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ABSTRACT 

PREFERENCE COORDINATION 
IN ENGINEERING DESIGN DECISION-MAKING 

 
by 

 
Jeremy J. Michalek 

 
Chair: Panos Y. Papalambros 
 

Whether interested in profit or in social welfare, designers are concerned with the 

preferences people have and the choices they make. Tools such as Quality Function 

Deployment have been developed to help designers organize thinking about the 

relationship between design decisions and stakeholder preferences; however, work 

incorporating explicit quantitative models of stakeholder preferences into engineering 

design decision making is still sparse.  

Preference coordination draws on theory and methods from the marketing, 

economics, and psychology literatures to model preference structures and to coordinate 

them effectively with design models of engineering feasibility and performance for 

achieving jointly optimal solutions with both technical and market feasibility. This 

process resolves tradeoffs among competing technical objectives while ensuring that 

product targets based on market preferences are physically realizable.  

Specifically, theory is reviewed and developed for analytical target cascading 

(ATC), a methodology for decomposing a system into a hierarchy of subsystems and 

coordinating optimization of each subsystem so as to achieve the joint solution. The ATC 

methodology is then applied to coordinate marketing and engineering design decision 

models in a profit-seeking firm. It is demonstrated with a case study that the joint solution 

obtained through coordination is superior to the solution obtained by treating each 

discipline independently. The modularity of the framework facilitates extensions, and two 



xv 

such extensions are pursued: First, the methodology is extended for product line design 

by coordinating preference models that capture heterogeneity with a set of engineering 

design models. Second, manufacturing decisions are incorporated by adding a module to 

coordinate machine investment and allocation decisions. Finally, the scope of preferences 

is expanded to explore social preferences as expressed through regulation: Game theory 

is used to predict the design decisions made by profit-seeking producers in a competitive 

marketplace, and the effects of different regulation scenarios on the resulting decisions 

are examined. 

It is the hope that the methods developed in this dissertation for modeling 

stakeholder preferences and coordinating with engineering design decision-making will 

help design engineers and managers to understand the relationship between their 

decisions and the interests upon which they have impact so that better, more informed 

decision-making can be realized. 



1 

CHAPTER 1  
 

INTRODUCTION 

Whether interested in profit or in social welfare, designers are concerned with the 

preferences people have and the choices they make. Tools such as Quality Function 

Deployment (QFD) have been developed to help designers organize thinking about the 

relationship between design decisions and stakeholder preferences; however, much work 

remains to be done incorporating explicit models of stakeholder preferences in 

engineering design decision-making.  

Disparities between the scopes, perspectives, models and tools of the various 

disciplines involved in the product development process, both in industry and in 

academia, can lead to failures in understanding user wants and translating them into 

viable products, as illustrated by the cartoon in Figure  1.1 (adapted from Dieter, 1991). In 

particular, Krishnan and Ulrich (2001) outline the different scopes, domains, 

perspectives, and goals of several academic disciplines that work in product 

development. Table  1.1 lists those from marketing and engineering design: Marketing 

researchers model products as “bundles of attributes” from which consumers gain utility, 

and they use these models to determine appropriate pricing and attribute levels to achieve 

desirable product positioning, market share, and profit. In contrast, engineering design 

researchers model products using parametric models of technical performance and use 

these models to determine appropriate product configurations and dimensions to achieve 

high performance at low cost. Figure  1.2 summarizes these basic differences, adding also 

the manufacturing focus on process efficiency. 
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Table  1.1: Comparison of marketing and engineering design perspectives 

“a complex assembly of 
interacting components”

“a bundle of attributes”

Creative concept and 
configuration, performance 

optimization

Positioning, pricing, discerning 
/ meeting customer needs

Critical Success 
Factors

Product size, shape, configuration, 
function, dimensions

Consumer-oriented
“attribute levels”, price

Common Decision 
Variables

Geometric models, parametric 
models of technical performance

Customer utility as a function 
of product attributes

Representational 
Paradigm

“Form and function”, technical 
performance, innovativeness, cost

“Fit with market”, market 
share, customer satisfaction, 

profit

Typical Performance 
Metrics

Perspective on 
Product

Engineering DesignMarketing

 

Within engineering design, the design optimization paradigm has arisen as a 

dominant perspective on formal decision-making: A set of design alternatives (typically 

infinite in number) is described mathematically by parameterizing a design concept into a 

set of decision variables; design objectives and constraints are written as explicit 

functions of the variables using physical, geometric, or empirically determined 

mathematical relationships; and a general analytical or iterative method is used to search 

the space of the decision variables for a point that satisfies the constraints and maximizes 

the objective. Decades of research have provided a rich literature of optimization 

Figure  1.1: Product failures can result from disjoint decision-making 
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methodologies, tools, and successful applications in a range of engineering disciplines, 

and many classes of problems can be solved easily with existing methods. One remaining 

open question is how to deal with design situations that have multiple conflicting 

objectives. In practice, most design problems have conflicting objectives, and modelers 

have various techniques for managing them within the framework of the single-objective 

paradigm. For example, one objective can be selected, and the remaining objectives can 

be reformulated as constraints ensuring that each is achieved within some user-defined 

threshold. The design can then be optimized for the remaining objective, and the effects 

of changing user-defined threshold values can be explored through parametric studies. 

