
DIAGONAL QUADRATIC APPROXIMATION FOR PARALLEL

COMPUTING WITH ANALYTICAL TARGET CASCADING

THESIS

Presented to the Faculty of the Department of Mathematical Sciences

of Carnegie Mellon University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science

Yanjing Li

August, 2006

Approved for public release; distribution unlimited

DIAGONAL QUADRATIC APPROXIMATION FOR PARALLEL

COMPUTING WITH ANALYTICAL TARGET CASCADING

Yanjing Li

Approved:

Dr. Jeremy Michalek
Thesis Advisor
Department of Mechanical Engineering

Date

Dr. Zhaosong Lu
Thesis Advisor
Department of Mathematical Sciences

Date

Dr. Lorenz Biegler
Committee Member
Department of Chemical Engineering

Date

Table of Contents

Page

List of Figures . v

Abstract . vi

I. Introduction . 1

II. Overview of ATC . 4

2.1 System Structure . 4

2.2 Notation . 4

2.3 Mathematical Formulation . 6

III. Prior Consistency Constraint Relaxation Methods for ATC 11

3.1 The Quadratic Penalty Method 11

3.2 The Ordinary Lagrangian Method 13

3.3 The Augmented Lagrangian Method 16

3.4 The Augmented Lagrangian with Alternating Direction Method

of Multipliers . 21

3.5 Summary . 22

IV. Proposed Consistency Constraint Relaxation Methods for ATC 23

4.1 The Diagonal Quadratic Approximation Method 23

iii

Page4.2 The Truncated Diagonal Quadratic Approximation Method . . 28

4.3 DQA and TDQA with the Trust Region Technique 29

V. Results and Comparisons . 32

5.1 Example 1 . 33

5.2 Example 2 . 35

5.3 Example 3 . 38

5.4 Example 4 . 38

VI. Discussion . 43

VII. Conclusion . 44

Bibliography . 46

iv

List of Figures
Figure Page

1. Hierarchical problem structure and variable allocation for ATC 5

2. Variable allocation for ATC after introducing response copies 5

3. Nested coordination schemes for convergence of the ATC inner loop . 10

4. Quadratic penalty method flow chart 13

5. Ordinary Lagrangian method flow chart 16

6. Augmented Lagrangian method flow chart 20

7. Augmented Lagrangian with alternating directions method flow chart 21

8. Diagonal quadratic approximation method flow chart 26

9. Truncated diagonal quadratic approximation method flow chart 29

10. Example 1: Problem structure . 34

11. Example 1: Computational cost and throughput vs solution accuracy . 34

12. Example 2: Problem structure . 36

13. Example 2: Computational cost and throughput vs solution accuracy . 37

14. Example 3: Computational cost and throughput vs solution accuracy . 39

15. Example 4: Problem structure . 41

16. Example 4: Computational cost and throughput vs solution accuracy . 42

17. Summary of methods . 45

v

Abstract

Analytical Target Cascading (ATC) is an effective decomposition algorithm used for engi-

neering design optimization problems that have hierarchical structures. The overall system

is split into subsystems, which are solved separately and coordinated by target/response

consistency constraints. As parallel computing becomes more common, it is desirable to

have separable subproblems in ATC so that each subproblem can be solved concurrently

to increase computational throughput. Among the existing implementation methods, the

augmented Lagrangian approach is known to have the most stable convergence properties,

however, the augmented Lagrangian function is not separable due to the quadratic penalty

term. To overcome this drawback, we apply diagonal quadratic approximation (DQA) by

linearizing the cross term of the augmented Lagrangian function. An inner loop is used to

update the linearization by solving all subproblems in parallel, and an outer loop is used

to implement the method of multipliers. Local and global convergence proofs are described

for this method. To further reduce overall computational cost, we introduce the truncated

DQA (TDQA) method that limits the number of inner loop iterations. For both DQA and

TDQA, to ensure that the linearization approximation is accurate, choosing an appropriate

step size is the key, and we impose a trust region for this purpose. Empirical results show

that both the computational throughput and the overall computational cost of DQA are

superior to all nested loop methods, and that TDQA has lower overall computational cost

and throughput than the best previously reported results.

vi

DIAGONAL QUADRATIC APPROXIMATION FOR PARALLEL

COMPUTING WITH ANALYTICAL TARGET CASCADING

I. Introduction

Engineering design optimization problems often involve large, complex mathematical for-

mulations that are difficult to solve directly. Many methodologies have been developed to

support the endeavor of solving these design problems. A common approach is to decom-

pose the overall system into a number of interacting subsystems. By solving each subsystem,

and using a coordination scheme to ensure consistency, it is possible to obtain the optimal

solution for the overall system.

One category of engineering design optimization methods that employ decomposition tech-

nique is multidisciplinary design optimization (MDO). MDO methods are used to solve de-

sign problems incorporating a number of analysis models representing different disciplines.

Popular MDO methods include collaborative optimization (CO), concurrent subspace op-

timization (CSSO) and bi-level integrated system synthesis (BLISS). The analytical target

cascading (ATC) method differs from most MDO methods in that it is based on the hierar-

chical structure of a system by setting targets at the system level to be achieved by subsystem

designs [6]. Readers are referred to [2] for a discussion on the comparison between ATC and

CO.

Many of the MDO methods lack formal mathematical justifications and may experience

convergence difficulties [1]. ATC is one of the few methods that has been proven to con-

verge to the optimal system solution [12], [14], [18]. More recently, two methods used for

solving non-hierarchical quasiseparable problems, or dual block-angular problems, have been

1

proposed and theoretically and numerically justified. The dual block-angular problems con-

sist of a number of subsystems that are almost separable except for a few linking variables.

And these methods are the constraint margin method by Haftka and Watson [5] and the

augmented Lagrangian approach by Tosserams et al. [19]. ATC involves the translation of

hierarchical problems into dual block-angular structures. It is widely used in practical engi-

neering problems, such as automotive design [7] and multidisciplinary product development

[10], [11].

In ATC, top level design targets are propagated to lower levels, which are optimized to meet

the targets. The resulting responses are reballanced at higher levels to achieve consistency.

The optimal system solutions are obtained by an iterative process until target/response

consistency is achieved globally. All variations of implementation of ATC make use of a re-

laxation of the consistency constraint, by treating it as part of the objective function using a

quadratic penalty term, a Lagrangian term, or both. Whenever a quadratic term is present,

subproblems are not separable, and sequential computation needs to be carried out through-

out the hierarchical chain, thus introducing high computational cost. Although separability

can be obtained when using the ordinary Lagrangian function, the method often encounters

convergence difficulties due to the existence of duality gaps.

The goal of this thesis is to present two methods that overcome the drawbacks of the existing

methods. First, we apply diagonal quadratic approximation (DQA) to the augmented La-

grangian function to achieve separability and support parallelization. Both global and local

convergence properties of DQA are discussed. Second, a truncated DQA (TDQA) method is

proposed to further reduce overall computational cost. The trust region technique can also

be integrated into both DQA and TDQA. Empirical results of both methods are compared

with prior methods to demonstrate improvement.

