

5. DEMONSTRATION 
To demonstrate the approach, a MINLP structural design 

problem, modified from Allison et al. (2005) and Tosserams et 
al. (2006a), is solved using both decomposed and non-
decomposed formulations for comparison. The problem 
involves three cylindrical cantilever beams connected in series 
via rods to support an applied load F1 = 1000lbs while 
distributing the reaction forces applied to the base. The three 
cantilevers (labeled A, C, and E) and the two rods (labeled B 
and D) are shown assembled in the upper box of Figure 5, and a 
free-body diagram of each component is provided in the lower 
boxes. The objective is to minimize the total mass m of the 
structure subject to stress constraints in the beams and reaction 
force constraints at the base. The design variables are the 
diameters d of each component, and they must be selected from 
a set of standard size cylindrical extrusions. The diameters 
available are D = {2-6mm in 0.5mm increments} ∪ {6-50mm 
in 1mm increments} ∪ {50-60mm in 2mm increments} ∪ {60-
200mm in 5mm increments}. The stress σ, deflection δ, and 
reaction force F of each component are calculated using 
standard beam theory (Hibbeler, 1993), as detailed in Figure 5 
and in Eq.(5)  where, following the above referenced work, the 
mass of the components and the bending moment at the base 
are ignored in calculating stresses and forces. All components 
are made from 6061-T6 Aluminum, with modulus of elasticity 
E = 70 GPa and density ρ = 2700 kg/m3. The maximum 
allowable stress⎯σ  = 127 MPa, the maximum allowable 
transmitted shear force at the base⎯F = 400N, and the 
maximum allowed deflection⎯δ = 50mm. The resulting 
optimization statement, before decomposition, is 
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Figure 4: ATC solution using branch and bound 



 5  

   

( ) ( )

( ) ( )

2 2
B A C B A C

2 3

3 3
1 2 2 3

A C4 4
A C

3
3

E 4
E

            ; ;
4 4

64 64
           ; ;

3 3

64
           .

3

Ed Ed
F F

L L
L F F L F F

Ed Ed

L F
Ed

π δ δ π δ δ

δ δ
π π

δ
π

− −
= =

− −
= =

=

 

 
The design of this structure can be decomposed so that 

each component is designed separately and coordinated via 
ATC to achieve a consistent system solution. In this 
decomposition, detailed in Figure 5, the top level problem 
minimizes total mass by allocating mass targets to each 
component. At the second level, each component is designed 
seperately to meet its mass target while maintaining 
consistency of force and deflection with neighboring 
components. This decomposition differes from the original 
decomposition proposed by Allison because the focus there was 
to compare ATC with multidisciplinary design optimization 
methods, whereas the decomposition presented here is more in 
the spirit of ATC as originally proposed by Kim (2001), where 
system-level design involves setting targets for subsystems and 
components. 

Table 1 details the solutions achieved by solving the 
undecomposed and decomposed versions of this problem with 
several methods: The relaxed solution is the solution to Eq.(5) 
allowing the d variables to be non-standard sizes (relaxed from 
D to R), and it provides a lower bound on the optimal standard-
size solution. In the next column, the relaxed solution is 
rounded off to the nearest standard component sizes to 
emphasize that simply rounding the relaxed solution is not a 
good approach in general, and in this case it leads to an 
infeasible design violating the stress constraint for component 
B. The results of applying branch and bound to Eq.(5) match 

the solution achieved by exhaustive search over the set D, as 
expected. Solving the decomposed relaxed problem described 
in Figure 5 using ATC with the augmented Lagrangian method 
yields the same solution as the non-decomposed relaxed 
problem. Importantly, when the decomposed formulation is 
solved using integer algorithms at ATC subsystems, the system 
optimum is not achieved. Results depend on the starting point 
and the value of β (Tosserams et al., 2006a), but in general this 
approach does not yield correct solutions. Finally, branch and 
bound is used as an outer loop in solving the full ATC 
hierarchy – solving the hierarchy completely before adding 
branching constraints to appropriate subsystems, as discussed 
previously. The result matches the solution found by applying 
branch and bound to the undecomposed problem, 
demonstrating the effectiveness of the approach. 

 
6. CONCLUSIONS 

Previous approaches to solving problems with discrete 
variables using analytical target cascading are limited because 
they do not consistently produce optimal results without 
exhaustive search over the discrete variable subspace. Here we 
have highlighted the hazards of solving subsystems in the ATC 
hierarchy using discrete methods, and we have proposed a 
remedy using branch and bound as an outer loop to the ATC 
inner loop. This approach yields correct solutions because 
every node of the branch and bound tree is solved in a 
continuous domain, avoiding violation of the preconditions for 
global convergence of ATC. The addition of a nested loop adds 
to the computational burden; however, the proposed approach 
can be practical for large hierarchical problems that have 
relatively few linking variables and integer variables. Future 
work will examine computational performance and explore 
alternative methods for exploiting the structure of ATC to 
improve computational efficiency for MINLP formulations.   
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Figure 5: ATC decomposition of the structural design problem 
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