Alternatively, the modeler can use techniques to approximate and navigate the Pareto set: 

the set of designs that cannot be improved in any one objective without sacrificing 

another objective (Papalambros and Wilde, 2000). Figure  1.3 shows a Pareto set for two 

hypothetical minimization objectives. 

 

 

In a nutshell...

MarketingMarketing
says says ““letlet’’s figure out s figure out 

what consumers what consumers 
wantwant”” (and get (and get 

engineers to build it)engineers to build it)

Engineering DesignEngineering Design
says says ““letlet’’s design a high s design a high 
performance productperformance product””

(and get manufacturers (and get manufacturers 
to make it and to make it and 

marketers to sell it)marketers to sell it)

Manufacturing Manufacturing 
EngineeringEngineering

says says ““letlet’’s create an s create an 
efficient processefficient process””

(which may impose (which may impose 
constraints on the constraints on the 

design)design)  
Figure  1.2: Perspectives in product development 
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Figure  1.3: A Pareto set for two competing objectives 

The Pareto set is typically generated by combining the various objectives into a 

single aggregate objective function that is a linear weighted sum of the individual 

objectives. Any specific choice of weighting coefficients yields a specific point on the 

Pareto set, and if the Pareto set is convex it can be mapped out as the set of points 

achieved under all possible weighting coefficient combinations. The choice of a single 

design from the Pareto set requires explicit declaration of the preferences for tradeoffs 

among objectives, and designers typically make this selection intuitively, without 

supporting tools or quantitative information. However, a vast literature exists in 

marketing, psychology, and econometrics for defining models of choice and designing 

experiments to efficiently elicit preference structures using survey or market data. Yet, 

when marketers use these methods to make decisions, they optimize with respect to 

downstream product characteristics, those qualities observed by the consumer, rather than 

detailed design decisions, and they lack models to describe which combinations of 

product characteristics can be achieved with a realizable product design and which are 

unattainable. A method for efficiently and effectively coordinating these two modeling 
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domains would provide engineering designers with quantitative tools to assist in making 

tradeoff decisions among competing technical objectives through coordination with a 

higher-level objective as well as indirectly provide marketing with access to models of 

cost and feasibility constraints so that they can select not just the most desirable product 

characteristics, but the most desirable, feasible and realizable product design. 

Secondly, while engineering designers tend to think of tradeoffs in terms of the 

Pareto paradigm of resolving competing technical objectives, tradeoffs also exist among 

the preferences and interests of the various stakeholders who are affected by the 

designer’s decisions. For instance, while the tradeoff between two objectives that are 

presumed to be desirable by all, such as high vehicle fuel economy vs. high performance, 

may be adequately described by the Pareto paradigm, the tradeoff between characteristics 

over which preferences vary across the population, such as vehicle size and ride height, 

does not fit cleanly into this representation. Furthermore, tradeoffs between private 

consumer preferences, such as valuing the performance, size, and utility of vehicles, and 

public social preferences, such as valuing environmental impact reduction, take place 

even within the preferences of individual stakeholders. When preferences are 

heterogeneous in the population and the interests of stakeholders conflict, preference 

coordination can help designers to understand the impact of their decisions toward 

resolving conflict. 

Recently, engineering design researchers, both in academia and in industry, have 

begun to explore quantitatively the link between engineering design decisions and firm 

profitability using decision theoretic models incorporating uncertainty. I have taken an 

approach that differs from the main thrust of this work: Rather than attempting to 

combine every model into a single decision-making optimization loop solved “all-at-

once” (AAO), I modify, develop and apply the analytical target cascading (ATC) 

methodology to coordinate decision-models from these various disciplines. Figure  1.4 

provides a graphical schematic of the decomposition for a dial-readout scale product line 
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case study examined later in the dissertation. ATC allows separation of models by 

discipline while clearly defining interfaces and interactions through a process of target 

setting and matching so that each discipline can focus on building models within its area 

of expertise. ATC then provides a rigorous framework for coordinating these models in 

order to reach agreement between the disciplines and obtain a jointly-optimal solution. In 

addition, coordination of models, rather than combining them into a single AAO model, 

facilitates tractability in optimization because each subproblem is typically solved in a 

smaller design space and with fewer constraints than the AAO model.  