The thesis is organized as the follows: In section 2, we give an overview of the ATC de-

composition method. In section 3, we summarize the existing methods for implementing

consistency constraint relaxation in ATC. In section 4, we present the process of DQA,

2

along with its theoretical justification, and introduce TDQA. The trust region technique

that can be used in DQA and TDQA is also discussed. Computational cost, solution ac-

curacies, and throughput performance are compared among different methods in section 5,

followed by a discussion in section 6 and conclusion in section 7.

3

II. Overview of ATC

A general procedure of the ATC decomposition process is described in this section.

2.1 System Structure

ATC is applicable for problems that have the following properties: First, the problem has a

hierarchical structure so that the top level design is a supersystem that consists of a number

of systems, each of which may consist of its own subsystems. For example, an automobile

may be composed of powertrain, body, and chassis, and the powertrain may be composed

of engine and transmission, etc. This model is general enough to account for any number of

levels in the hierarchy [14]. The objective function for the overall system can be described

as a sum of the objective functions of its components. Typically the objective function

is entirely at the system level. Second, the problem has a dual block angular structure,

or is quasiseparable, meaning that the subproblems are nearly separable except for a few

linking variables, as shown in Figure 1. Specifically, a parent and a child are connected

by a target variable, which represents a design specification that the parent imposes on its

child. This ’target variable’ may or may not be a variable in the original pre-decomposition

formulation. It is the response of the subsystem that has impact on the system performance

and it is usually the output of the subsystem engineering simulation function. The effects

of subsystem response on system behavior is what prevents subsystems from being designed

independent.

2.2 Notation

Different notations are used in describing and defining ATC, depending on the application

[6], [13], [14], [18]. In this thesis, we adopt the notational system of Tosserams et al. [18] for

simplicity. Consider a system that can be decomposed into N levels and M elements. The

subscript ij is used to denote the j th element of the system in the ith level. fij is the scalar

4

Figure 1 Hierarchical problem structure and variable allocation for ATC

Figure 2 Variable allocation for ATC after introducing response copies

objective function, and gij and hij are the inequality and equality constraints, respectively.

Local variables of element ij are denoted by xij . tij is the target variable of element ij

given by its parent, and it can be determined by an analysis model aij . Generally speaking,

this model is an engineering simulation or a set of equations predicting the behavior of the

subsystem. εi is the set of elements at level i, and ςij = {k1, ..., kcij
} is the set of children

of element ij, where cij is the number of children of this element. The system in Figure 1 is

shown corresponding to this notation.

5

2.3 Mathematical Formulation

By the assumption of the problem structure, and using the notation described above, the

hierarchical problem before decomposition, also known as the all-in-one (AIO) formulation,

can be described as:

min
x11,...,xNM

f(x11, ...,xNM) =
N∑

i=1

∑

j∈εi

fij(xij)

s.t. gij(xij) ≤ 0

hij(xij) = 0

tij = aij(xij)

where xij = [xij , t(i+1)k1
, ..., t(i+1)kcij

], ∀j ∈ εi , i = 1, ..., N (1)

As discussed above, a parent element shares target variables with each of its children, which

prevents the objective function and the constraint sets to be fully separable. In order to

separate the set of variables governed by each subsystem, response variable copies rij, corre-

sponding to the target variables tij and governed by the analysis function aij , are introduced.

Figure 2 shows the system structure and variable allocations after introducing the response

variables. In addition, to ensure target/response consistency, we need the following consis-

tency constraint :

θij = tij − rij = 0 (2)

We rewrite the problem as:

6

min
x11,...,xNM

N∑

i=1

∑

j∈εi

fij(xij)

s.t. gij(xij) ≤ 0

hij(xij) = 0

θij = tij − rij = 0

rij = aij(xij)

where xij = [xij , t(i+1)k1
, ..., t(i+1)kcij

], ∀j ∈ εi , i = 1, ..., N (3)

Note that the problem is almost separable except for the consistency constraints θij . For

decomposition purposes, the constraint is relaxed by an consistency constraint relaxation

function π, resulting in the relaxed AIO problem:

min
x11,...,xNM

N∑

i=1

∑

j∈εi

fij(xij) +

N∑

i=2

∑

j∈εi

π(tij − rij)

s.t. gij(xij) ≤ 0

hij(xij) = 0

rij = aij(xij)

where xij = [xij , t(i+1)k1
, ..., t(i+1)kcij

], ∀j ∈ εi , i = 1, ..., N (4)

For a general π, consider only the subset of the decision variables that are non-constant in

subsystem ij to obtain the general subproblem corresponding to each element:

7

min
xij

fij(xij) + π(tij − rij) +

cij∑

k=1

π(t(i+1)k − r(i+1)k)

s.t. gij(xij) ≤ 0

hij(xij) = 0

rij = aij(xij)

where xij = [xij , t(i+1)k1
, ..., t(i+1)kcij

] (5)

Note that in the above formulation, the variables tij and r(i+1)k for k = 1, ..., cij are con-

stants with respect to element ij. Depending on the consistency relaxation function π, the

subproblems may or may not be separable. If subproblems are separable, they can be solved

in parallel. Otherwise, sequential computation of each subproblem is required.

It can be shown that by sequencially and iteratively solving each subproblem as specified in

(5) in any cyclic order, convergence is guaranteed. This algorithm is called the block coordi-

nate descent, and the convergence result is applicable for any general relaxation consistency

function π. The following theorem summarizes the convergence result of block coordinate

descent and the proof is given in [3].

Theorem 1 Let xκ
ij denote the solution of (5) in the κth iteration with tij = tκ

ij and r(i+1)k =

rκ−1
(i+1)k for k = 1, ..., cij. Supposed that for all i and j, fij is continuously differentiable and

the constraint sets are independent, closed and convex. Furthermore, supposed that xκ
ij is

uniquely attained for all iterations. Let {xκ
ij} be the sequence generated by the block coordinate

descent method. Then, every limit point of {xκ
ij} is a stationary point.

In the theorem above, independence of the constraint sets is defined as the following:

Definition 1 Consider the following problem:

8

min
x

f(x) =

M∑

i=1

fi(xi) s.t. x ∈ X

where X is closed and convex. The constraint sets of the problem is independent if X is a

Cartesian product of closed convex sets Xi, ∀i = 1, ..., M : X = X1 × X2 × ... × XM where

xi ∈ Xi∀i = 1, ..., M .

In ATC literature, non-separable subproblems are handled in nested loop coordination

schemes that are carried out in a bi-level fasion, and the convergence proof for ATC [14]

is based on the nested schemes. Figure 3 shows two possible schemes. However, by the the-

orem above, the nested schemes are not necessary, and the block coordinate descent method

alone can produce convergence for any sequence of subproblem solutions.

The inconsistency relaxation function π has been approximated in three ways: a quadratic

penalty function [12], an ordinary Lagrangian function [9], or an augmented Lagrangian

function [8], [18]. Both the quadratic penalty and augmented Lagrangian approaches do

not allow separability of subproblems, and block coordinate descent is required to achieve

convergence, which limits efficiency. The ordinary Lagrangian approach does produce sepa-

rable subproblems. However, the method is not robust when duality gaps exist [17]. These

methods will be discussed in more detail in the following sections.