 
 Figure  1.4: Decomposition and coordination of decision-models for product 

development 

The development of concepts for preference coordination proceeds with an 

overview of the relevant literature in Chapter 2. In Chapter 3 the analytical target 

cascading methodology and its convergence properties are introduced, the theory is 
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further developed, and a technique is proposed for applying the methodology to the 

problems with properties like those of interest in this dissertation. In Chapter 4, drawing 

on established econometric models of choice and efficient experimental design 

procedures, data-driven models of consumer demand are built and coordinated with 

parametric engineering models of product performance to achieve a joint solution. A 

consumer product case study of dial readout scales demonstrates that the methodology 

provides substantial improvement over disjoint decision-making. The methodology is 

then extended in Chapter 5 to consider heterogeneity of preferences in the marketplace 

using hierarchical Bayesian mixture models in order to design an optimal line of products 

for the heterogeneous market. The methodology is further extended in Chapter 6 to 

incorporate manufacturing investment decisions and explore tradeoffs between achieving 

desirable product characteristics to increase market share versus compromising the design 

to reduce cost. In Chapter 7 the perspective is expanded beyond profit maximization of a 

single firm to explore the tradeoffs between private consumer preferences and public 

social preferences. A case study is explored modeling the effects of vehicle emission 

regulation policy on the design decisions of profit-seeking automobile producers in a 

competitive marketplace, and the impact on producers, users, and society is examined. 

Finally, a summary and conclusions are provided in Chapter 8. 
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and Computation, Second Edition, Cambridge University Press. 
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CHAPTER 2  
 

BACKGROUND 

There exist a number of different models in the engineering design, marketing, 

and economics literature for positioning and designing products and product lines. These 

various modeling perspectives use overlapping terms (design, attributes, utility, etc.) that 

are sometimes used ambiguously or differently by different authors, despite efforts to use 

terms consistently and specifically. This chapter attempts to organize the relevant 

literature using a simplified reference framework based on Kaul and Rao (1995) and 

Hauser and Simmie (1981), who offer discussions about integrating the economics 

perspective, epitomized by Lancaster (1966), with the psychometrics perspective (which 

uses statistical tools such as multidimensional scaling to understand product perception in 

an abstract attribute space). To this framework, a design decision vector has been added 

to represent technical decisions that a designer must make, but which are not necessarily 

directly observable to the user (for example, bore and stroke size in an engine). In this 

updated framework, physical, observable characteristics are functions of the design 

decisions. The resulting framework, shown in Figure  2.1, is intended to be used as a basis 

to organize and understand existing literature and to describe how the contributions in the 

proposed research relate to the literature. This framework does not address every relevant 

aspect; for example, price, cost, production volume, profit, and regulation are not 

discussed; however, it is effective as a basic structure for understanding the literature. 
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Figure  2.1: General framework 

In Figure  2.1, a product j is described parametrically by a vector of design 

decision variables xj, which represent the design choices that must be made to specify a 

product. The vector xj is the design variable vector that is commonly used in engineering 

design optimization models. Examples of design decision variables might include the 

bore and stroke dimensions of cylinders in a vehicle engine. Additionally, the design 

decision vector xj is generally subject to a set of technical constraint functions, g(x) < 0 

and h(x) = 0, which ensure that the design variable vector maps to a feasible design. 

The parametric engineering performance model interprets the design variable 

vector xj, mapping it onto objective, measurable, physical characteristics zj that are 

observed by the consumer when making purchasing decisions. The vector zj is the 

product characteristic vector used in marketing product design models to define a 

product, where each characteristic in the vector is usually restricted to a set of discrete 

‘levels.’ Examples of product characteristics might include the gas mileage and 

horsepower of a vehicle. The mapping from xj to zj is typically derived from physics 

models and physical and geometric relationships.  

While the product characteristics zj of product j are objective and measurable, 

perceptions of the product vary among individuals i. The perceptual model for each 

consumer i maps the product’s characteristics zj to a point in the perceptual attribute 

space yij. The vector yij is the perceived product attribute vector used in marketing 

product positioning models. In some models, the perceptual attribute space is described 

using dimensions that correspond to perceptual adjectives such as aggressiveness or 

simplicity. However, in most models, the perceptual attribute space is an abstract space 
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that is generated using factor analysis, principal component analysis, or multidimensional 

scaling, as discussed later, so that each dimension in the abstract attribute space yij 

represents a combination of the product characteristic dimensions zj. The resulting space 

represents a “best fit” reduction of the product characteristic space into a reduced 

perceptual attribute space, where similar products are close together. Typically, these 

methods are used primarily to develop intuition about the market and about a large space 

of characteristics; however, some authors have gone farther to develop mappings for use 

in optimization. 