9

Figure 3 Nested coordination schemes for convergence of the ATC inner loop

10

III. Prior Consistency Constraint Relaxation Methods for ATC

3.1 The Quadratic Penalty Method

In early ATC literature, a quadratic penalty term was used as the constraint relaxation

function π. The basic idea in penalty methods is to eliminate the consistency relaxation

constraint and add to the objective function a penalty term that prescribes a high cost

to infeasible points. Associated with this term is a penalty parameter w = [wij , ∀i, j] that

determines the severity of the penalty and, as a consequence, the extent to which the resulting

unconstrained problem approximates the original constrained problem.

The general quadratic penalty function is defined as:

πQ(θij) = ||wij ◦ θij ||
2
2 (6)

where ◦ is used to denote the Hadamard product, so that (A ◦ (B))i = AiBi. With πQ, (4)

can be rewritten as:

min
x11,...,xNM

N∑

i=1

∑

j∈εi

fij(xij) +
N∑

i=2

∑

j∈εi

||wij ◦ (tij − rij)||
2
2

s.t. gij(xij) ≤ 0

hij(xij) = 0

rij = aij(xij)

where xij = [xij , t(i+1)k1
, ..., t(i+1)kcij

], ∀j ∈ εi , i = 1, ..., N (7)

Proper selection of weighting coefficients heavily impacts the performance of this method.

Generally speaking, as wij becomes larger the resulting inconsistency between tij and rij

11

pairs decrease. Convergence properties of the quadratic penalty method has been studied

thoroughly and can be shown as the following theorem. Readers are referred to [15] for more

details on proofs.

Theorem 2 Suppose that {xκ
ij} for all i and j is the sequence of exact global minimizers

of (7) for each fixed wκ. Then as wκ → ∞, every limit point of {xκ} is a solution of the

problem (3).

For each subproblem, we have:

min
xij

fij(xij) + ||wij ◦ (tij − rij)||
2
2 +

cij∑

k=1

||w(i+1)k ◦ (t(i+1)k − r(i+1)k)||
2
2

s.t. gij(xij) ≤ 0

hij(xij) = 0

rij = aij(xij)

where xij = [xij , t(i+1)k1
, ..., t(i+1)kcij

] (8)

With this formulation, constraint sets are separable, but the objective function is not. So we

need to make use of several inner loops that implement a nested block coordinate descent

method, iteratively carried out in a bi-level fashion throughout the hierarchical chain for

fixed w. Upon convergence of all inner loops, an outer loop is used to update w. It is

noted in [12] that while any positive wij can ensure convergence to a consistent solution

for problems that have attainable targets, no finite wij will lead to perfect consistency for

problems with unattainable targets. Prior approaches are either setting wij through trial and

error, or initializing it to a small value then increasing its value by a linear update scheme,

i.e., multiplying the current weight by a constant. However, the trial and error approach

can be difficult for large-scale problems. Michalek et al. [12] proposed an efficient weight

update method (WUM) for finding values of wij that achieve solutions within user-specified

inconsistency tolerances. It is demonstrated that WUM achieves better performance than a

constant wij

12

Figure 4 Quadratic penalty method flow chart

Figure 4 depicts the flow chart of the quadratic penalty (QP) method using the top-down

scheme for a 3-level system. The first two levels are solved until convergence as an inner loop,

then inner loop and third level are iterated until convergence. If the consistency deviation

limit is not met, w is updated using WUM and the process is repeated. Although we follow

the earlier ATC literature and use a nested coordination scheme, block coordinate descent

can also be used.

In practice, large penalty weight can cause ill-conditioning and the quadratic term prevents

each subproblem from being separable, preventing the sue of parallel computing.

3.2 The Ordinary Lagrangian Method

An alternative choice for the constraint relaxation function π, proposed by Lassiter et. al,

is an ordinary Lagrangian function [9]. This method (OL) is based on Lagrangian duality

theory [3], [15]. Let λ = [λij, ∀i, j] be the vector of Lagrangian multipliers. The consistency

constraint relaxation function is specified as:

πL(θij) = λT
ijθij (9)

13

With πL, (4) can be rewritten as:

Λ(λ) = min
x11,...,xNM

N∑

i=1

∑

j∈εi

fij(xij) +

N∑

i=2

∑

j∈εi

λT
ij(tij − rij)

s.t. gij(xij) ≤ 0

hij(xij) = 0

rij = aij(xij)

where xij = [xij , t(i+1)k1
, ..., t(i+1)kcij

], ∀j ∈ εi , i = 1, ..., N(10)

And the dual problem for (10) is:

max
λ

Λ(λ) (11)

Under convexity assumptions, the strong duality theorem holds and so there is no duality

gap. As a result, an iterative process can be carried out by first solving (10) with a fixed λ,

then update λ until convergence. In [3], the following theorems are presented.

Theorem 3 (Strong Duality Theorem for Linear Constraints) Let the objective func-

tions fij of problem (10) be convex and let the constraint sets be polyhedral. Assume that the

optimal value

f ∗ =

N∑

i=1

∑

j∈εi

f ∗

ij

is finite. Then there is no duality gap and there exists at least one Lagrangian multiplier.

Theorem 4 Assume that the Strong Duality Theorem for Linear Constraints are satisfied

for problem (10). If λ∗ is the optimal solution to (11), and if x∗ = [x∗

ij∀i, j] solves (10) with

λ=λ∗, then x∗ also solves (3).

14

For each subsystem, consider a fixed λij, we have:

min
xij

fij(xij) + λT
ij(tij − rij) +

cij∑

k=1

λT
(i+1)k(t(i+1)k − r(i+1)k)

s.t. gij(xij) ≤ 0

hij(xij) = 0

rij = aij(xij)

where xij = [xij , t(i+1)k1
, ..., t(i+1)kcij

] (12)

Note that since λT
ijtij and λT

(i+1)kr(i+1)k for all k are constants, we can drop them from the

objective function, resulting in the following subproblem:

min
xij

fij(xij) + λT
ij(−rij) +

cij∑

k=1

λT
(i+1)kt(i+1)k

s.t. gij(xij) ≤ 0

hij(xij) = 0

rij = aij(xij)

where xij = [xij , t(i+1)k1
, ..., t(i+1)kcij

] (13)

In this method, each subproblem is separable and can be solved in parallel, with fixed

Lagrangian multipliers. Starting with arbitrary Lagrange multiplier estimates, we update λ

using the subgradient method, defined as the following:

λκ+1 = λκ + τκθκ = λκ + τκ(tκ − rκ) (14)

The superscript κ denotes the number of iteration, and τ is a scalar representing the step

size. The subgradient method is proven to converge, under some assumptions shown in the

following theorem [9].

15

Figure 5 Ordinary Lagrangian method flow chart

Theorem 5 If the feasible set of the solution of (10)is bounded and a sequence of step size

τκ satisfies the conditions:

1. τκ → 0 as κ → ∞

2.
∑

∞

κ=1 τκ = ∞

then either the iterative process of the subgradient method terminates finitely at κ = κ∗ with

Λ(λκ∗

) = Λ(λ∗), or else an infinite sequence of iterates is generated such that Λ(λκ∗

) →

Λ(λ∗) as κ → ∞.

The iterative process using the ordinary Lagrangian function as the consistency constraint

relaxation function is depicted in figure 5.

By the theorems above, it is necessary that the strong duality condition holds in order to

obtain global convergence. This is the main drawback of this method since duality gaps may

exist [17], which limits application of the method for practical problems.

3.3 The Augmented Lagrangian Method

An improved method, the augmented Lagrangian method (AL) applied to ATC formulations

by Tosserams et. al [18] combines both the quadratic penalty term and the Lagrangian term,

which overcomes the drawbacks of both QP and OL. The Lagrangian term is used to avoid

ill-conditioning, since optimal solution can be obtained for smaller weights. The quadratic

16

term convexifies the problem to avoid duality gaps. The augmented Lagrangian function is

defined as the following:

πAL(θij) = λT
ijθij + ||wij ◦ θij ||

2
2 (15)

With πAL, the general problem is:

Λ̂(λ) = min
x11,...,xNM

N∑

i=1

∑

j∈εi

fij(xij) +
N∑

i=2

∑

j∈εi

[λT
ij(tij − rij) + ||wij ◦ (tij − rij)||

2
2]

s.t. gij(xij) ≤ 0

hij(xij) = 0

rij = aij(xij)

where xij = [xij , t(i+1)k1
, ..., t(i+1)kcij

], ∀j ∈ εi , i = 1, ..., N(16)

The dual problem for (16) is:

max
λ

Λ̂(λ) (17)

The following theorem is the basic convergence result of the augmented Lagrangian function.

Theorem 6 Assume that the objective and constraint functions are continuous, the con-

straint sets are closed, and that the set {x : h(x) = 0} is nonempty. For κ = 0, 1, ..., let xκ

be the local minimum of the problem Λ̂(λκ) with wκ, where λκ is bounded, 0 ≤ wκ ≤ w(κ+1)

for all κ, and wκ → ∞. Then every limit point of the sequence xκ is a global minimum of

the original problem.

For each subproblem, we have:

17

min
xij

fij(xij) + λT
ij(−rij) + ||wij ◦ (tij − rij)||

2
2 +

cij∑

k=1

[λT
(i+1)kt(i+1)k + ||w(i+1)k ◦ (t(i+1)k − r(i+1)k)||

2
2]

s.t. gij(xij) ≤ 0

hij(xij) = 0

rij = aij(xij)

where xij = [xij , t(i+1)k1
, ..., t(i+1)kcij

], ∀j ∈ εi , i = 1, ..., N (18)

Duality theory also applies to the augmented Lagrangian formulation so we can use the

same procedure as OL. However, the subproblems as shown in (18) are not separable due

to the quadratic penalty term. As a result, instead of solving all subproblems in parallel as

in OL, the nested block coordinate descent method is carried out as an inner loop for the

AL relaxation formulation, similar to the QP approach1. In order to achieve convergence,

we must update the Lagrange multipliers so they approach to the optimal values. The

augmented Lagrangian function allows the use of method of multipliers. The scheme for

selecting new terms λ from loop iterate κ to (κ + 1) is given by the following formula:

λ(κ+1) = λκ + 2wκ ◦ wκ ◦ θκ (19)

Convergence properties of the method of multipliers are presented as the following theorem

[3]:

Theorem 7 Assume that the objective function f : ℜn → ℜ and equality constraint func-

tions h : ℜn → ℜm are continously differentiable. For κ = 0, 1, ..., let

1Note that block coordinate descent method can also be used, but we follow the prior ATC literature to
use the nested scheme.

18

fAL(x, λ) =

N∑

i=1

∑

j∈εi

fij(xij) +

N∑

i=2

∑

j∈εi

[λT
ij(tij − rij) + ||wij ◦ (tij − rij)||

2
2]

where x = [x11, ...,xNM] and λ = [λ11, ..., λNM],

and let

x satisfy

||∇xfAL(xκ, λκ)|| ≤ σκ

with penalty weight wκ, where {λκ} is bounded, and {σκ} and {wκ} satisfy:

0 < wκ < wκ+1 ∀κ, wκ → ∞

0 ≤ σκ ∀κ, σκ → 0

Assume that a subsequence {xκ} converges to a vector x∗ such that ∇h(x∗) has rank m, then

{λκ + wκh(xκ)} → λ∗

where λ∗ is a vector satisfying, together with x∗, the first necessary conditions

∇f(x∗) + ∇h(x∗)λ∗ = 0

,

h(x∗) = 0

.

Note that in ATC, the equality constraint in the above theorem h cooresponds to the con-

sistency constraint function θ = t − r.

There are other ways of updating λ when using the augmented Lagrangian method. For

example, the subgradient update scheme is used in [8].

19

Figure 6 Augmented Lagrangian method flow chart

In AL, the penalty weight w is also updated. A linear scheme with constant scale β for

updating w is used in [18]:

w(κ+1) = βwκ, β ≥ 1 (20)

The augmented Lagrangian function approach is depicted in figure 6. Notice that the

quadratic term prevents subproblems from being separable, so the top-down coordination

scheme is used in the inner loop for finding the optimal solution with respect to fixed λ and

w, and the outer loop applies (19) and (20) for updating the Lagrangian multipliers and

penalty weights. In implementing the AL method, the update of w can also be separate

from the update of λ. w can be updated only if the improvement of the current iteration is

not large enough.

Although the augmented Lagrangian approach shows very stable convergence property, the

inner loop coordination scheme still induces large computational cost.

20

Figure 7 Augmented Lagrangian with alternating directions method flow chart

3.4 The Augmented Lagrangian with Alternating Direction Method of Multipliers

When using the augmented Lagrangian function, subproblems are not separable, thus in-

troducing the large computational cost of nested loops. To reduce computational cost,

Tosserams et. al [18] applied the augmented Lagrangian with alternating direction method

of multipliers (ALAD). The key observation is that all elements in the odd levels of the hier-

archy only depend on the elements in the even levels and vice versa, so it is possible to first

solve all odd-level elements in parallel, then all even-level elements, for a fixed number of

iterations. The Lagrange multipliers are then updated using the method of multipliers. The

penalty weight can also be updated. Contrary to QP or AL, a large penalty weight may have

negative effect on convergence, but a small penalty weight may result in unbounded subprob-

lems [4]. In [18], Tosserams et. al keep a constant w. Furthermore, the inner loop is solved

for only one iteration and the process is shown in Figure 7. This method is demonstrated to

be effective on all example problems, with superior computational properties compared to

QP and AL. It has been proven to converge under the assumption that the feasibility sets

are nonempty and the constraint sets are bounded [4]. This method is promising since it

demonstrates both good convergence properties and low computational cost [18].