The preference model for each individual i maps a product with a perceived 

product attribute vector yij into a scalar utility value uij. The preference model defines 

which attribute values are desirable and the relative importance of each attribute to 

individual i such that products with higher utility values are preferred over products of 

lower utility. Typically preference functions are estimated by observing choices or stated 

preferences and inferring statistically the parameters of the mapping function that best fit 

the observed behavior. 

Choice of which product to purchase is a function of the utility values of the 

individual products. Pij represents the probability that consumer i will choose product j. 

The choice model maps utility values of the set of available products into choice 

probabilities for each of the products Pij such that products of higher utility are more 

likely to be chosen1. Neglecting issues of product distribution and product availability, if 

the sample of individuals is representative of the population, the set of consumer choices 

Pij can be summed over the individuals and scaled by the size of the market to calculate 

total demand qj for product j.  

                                                 
1 Probabilistic choice may be assumed without loss of generality because deterministic choice is a special 
case where the product of highest utility has choice probability equal to one and all other alternatives have 
choice probability of zero 
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2.1 APPROACHES IN THE LITERATURE 

2.1.1 Engineering Design Optimization 

Engineering design optimization models typically use physics- and geometry-

based models to calculate performance related product characteristics zj as functions of 

detailed design variables xj. The design variables are then optimized to achieve best 

performance within engineering feasibility constraints, for example, maximizing the 

value of a particular product characteristic or minimizing deviation from a desired target 

value. The optimization objective is assumed to be defined by the modeler in a way that 

is desirable, and target values for zj are set exogenously.   

 Performance 
Model 

xj z j 

Design 
Decisions 

Product 
Characteristics  

Figure  2.2: Engineering design optimization models 

In cases where the product characteristics of interest consist of multiple 

competing performance objectives, the tradeoffs among the objectives are typically 

described with a Pareto set, as described in Chapter 1, and preference among objectives is 

defined using weighting coefficients, which are set intuitively and interactively by the 

designer without models of how these tradeoffs affect downstream goals. Familiarity with 

basic design optimization modeling and nonlinear programming methods are assumed in 

the remainder of this dissertation, although advanced methods such as decomposition and 

coordination methodologies will be discussed in detail. For a comprehensive overview of 

design optimization modeling and solution theory with focus on nonlinear programming 

and variables with continuous domains, see Papalambros and Wilde, 2000. 
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2.1.2 Decomposition and Coordination Optimization Methods 

Optimization problems are typically solved “all-at-once” (AAO), meaning that all 

design variables xj are manipulated simultaneously during search. For large systems and 

systems involving many disciplines, the xj space may have high dimensionality, making 

optimization difficult or impossible. A group of methods have been proposed for 

decomposing the full optimization problem into a set of smaller subproblems and 

coordinating the solutions to those subproblems efficiently and effectively. Most of these 

methods are described as Multidisciplinary Design Optimization (MDO) because they are 

intended for decomposition by discipline (Braun, 1996; Sobieski et al., 1985; Cramer et 

al., 1994; Sobieski and Kodivalam, 1999; Sobieski, 1989). The analytical target 

cascading (ATC) methodology (Kim, 2001) is similar in that a large problem is 

decomposed into subproblems; however, the subproblems in ATC are organized into a 

hierarchy representing the subsystems and components in the design of a large system. 

The components of this hierarchy are related by passing targets from higher-level systems 

to be achieved by lower level subsystems and rebalancing those targets based on the 

responses realized by the subsystems. In this dissertation, ATC is used as a tool for 

coordinating models from different disciplines in the product development process, 

including marketing product planning, engineering design, and manufacturing. MDO 

methods and ATC are discussed in detail in Chapter 3, and specific implementations of 

ATC are proposed in Chapter 4, Chapter 5, and Chapter 6. 

2.1.3 Decision Based Design 

Recently, one particular group of researchers in the engineering design 

optimization community has used decision theory to model product design decisions in 

the context of product demand and the producer’s economic goals, with a specific focus 

on modeling the effects of uncertainty. This line of work was termed Decision-Based 
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Design (DBD) by Hazelrigg (1988), although it should not be confused with viewing 

design as a decision-making process, which is the ubiquitous paradigm in design 

optimization. In the DBD literature (such as Marston and Mistree, 1998; Li and Azarm, 

2000; Gupta and Samuel, 2001; and Wassenaar and Chen, 2003), product characteristics 

are calculated as functions of the design variables and a vector of stochastic parameters 

that affect the design. Demand is calculated as a function of the product characteristics 

and price, although the original framework proposed by Hazelrigg does not specify a 

method or model for doing this, and different authors have used different techniques. 

Most work in this area focuses on decision theory and multi-attribute utility theory (Von 

Neumann and Morgenstern, 1944) rather than on implementation- and data-focused 

models from marketing and econometrics, although Wassenaar and Chen (2003) have 

used discrete choice analysis for demand prediction.  

 

Product  
Demand 

Performance 
Model 

qj xj zj 

Design 
Decisions 

Product 
Characteristics 

Demand 
Model 

 
Figure  2.3: Decision-based design models 

In the DBD literature, the concept of utility is applied to the utility of the designer 

(the decision-maker), rather than the utility of consumers in the market who choose 

whether or not to purchase. The designer’s utility function serves to rank-order all 

possible outcomes (based on resulting profit, market share, etc.) in order of preference to 

the designer, and the goal is to optimize design decisions with respect to the designer’s 

utility (i.e., to find the decisions that result in the most preferred outcome). Essentially, 

the concept of designer’s utility is equivalent to enforcing that the designer specify a 

single objective function to be maximized. Specific DBD applications relevant to design 
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of a single product are detailed in Chapter 4, and those applied to the design of a line of 

products are detailed in Chapter 5. 

2.1.4 Conjoint Analysis and Design of Experiments 

Conjoint analysis is a ubiquitous method in marketing for developing efficient 

experimental designs (what engineers call design of experiments) to estimate the effects 

of product characteristics (and price) on product utility, expressed through rating, 

ranking, or choosing among alternatives (Green and Srinivasan, 1978, 1990; Green, Wind 

and Rao, 1999; Kuhfeld, 2003). The method is called conjoint analysis by marketing and 

psychology researchers because the effects of various product characteristics are 

estimated jointly, i.e., comparing full product descriptions involving multiple 

characteristics rather than asking respondents separately about their preferences for each 

characteristic. In engineering experimental design, the existence of multiple 

characteristics is assumed because it is not generally possible to design an experiment to 

test the effect of one physical parameter in the absence of other relevant physical 

parameters. Physical quantities will always be present in the experiment, whether or not 

they are measured. With survey questions, we can choose which characteristics “exist in 

the experiment” by choosing which characteristics are included in the survey. 

 uij zj 

Product 
Characteristics 

Product 
Utility 

Preference 
Model 

 
Figure  2.4: Conjoint analysis models 

The most common methodology used in design of experiments is to discretize the 

range of each relevant independent variable into a set of discrete levels and measure the 

effect of systematically changing these levels on the dependent variable. If possible, a full 
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factorial experiment can be performed measuring the dependent variable under all 

possible combinations of each independent variable at each level, and the results of the 

experiment can be used to estimate the main effects and interaction effects of each level 

of each independent variable on the value of the dependent variable. In practice, full 

factorial designs often involve many combinations, many experiments, and high cost. 

Fractional factorial experiments offer an efficient solution. If some of the higher-order 

interaction effects can be considered negligible, then a fraction of the full factorial 

experiment can be used to estimate the remaining effects. Without testing all possible 

combinations, some of the effects will be confounded, i.e., it will be impossible to 

distinguish one effect from another. Fractional factorial experiments are designed so that 

the confounding involves higher order effects, which can often be considered negligible. 

For example, if a particular main effect of one characteristic is confounded with a third-

order interaction effect between three characteristics, and if the third-order effect can be 

assumed negligible, then the estimate of the main effect plus third-order effect is 

approximately equal to the main effect alone. This is the fundamental principle behind 

fractional factorial experiments. Wu and Hamada (2000) provide an excellent 

introduction to theory and concepts.   

 Typically in conjoint analysis applications the utility is taken to be a linear 

combination of the main effects of each characteristic at each level, and all interaction 

terms are neglected (although more advanced designs are also used). Requiring estimates 

of only main effects allows significant reduction in the size of the fractional factorial 

experiments, resulting in surveys of manageable size. In the conjoint literature, main 

effects are referred to as a ‘part-worths’ because each expresses the component of utility 

deriving from a specific characteristic at a specific level. The purpose of conjoint analysis 

is to design an experiment to estimate the preference model mapping product 

characteristics zj to utility uij; however, the dependent variable, utility, is not directly 

observable. The observable aspect is some function of utility: either ranking, rating, or 
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choice among alternatives. Given an assumed functional relationship between utility and 

the observed aspect, the parameters mapping zj to uij can be chosen to best fit the 

observed data. In particular, choice-based conjoint analysis makes use of discrete choice 

models as the functional relationship between utility and observed choice, as discussed 

below. The power of conjoint analysis is that it enables estimation of preferences on all 

combinations of product attributes by asking for comparisons of a few carefully selected 

alternatives.  