21

3.5 Summary

Besides the ordinary Lagrangian approach, all other prior methods for consistency constraint

relaxation prevent parallel computation of subproblems. The ALAD method requires sequen-

tial computation of odd levels and even levels, and the QP and AL method require sequential

computation of all levels. As parallel and distributed computing power becomes more pop-

ular, it is desirable to have fully separable subproblems so that each subproblem can be

solved concurrently, and computational throughput can be improved. Since the ordinary

Lagrangian approach has convergence difficulties, and other approaches prevent separability,

we are motivated to explore alternate approaches.

22

IV. Proposed Consistency Constraint Relaxation Methods for ATC

4.1 The Diagonal Quadratic Approximation Method

As discussed previously, all existing methods have drawbacks. To overcome these drawbacks,

we apply the diagonal quadratic approximation (DQA) originally proposed in [16], where it

is used to solve block-angular structure problems. Proofs on convergence and convergence

rate are available for this method [16]. There are other variations of solving similar problems

using approximation techniques, for example, the method discussed in [17].

In the original paper, DQA is used to solve general dual block-angular structured problems

in the following form:

min
x

[f(x) =
L∑

i=1

fi(xi)] (21)

L∑

i=1

Aixi = b (22)

xi ∈ Xi, i = 1, 2, ..., L (23)

where f is convex, and X1, X2, ..., XL are nonempty closed convex sets. Our ATC for-

mulation as in (3) falls into this form for convex problems. First, the objective function is

separable with respect to individual subproblems. Second, the consistency constraint func-

tion is in the form (22). Third, the inequality and equality constraints g and h, now fully

separable, forms sets Xi. The approximation is applied on the cross term tij ◦ rij included

in the quadratic penalty term ||tij − rij||
2
2 in (16).

||tij − rij ||
2
2 = tij ◦ tij + rij ◦ rij − 2(tij ◦ rij) (24)

23

Using the Taylor expansion for multiple variable scalar functions up to the first order, a

linearization at the point t∗ij, r∗ij gives

tij ◦ rij
∼= t∗ij ◦ r∗ij + r∗ij ◦ (tij − t∗ij) + t∗ij ◦ (rij − r∗ij)

= r∗ij ◦ tij + t∗ij ◦ rij − t∗ij ◦ r∗ij (25)

Combining (24) and (25), we have:

||tij − rij||
2
2

∼= tij ◦ tij + rij ◦ rij − 2(r∗ij ◦ tij + t∗ij ◦ rij − t∗ij ◦ r∗ij)

= [t∗ij ◦ t∗ij + rij ◦ rij − 2(t∗ij ◦ rij)] + [tij ◦ tij + r∗ij ◦ r∗ij − 2(tij ◦ r∗ij)]

= ||t∗ij − rij||
2
2 + ||tij − r∗ij ||

2
2 (26)

By substituting (26) into (16) at t∗ij = tκ
ij and r∗ij = rκ

ij, where tκ
ij and rκ

ij are solutions

obtained from the previous iterations and are constant with respect to the problem of the

current iteration, we have derived the overall problem after applying DQA:

min
x11,...,xNM

N∑

i=1

∑

j∈εi

fij(xij) +

N∑

i=2

∑

j∈εi

[λT
ij(tij − rij) + ||wij ◦ (tκ

ij − rij)||
2
2 + ||wij ◦ (tij − rκ

ij)||
2
2]

s.t. gij(xij) ≤ 0

hij(xij) = 0

rij = aij(xij)

where xij = [xij , t(i+1)k1
, ..., t(i+1)kcij

], ∀j ∈ εi , i = 1, ..., N (27)

And for each subproblem:

24

min
xij

fij(xij) + λT
ij(−rij) + ||wij ◦ (tκ

ij − rij)||
2
2 +

cij∑

k=1

[λT
(i+1)kt(i+1)k + ||w(i+1)k ◦ (t(i+1)k − rκ

(i+1)k)||
2
2]

s.t. gij(xij) ≤ 0

hij(xij) = 0

rij = aij(xij)

where xij = [xij , t(i+1)k1
, ..., t(i+1)kcij

] (28)

The DQA approach consists of an inner loop and an outer loop. The inner loop is used to

improve linearization while the outer loop is used to implement the method of multipliers.

The general DQA method algorithm consists of the following steps.

1. initialize x, λ, and w, and set κ = 0, where κ denotes the number of outer loop

iteration.

2. set s = 0, where s is the inner loop iteration, and xκ+1,0 = xκ, where xκ+1,s is the

solution of the sth inner loop iteration and the current outer loop iteration, and xκ

is the final solution of the previous (κ − 1)st outer loop iteration upon inner loop

convergence.

3. for each element, solve for xij in (28) in parallel, and obtain xκ+1,s+1
ij .

4. if max(||tκ+1,s+1 − tκ+1,s||, ||rκ+1,s+1 − rκ+1,s||) ≤ σinner, where σinner is the inner loop

consistency deviation tolerance, set xκ+1 = xκ+1,s+1, and go to step 5. Otherwise, set

xκ+1,s+1 = xκ+1,s + τ(xκ+1,s+1 − xκ+1,s), where τ is the step size, set s = s + 1, and go

to step 3.

5. if max(||tκ+1 − tκ||, ||rκ+1 − rκ||) ≤ σouter, where σouter is the outer loop consistency

deviation tolerance, then stop, and set the optimal solution x∗ to be xκ+1; otherwise,

set κ = κ + 1, and update the Lagrange multipliers using the method of multipliers by

setting λκ+1 = λκ + w ◦ (tκ − rκ), and go to step 2.

25

Figure 8 Diagonal quadratic approximation method flow chart

Figure 8 is the flow chart of the DQA method. An we use the same update scheme as AL to

update the penalty weight w. Also, the consistency deviation tolerance for both the inner

loop σinner and the outer loop σouter should be significantly smaller than the step size τ to

prevent premature convergence.

Convergence is proven for the above algorithm with σinner = 0, as stated in [16]. For practical

purposes, however, we allow σinner to be very small but non-zero.

Theorem 8 Suppose that the constraint sets are bounded, and that the step size τ is signif-

icantly small. The following statements hold:

1. For all i,j, lims→∞(tκ,s+1 − tκ,s) = 0, lims→∞(rκ,s+1 − rκ,s) = 0

2. Each limit point of the sequence {xκ,s}∞s=0 is a solution of Λ̂(λκ).

The proof of the theorem is based on the estimation of the difference between the approxi-

mation and the augmented Lagrangian function. This estimation shows that a progress in

the former also introduces progress in the later. The step size τ plays an important rule

in the DQA method. Since linearization is only accurate in a neighborhood of the point at

which the linearization takes place, we use a small step size to obtain a good approximation.

As noted in [16] the step size τ is related to the number of linking variables. Proof of the

above theorem requires smaller τ for problems with a larger number of linking variables.

26

However, empirical results indicate that a step size close to 1 can bring convergence to all

example problems presented in this thesis.

Local convergence is also discussed in [16], and this property of DQA is based on the quadratic

growth condition of the augmented Lagrangian function, defined as the following:

Definition 2 (Quadratic growth condition) let

fAL =

N∑

i=1

∑

j∈εi

fij(xij) +

N∑

i=2

∑

j∈εi

[λT
ij(tij − rij) + ||wij ◦ (tij − rij)||

2
2]

,

and x∗ be the solution of

min
x

fAL

where x = [x11, ...,xNM]. The augmented Lagrangian function is said to satisfy the quadratic

growth condition if there is γ > 0 such that for every x,

fAL − min
x

fAL ≥ γ||x − x∗||22

.

Under the quadratic growth rate of the augmented Lagrangian function, the rate of conver-

gence for DQA is linear. However, other factors, such as a large number of linking variables

can slow down the progress [16].

As a variation, it is possible to linearize at the mid-point of the solution from the previ-

ous iteration (tκ+rκ

2
, tκ+rκ

2
). We obtain similar results as linearization at end points in all of

our test examples.

27

4.2 The Truncated Diagonal Quadratic Approximation Method

As will be discussed in the next section, DQA performs well on test problems in terms of

throughput vs solution error, but the overall computational cost is still high. From the ex-

periments, we have found out that much of the computational effort is spent on the inner

linearization loop. We have also observed that usually the inner loop progresses slowly and

introduces a high cost to reach the desirable inner loop convergence tolerance. However,

when the Lagrange multipliers are not optimal, high accuracy of the subproblem solutions is

not necessary, and the computational effort is wasted. It is more desirable to quickly update

the Lagrange multiplier to reach its optimal value. This can be achieved by limiting the

total number of inner loop iterations in DQA by treating it as a user-specified parameter

in a way that is similar to the ALAD approach, which reduces the computational cost for

solving the inner loop. Since some inner loop calculation is omitted in DQA, this method is

called the truncated diagonal quadratic approximation method, or TDQA. The outer loop

of TDQA implements the method of multipliers, same as DQA.

In order to minimize overall cost, only one iteration of computation is carried out in the

inner loop. The TDQA algorithm is given as the following:

1. initialize x0, λ, and w, and set κ = 0, where κ denotes the number of loop iterations.

2. for each element, solve for xij in (28) in parallel, and obtain xκ+1
ij = xκ

ij + τ(xκ+1
ij −xκ

ij)

where τ is the step size

3. if max(||tκ+1 − tκ||, ||rκ+1 − rκ||) ≤ σ, where σ is the outer loop consistency deviation

tolerance, then stop, and set the optimal solution x∗ to be xκ+1; otherwise, set κ =

κ + 1, update the Lagrangian multipliers using the method of multipliers by setting

λκ+1 = λκ + w ◦ (tκ − rκ), and go to step 2.

Similar to DQA, we also fix the penalty weight w in TDQA, and the outer loop σ should be

significantly smaller than the step size τ to prevent premature convergence. Furthermore,

we can also linearize at the mid-point of the solution obtained from the previous iteration.

28

Figure 9 Truncated diagonal quadratic approximation method flow chart

Again, empirical results show similar performance as linearization at end points. Figure 9

shows the process of the TDQA method.

Empirical results show promising results of the TDQA method. However, formal theoretical

justification is not available and needs future work. The intuition is that TDQA can be

considered as an approximation of the ALAD method. As long as the approximation is

accurate, solution of TDQA at each iteration is close to that of the ALAD method, and

convergence follows by the convergence property of the ALAD method. We can also impose

a strategy for increasing the total number of inner loop iterations when the improvement of

the actual function improvement is not large enough. In the extreme case when we allow

the limit of the number of inner loop iterations to achieve infinity, the method turns into the

DQA method and convergence can be obtained.

4.3 DQA and TDQA with the Trust Region Technique

From the discussion above, a drawback of DQA and TDQA method is that it is possible

to have a linearization at the current point that is a poor approximation to the augmented

Lagrangian function and convergence is not guaranteed. A small step size τ can ensure

accuracy of the approximation. However, if the step size is too small, convergence will be

significantly slowed down. As a result, some trial and error process is required for finding a

good value of the step size for practical applications.

29

An alternative approach for ensuring good approximation is to use a trust region. The basic

idea of trust region is simple. Let m be the original function and m̄ be the approximation of

m. To determine whether the current linearization is accurate, we estimate the ratio ρ of the

actual reduction to the predicted reduction between the current solution xnew and previous

solution xold:

ρ =
m(xnew) − m(xold)

m̄(xnew) − m̄(xold)
(29)

If ρ is close to one, then the linearization is accurate. On the other hand, whenever the ratio

ρ is far from one, it indicates that the step size for the current solution is too big and the

solution is not accurate, and it is necessary to impose a trust region to obtain a better move.

In the ATC context, let

PAL
ij (xij) = fij(xij) + ||wij ◦ (tij − rij)||

2
2 +

∑

k∈ςij

||w(i+1)k ◦ (t(i+1)k − r(i+1)k)||
2
2

+ λT
ij(tij − rij) +

∑

k∈ςij

λT
(i+1)k(t(i+1)k − r(i+1)k) (30)

PDQA
ij (xij) = fij(xij) + ||wij ◦ (tκ

ij − rij)||
2
2 +

∑

k∈ςij

||w(i+1)k ◦ (t(i+1)k − rκ
(i+1)k)||

2
2

− λT
ijrij +

∑

k∈ςij

λT
(i+1)kt(i+1)k (31)

and the reduction ratio is defined as

ρ =
P AL

ij (xκ+1
ij) − P AL

ij (xκ
ij)

P DQA
ij (xκ+1

ij) − P DQA
ij (xκ

ij)
(32)

30

For DQA, a trust region can be used in solving the inner loop in that the DQA formula-

tion of the augmented Lagrangian function is the approximation function for the augmented

Lagrangian function. By global convergence of the trust region method [15], the inner loop

solution obtained by using the trust region method converges to the solution obtained by

fully solving the augmented Lagrangian function. As a result, using the method of multipli-

ers in the outer loop, convergence for DQA with a trust region is attained.

The TDQA algorithm with trust region is given as the following:

1. initialize x0, λ, and w, and set κ = 0, where κ denotes the number of loop iterations.

2. for each element, solve for xij in (28) in parallel, and obtain xκ+1
ij

3. let ρ be specified as (32). if ρ ≥ γ, go to 4. Otherwise, shrink the step size by half and

check the condition. again. Keep shrinking step size bt half until ρ ≥ γ is attained. γ

= 0.25 is recommended in classical trust region strategies.

4. if max(||tκ+1 − tκ||, ||rκ+1 − rκ||) ≤ σouter, where σouter is the outer loop consistency

deviation tolerance, then stop, and set the optimal solution x∗ to be xκ+1; otherwise,

set κ = κ + 1, and update the Lagrangian multipliers using the method of multipliers

by setting λκ+1 = λκ + w ◦ (tκ − rκ), and go to step 2.

31

V. Results and Comparisons

For the purpose of a clear comparison among all ATC methods, we use the four examples

discussed in [18], in the same order. Readers are referred to [18] for a more in depth discussion

on the structures and properties of each problem. To make sure that the comparison is fair,

we use the same condition on terminating the update of the Lagrange multipliers for all

methods, as shown in the following:

max(||tκ − tκ−1||, ||rκ − rκ−1||) ≤ σ2 (33)

This is different from [18], where the termination condition is:

max(||(tκ − rκ) − (tκ−1 − rκ−1)||) ≤ σ2 (34)

We use a new criterion since (34) might result in premature convergence 1.