2.1.5 Random Utility Discrete Choice Models 

Random utility discrete choice models map the utility values of a set of products 

onto probabilities of choosing each product from the set (Guadagni and Little, 1983; 

Gonul and Srinivasan, 1993; Manrai, 1994; Chintagunta, 1994; Berry, 1994; Ben-Akiva 

and Boccara, 1995).  
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Figure  2.5: Discrete choice analysis models 

Random utility choice models, such as logit and probit, are discussed in Chapter 

4, Chapter 5, and Chapter 7, and an introduction with detailed derivations is provided in 

the Appendix. The basic idea is that utility is assumed to be partly observable as a 

function of objective, measurable characteristics, represented by a deterministic value vij, 

and partially unobservable, represented by a stochastic error term εij, so that uij = vij + εij. 

Different assumptions about the distribution of the unobserved stochastic error term yield 

different models (such as the logit and probit models). Given an assumed form for the 

error distribution, an assumed form for the function mapping zj to uij, and data of 
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observed choices in a set of choice situations, the parameters of the assumed forms can be 

estimated in order to best fit the observed data. While this model fitting can be performed 

on any observed data, conjoint analysis experimental design techniques offer efficient 

ways to generate data sets that are orthogonal, balanced, and that reduce bias while 

extracting maximum information from the minimum number of survey questions. 

2.1.6 Marketing Product Design Models 

The product design models in marketing (such as Kohli and Sukumar 1990; Nair, 

Thakur, and Wen, 1995; Krishnan, Singh, and Tirupati, 1999; and Shi, Olafsson and 

Chen, 2001) assume discrete levels for each product characteristic and choose the 

characteristic level combinations that maximize profit (or market share) using 

combinatorial search algorithms. Typically, utility is estimated as a function of the 

product characteristics using conjoint analysis surveys, and it is assumed that the product 

with highest utility, as predicted by the conjoint model, is deterministically chosen for 

each consumer – a “first-choice” model. Detailed design decisions xj are ignored, or 

products are chosen such that xj and zj are the same. Many commodities may be modeled 

this way; for example, the price, container size, and container shape of ground coffee 

could be modeled both as decision variables and as product characteristics observable by 

the consumer. However, for products with more complex engineering content where 

consumers do not directly observe the internal engineering design variables, which yet 

affect the product characteristics observed by consumers, xj and zj may be quite distinct. 
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Figure  2.6: Marketing product design models 
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Strictly speaking, research in this group does not exclusively use objective, 

measurable aspects for zj, because in many marketing applications it may not be 

necessary. Instead words such as “small / medium / large” may be used to describe the 

levels of a characteristic. These words are perceptual in nature, yet intended to be 

representative of an objective quality of the product that can be used to make specific 

changes to the offered products. When coordinating with engineering, strict usage of 

objective and measurable product characteristics becomes more critical. A detailed 

discussion of marketing product design models relevant to design of a single product is 

provided in Chapter 4, and those applied to design of a product line are detailed in 

Chapter 5. 

2.1.7 Product Positioning Models 

Product positioning models typically describe a product as a point in a 

multiattribute space that is derived from existing products using perceptual mapping 

techniques such as multidimensional scaling (MDS) (for example, Albers, 1979, 1982; 

Sudharshan, May and Shocker, 1987; Gavish, Horsky and Srikanth, 1983; and Carpenter, 

1989). Objective, physical product characteristics are not considered directly. Instead, 

subjective perceptual attributes such as ‘sporty-ness’ are used, and it is assumed that once 

the desired product position is found, the design of a product with the desired product 

attributes can be pursued separately. In multidimensional scaling (MDS), for example, 

consumers are asked to rate the degree of similarity between all pairs in a set of products. 