In this thesis, we compare the performance of different methods in the following two ways:

function evaluations vs solution error, and computational throughput vs solution error. So-

lution error of method C is defined as the the difference between the actual optimal solution

of the problem and the solution we obtained by using C, and the magnitude of the solution

error can be controlled by the convergence tolerance. The tighter the tolerance, the more

accurate the solution. At any given solution error, consider the function evaluations of C,

which indicates the overall computation cost for solving the problem using C, and the com-

putational throughput, which indicates the CPU time spent on solving the problem using C

1Generally speaking, three convergence criteria are widely used in the implementation of optimization
methods: gradient of the objective function is close to 0, objective function value stops changing, and
solution point stops changing. We are using the third method here, and for practical purposes, a small
non-zero convergence tolerance is given to determine when the solution stops changing.

32

assuming available parallel computing power. All tests are done in the same machine with

the same applications so comparison is fair2.

5.1 Example 1

The first example is a two-level decomposition of the geometric programming problem.

min
z1,...,z7

f = f1 + f2 = z2
1 + z2

2

s.t. g1 = (z−2
3 + z2

4)z
−2
5 − 1 ≤ 0

g2 = (z2
5 + z−2

6)z−2
7 − 1 ≤ 0

h1 = (z2
3 + z−2

4 + z2
5)z

−2
1 − 1 = 0

h2 = (z2
5 + z2

6 + z2
7)z

−2
2 − 1 = 0

z1, z2, ..., z7 ≥ 0 (35)

Figure 10 shows the structure of the problem.

Figure 11 shows results among different methods. The left plot is function evaluations as a

solution of solution accuracy. TDQA is close to but outperforms ALAD, since it uses fewer

function evaluations to achieve a specific solution accuracy. DQA requires slightly larger

function evaluations than AL when given a low solution accuracy, but less when given a

high solution accuracy. The right plot is computational throughput as a function of solution

accuracy. TDQA and DQA have better throughput compared to ALAD and AL, respectively.

And QP does not perform as well as any of the other methods.

2Application: Matlab Version 7.0 with Tomlab NPSol Solver Version 5.3; OS: SUSE Linux; Processor:
Intel(R) Xeon(TM) CPU 2.80GHz

33

Figure 10 Example 1: Problem structure

10
−6

10
−4

10
−2

10
0

10
2

10
3

10
4

10
5

solution error

fu
nc

tio
n

ev
al

ua
tio

ns

10
−6

10
−4

10
−2

10
0

10
−1

10
0

10
1

10
2

10
3

solution error

th
ro

ug
hp

ut
(s

ec
)

QP

AL

ALAD

DQA

TDQA

Figure 11 Example 1: Computational cost and throughput vs solution accuracy

34

5.2 Example 2

The second example problem is a three-level decomposition of posynomial geometric pro-

gramming problem.

min
z1,...,z14

f = f1 + f2 = z2
1 + z2

2

s.t. g1 = (z−2
3 + z2

4)z
−2
5 − 1 ≤ 0

g2 = (z2
5 + z−2

6)z−2
7 − 1 ≤ 0

g3 = (z2
8 + z2

9)z
−2
11 − 1 ≤ 0

g4 = (z−2
8 + z2

10)z
−2
11 − 1 ≤ 0

g5 = (z2
11 + z−2

12)z−2
13 − 1 ≤ 0

g6 = (z2
11 + z2

12)z
−2
14 − 1 ≤ 0

h1 = (z2
3 + z−2

4 + z2
5)z

−2
1 − 1 = 0

h2 = (z2
5 + z2

6 + z2
7)z

−2
2 − 1 = 0

h3 = (z2
8 + z−2

9 + z−2
10 + z2

11)z
−2
3 − 1 = 0

h4 = (z2
11 + z2

12 + z2
13 + z2

14)z
−2
6 − 1 = 0

z1, z2, ..., z14 ≥ 0 (36)

Figure 12 shows the structure of the problem.

In this example, DQA and TDQA behave similarly as in Example 1. The differences are

that in terms of function evaluations, DQA has a lower number than AL while obtaining a

more accurate solution. And in terms of computational throughput, since each subproblem

is more difficult than example 1, parallelization dramatically reduces throughput, so DQA

and TDQA outperforms AL and ALAD in orders of magnitude. QP does not perform as

well as any other methods.

35

Figure 12 Example 2: Problem structure

36

10
−5

10
0

10
3

10
4

10
5

10
6

10
7

solution error

fu
nc

tio
n

ev
al

ua
tio

ns

10
−5

10
0

10
0

10
1

10
2

10
3

10
4

solution error

th
ro

ug
hp

ut
(s

ec
)

QP

AL

ALAD

DQA

TDQA

Figure 13 Example 2: Computational cost and throughput vs solution accuracy

37

5.3 Example 3

The third example is a slight variation of the second one, changing only the objective function

so the targets are attainable. The objective function is now minz1,...,z14
f = f1 + f2 =

(z1 − 2.9)2 + (z2 − 3.1)2.

In this problem, as discussed in [18], the Lagrange multipliers were originally set to 0, which

happens to be the optimal value for this problem. In DQA, all computational effort is spent

on improving the linearization, since the Lagrange multipliers do not need to be updated.

This behavior is similar to AL and QP. In TDQA, since in the first iteration the linearization

might not be perfect, the Lagrange multipliers will first be driven away from its optimal value,

and eventually, as the solutions get closer to their optimal value, the Lagrange multipliers

also tend to their optimal value. And this behavior is similar to ALAD. Since no update of

Lagrange multipliers is necessary, AL or DQA do not have an advantage over QP any more.

Indeed, in this example shows a better performance in QP. However, DQA still outperforms

QP and AL in terms of throughput. Between TDQA and ALAD, TDQA has less total

number of function evaluations and has significantly lower throughput than ALAD.

5.4 Example 4

The fourth example is a structured optimization problem based on the analytical mass allo-

cation problem.

38

10
−8

10
−6

10
−4

10
−2

10
0

10
3

10
4

10
5

solution error

fu
nc

tio
n

ev
al

ua
tio

ns

10
−8

10
−6

10
−4

10
−2

10
0

10
0

10
1

10
2

10
3

solution error

th
ro

ug
hp

ut
(s

ec
)

QP

AL

ALAD

DQA

TDQA

Figure 14 Example 3: Computational cost and throughput vs solution accuracy

39

min
d1,d2,dr,1,dr,2

3∑

i=1

mi +
2∑

j=1

mr,j

s.t. g1,i = σb,i − σ ≤ 0, i = 1, 2, 3

g2,j = σa,j − σ ≤ 0, j = 1, 2

g3,i = Ft,i − Ft ≤ 0, i = 1, 2, 3

g4 = f1 − f1 ≤ 0

h1 = fi − fi+1 − fr,i = 0, i = 1, 2

where mi =
π

4
d2

i Lρ, i = 1, 2, 3

mr,j =
π

4
d2

r,jLρ, j = 1, 2

σb,i =
32L(Fi − Fi+1)

πd3
i

, i = 1, 2, 3

fi =
64L3(Fi − Fi+1)

3πEd4
i

, i = 1, 2, 3

σa,j =
4Fj+1

πd2
rj

, j = 1, 2

fr,j =
4Fj+1L

πEd2
rj

, j = 1, 2

ρ = 2700kg/m3

E = 70GPa

F1 = 1000N (37)

Figure 15 shows the structure of the problem.

The result is very similar to that in example 2. DQA and TDQA outperform AL and ALAD

respectively in terms of function evaluations and throughput at any solution accuracy, while

QP doesn’t perform as well as any other methods.

40

Figure 15 Example 4: Problem structure

41

10
−5

10
−4

10
−3

10
−2

10
−1

10
3

10
4

10
5

10
6

solution error

fu
nc

tio
n

ev
al

ua
tio

ns

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

solution error

th
ro

ug
hp

ut
(s

ec
)

QP

AL

ALAD

DQA

TDQA

Figure 16 Example 4: Computational cost and throughput vs solution accuracy

42

VI. Discussion

The biggest advantage of both DQA and TDQA is their ability to separate subproblems

for parallel computation. This property is highly desirable, especially in large-scale prob-

lems: Since each subproblem is separable, nested loops of the iterative coordination process

is avoided. Moreover, since each problem can be solved in parallel, throughput is greatly

increased. Although we only present DQA and TDQA in solving ATC decomposition prob-

lems, these methods can be used in a wide variety of decomposition methods. When DQA

was first proposed in [16], it was intended for solving general dual block-angular problems.

And TDQA can be applied to any problems that DQA can apply to. For example, in [19],

and augmented Lagrangian approach is used in solving non-hierarchical dual-block angular

problems, and DQA and TDQA can also be used for solving these problems. It is expected

that DQA and TDQA will perform similarly in nonhierarchical decomposition schemes as in

ATC.

Despite the good empirical results of TDQA, it lacks a formal convergence proof, and future

work is required for obtaining proofs on convergence properties of TDQA.

43

VII. Conclusion

In this thesis, we have presented the diagonal quadratic approximation method (DQA) and

the truncated diagonal quadratic approximation method (TDQA) used in handling consis-

tency constraint relaxation in ATC. Moreover, the trust region method can be integrated

into both the DQA and the TDQA method. The DQA method is supported by theoret-

ical justification. Fundamental results show that DQA has comparable solution accuracy

and total cost to the augmented Lagrangian method, but it greatly improves throughput

because of parallelization, and that TDQA has the least total cost and best throughput at

any solution accuracy of all methods presented. The DQA method has proofs for local and

global convergence, and proofs for TDQA are left for future work. A table summarizing all

methods is shown in Figure 17.

The proposed methods overcome many of the concerns with ATC and other decomposi-

tion methods, such as convergence, ill-conditioning, and computational cost associated with

the coordination solution strategies. In the empirical examples, DQA and TDQA perform

comparably or better than AL and ALAD respectively in terms of function evaluations, and

the separability afforded by DQA and TDQA allows many of these function evaluations to

be computed in parallel, dramatically improving throughput. The proposed methods are

highly promising for solving general decomposition problems.

44

Figure 17 Summary of methods

45

Bibliography

1. N.Y. Alexandrov and R.M Lewis. “Analytical and computational aspects of collaborative

optimization for multidisciplinary design”. AIAA Journal, 40(2):301 – 309, February

2002.

2. J. Allison, M. Kokkolaras, M. Zawislak, and P. Papalambros. “On the use of analytical

target cascading and collaborative optimization for complex system design”. In Proceed-

ings of the 6th World Congress on Structural and Multidisciplinary Optimization, Rio

de Janeiro, Brazil, 2005.

3. D.P. Bertsekas. Nonlinear Programming. Athena Scientific, Belmont, Massachusetts, 2

edition, 2003.

4. D.P. Bertsekas and J.N. Tsitsiklis. Parallel and Distributed Computation. Prentice-Hall,

1989.

5. R.T. Haftka and L.T. Watson. “Multidisciplinary design optimization with quasisepa-

rable subsystems”. Optimization and Engineering, 6(1):9 – 20, March 2005.

6. H.M. Kim, N.F. Michelena, P.Y. Papalambros, and T.Jiang. “Target cascading in opti-

mal system design”. Journal of Mechanical Design, 125(3):474 – 480, September 2003.

7. H.M. Kim, M.Kokkolaras, L.S. Louca, G.J. Delagrammatikas, N.F. Michelena, Z.S. Fil-

ipi, P.Y. Papalambros, J.L. Stein, and D.N. Assanis. “Target cascading in vehicle re-

design: a class vi truck study”. International Journal of Vehicle Design, 29(3):199 –

225, 2002.

8. H.M. Kim, W.Chen, and M.M. Wiecek. “Lagrangian coordination for enhancing the

convergence of analytical target cascading”.

9. J.B. Lassiter, M.M. Wiecek, and K.R. Andrighetti. “Lagrangian coordination and ana-

lytical target cascading: Solving ATC-decomposed problems with lagrangian duality”.

Optimization and Engineering, 6(3):361 – 381, September 2005.

46

10. J.J. Michalek, O. Ceryan, P.Y. Papalambros, and Y.Koren. “Balancing marketabil-

ity and manufacturability in product line design decision-making”. ASME Journal of

Mechanical Design, 2006.

11. J.J. Michalek, F.M. Feinberg, and P.Y. Papalambros. “Linking marketing and engi-

neering product design decisions via analytical target cascading”. Journal of Product

Innovation Management, 22:42 – 62, 2005.

12. J.J Michalek and P.Y. Papalambros. “An efficient weighting update method to achieve

acceptable inconsistency deviation in analytical target cascading”. Journal of Mechanical

Design, 127(3):206 – 214, March 2005.

13. J.J. Michalek and P.Y. Papalambros. “Weights, norms, and notation in analytical target

cascading”. Journal of Mechanical Design, 127(3):499 – 501, May 2005.

14. N. Michelena, H. Park, and P.Y. Papalambros. “Convergence properties of analytical

target cascading”. AIAA Journal, 41(5):897 – 905, 2003.

15. J. Nocedal and S.J. Wright. Numerical Optimization. Springer series in operations

research. Springer, 1999.

16. A. Ruszczynski. “On convergence of an augmented lagrangian decomposition method

for sparse convex optimization”. Mathematics of Operations Research, 20(3):634 – 656,

August 1995.

17. G. Stephanopoulos and A. W. Westerberg. “The use of hestenes’ method of multipliers to

resolve dual gaps in engineering system optimization”. Journal of Optimization Theory

and Applications, 15(3):285 – 309, March 1975.

18. S. Tosserams, L.F.P. Etman, and J.E. Rooda. “An augmented Lagrangian relaxation

for analytical target cascading using the alternating directions method of multipliers”.

Structural and Multidisciplinary Optimization, 31(3):176 – 189, March 2006.

19. S. Tosserams, P. Etman, and J. Rooda. “An augmented lagrangian decomposition

method for dual block-angular problems in MDO”. In AIAA, 2006.

47