Then a small number of dimensions (typically two) is proposed to map out the perceptual 

space of products visually, and the products are placed into an attribute space such that 

products rated as being similar are close together geometrically. Then, proposed 

adjectives such as ‘sporty-ness’ are fit into the space and studied to gain intuition about 

alignment of products perceived as similar with these perceptual attributes. Typically, 
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product utility is not explicitly mentioned, but ideal point models, which essentially 

define a utility function as the Euclidian distance of the product attributes from a user’s 

fixed ideal attribute point in the attribute space, are commonly used to model preference, 

and customer heterogeneity is accounted for by allowing each customer a different ideal 

point. In practice, each consumer may have a different perceptual space; however, these 

models generally assume that the perceptual attribute space is constant across consumers, 

and consumers differ in their preference models, as expressed by different ideal points. 
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Figure  2.7: Product positioning models 

To avoid confusion, the term “product attributes” is reserved in this dissertation 

for subjective, perceptual aspects of the product yij, as opposed to objective, measurable 

product characteristics zj. Incorporation of perceptual models and attributes in the 

dissertation methodology is left for future work. 

2.1.8 Product Line Selection 

The product line selection models are explicitly focused on decisions that account 

for the competitive interaction between products (for example, Green and Krieger, 1985, 

1987; McBride and Zufryden, 1988; Dobson and Kalish, 1988, 1993; and Chen and 

Hausman, 2000). These models treat the products at a very abstract level: A discrete set 

of product options is assumed given, and each option is modeled only in terms of its 

utility and cost (each determined externally). The product itself is not modeled. 

Customers are assumed to choose the product option with the highest utility. The 
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selection problem is then modeled as a decision of which products from the set to include 

in the product line. 
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Figure  2.8: Product line selection models 

These line selection models can be considered “downstream” models in that they 

discuss how to select appropriate products for a product line given a set of candidates, but 

they do not discuss how to generate the candidates. In this dissertation, the set of product 

candidates is presumed to be an infinite set, so these product line selection methods are 

not directly applicable. Further discussion of the product line selection models are 

provided in Chapter 5. 
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CHAPTER 3  
 

ANALYTICAL TARGET CASCADING THEORY AND EXTENSIONS 

This chapter introduces the general analytical target cascading (ATC) 

methodology for optimizing complex systems through decomposition into a hierarchy of 

subsystems and coordination of the solutions to the subsystems in such as way as to 

obtain a joint system optimum. Convergence characteristics are discussed, and it is shown 

that the coordination process results in inconsistencies between subsystems in the ATC 

hierarchy whenever the top level system targets are unattainable. This is important for the 

applications presented in this dissertation because top level targets will correspond to 

maximizing profit, rather than matching a fixed, attainable target. A method is then 

proposed for finding weighting coefficients within the ATC hierarchy to obtain solutions 

with arbitrarily small inconsistencies so that the designer can define acceptable tolerances 

for each shared variable in the hierarchy, and the process will automatically find a 

solution within tolerance. The mathematical notation used in this chapter follows the 

general ATC notation and is specific to the chapter, deviating from the nomenclature 

used in the remainder of the dissertation. A summary of the nomenclature specific to this 

chapter is provided at the end of the chapter. The material in this chapter is based on 

publications by Michalek and Papalambros (2005a, 2005b). 

3.1 INTRODUCTION 

Analytical target cascading (ATC) is a model-based, hierarchical optimization 

methodology for systems design. ATC requires a set of analysis or simulation models that 
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predict responses (the characteristics) of each system, subsystem, and component as a 

function of the design variables (the decisions) (Kim, 2003). The analysis models are 

organized using design optimization models that are the elements or building blocks of 

the hierarchy, as shown in Figure  3.1 with the standard index notation. The top level 

represents the overall system and each lower level represents a subsystem or component 

of its parent element. In the ATC process, top-level system design targets are propagated 

down to lower subsystem and component level targets that are then optimized to meet the 

targets as closely as possible. The resulting responses are rebalanced at higher levels by 

iteratively adjusting targets and designs to achieve consistency. 

 
Figure  3.1: Example of index notation for a hierarchically partitioned problem 

Following Michelena et al. (2003), and using the general notation introduced by 

Michalek and Papalambros (2005a), the original design target problem is: 

 

( )
( ) ( )

2

2
minimize   

subject to ,  ,

−

≤ =
x

r x T

g x 0 h x 0
 (3.1)  
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where T is the vector of targets, r is the vector-valued response function, x is the 

complete vector of design variables, g and h are vectors of design constraint functions, 
and 2

2
 denotes the square of the l2 norm. Eq. (3.1) represents the entire large-scale 

system, and it is solved all-at-once (AAO); i.e., all variables and functions are evaluated 

together during search. Given that the system has an implied hierarchical structure of N+1 

levels, as in Figure  3.1, the formulation (still solved AAO) can be equivalently 

represented by designating response variables and linking variables, creating copies of 

these variables at parent and child levels, and adding constraints forcing the copies to be 

equal: 
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(3.2)  

 

where xi
ij is the vector of local variables for element j at level i, yi

ij is the vector of linking 
variables for element j at level i, 1i

ij
−y  is the copy of the vector of linking variables at 

element j level i coordinated by the parent element at level (i-1), Sj is the selection matrix 
indicating which terms of the parent coordinating linking variable vector 1i

ij
−y  are relevant 

to the linking variable vector yi
ij at element j, Ri

ij is the vector of responses at element j 
level i, 1i

ij
−R  is the vector of response targets for element j at level i that are set by the 

parent element at level (i-1), rij is the vector-valued response function of element j at 
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level i, gij is the vector of inequality constraints at element j level i, hij is the vector of 

equality constraints at element j level i, Ei is the set of elements at level i, Cij is the set of 

element j’s children numbered 1 through cij, and l designates the top level element, as in 

Michalek and Papalambros (2005a). Note that yi
ij drops out for elements that do not have 

linking variables, such as element l, and Ri
(i+1)k terms drop out for leaf elements (elements 

that do not have children). 

Following Michelena et al. (2003), the formulation in Eq. (3.2) is relaxed by 

allowing deviation between linking variable and response variable copies to be within a 

tolerance ε and minimizing ε. Additionally, vectors of weighting coefficients w are 

introduced for linking and response variables to specify the relative importance of 

matching each target at each level. This yields the relaxed AAO formulation, which is set 

up to be, but has not yet been, decomposed: 
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(3.3)  

 
where R

ijε is the response deviation tolerance variable for element j level i, y
ijε  is the 

linking deviation tolerance variable for element j level i, R
ijw  is the response deviation 

weighting coefficient vector for element j at level i, y
ijw  is the linking variable deviation 

weighting coefficient vector for element j at level i, and the ○ symbol is used to indicate 
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term-by-term multiplication of vectors such that [a1 a2 … an]T ○ [b1 b2 … bn]T = [ab1 ab2 

… abn]T.  

Finally, the problem is decomposed into separate elements Pij, and monotonicity 

analysis (Papalambros and Wilde, 2000) is used to show that the ε-bound constraints of 

each element are active, allowing them to be solved for ε and moved into the objective 

function. The general notation for a single ATC element Pij in the hierarchy then contains 

only the terms of Eq. (3.3) relevant to element Pij, i.e., only terms that are not constant 

with respect to the decision variables of element Pij. The notation for element Pij is then: 
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 (3.4) 

 

The sequence of solving each optimization problem element Pij and passing its 

solution to the rest of the hierarchy is called a coordination strategy. Michelena et al. 

(2003) proved that using certain classes of coordination strategies to manage elements of 

the ATC formulation in Eq. (3.4), will result in convergence to the same solution as that 

of the relaxed AAO formulation in Eq. (3.3). Under these specific coordination strategies, 

managing the ATC hierarchy can be viewed as solving a series of Hierarchical 

Overlapping Coordination (HOC) problems, which have been shown to have non-ascent, 

global convergence properties (Shima and Haimes, 1984; Park et al., 2001; Michelena et 

al., 1999).  
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ATC has been applied to automotive applications (Kim et al., 2002; Kim et al., 

2003; Kokkolaras et al., 2004), including the design of product families (Kokkolaras et 

al., 2002), as well as to the design of building systems (Choudhary et al., 2003). 

Decomposing large-scale problems can be advantageous because it organizes and 

separates models and information by focus or discipline, provides communication only 

where necessary, and facilitates concurrent design. Moreover, ATC can solve some 

problems that are computationally difficult or impossible to solve all-at-once. 

Occasionally decomposition can also result in improved computational efficiency 

because the formulation of each element typically has fewer degrees of freedom and 

fewer constraints than the AAO formulation. However, computational efficiency of ATC 

is not yet well understood, and empirical evidence shows that it can vary dramatically 

depending on the choice of weighting coefficients (Tzevelekos et al., 2003).  

Several other systems have been proposed for multidisciplinary design 

optimization (MDO) of complex systems. In particular, Collaborative Optimization (CO) 

(Braun, 1996), based on concepts introduced by Sobieski (Sobieszczanski-Sobieski et al., 

1985), contains a similar form of minimizing deviations between targets and responses 

using the square of the l2 norm. CO formulations so far have dealt only with bilevel 

problems, although multilevel extensions seem possible. Moreover, it has been observed 

by Alexandrov and Lewis (2000) and reemphasized by Kim (2001) that CO cannot, in 

general, produce KKT points because of constraint qualification failures, whereas ATC 

has proven convergence properties. ATC is different from MDO frameworks such as 

multidisciplinary feasible (MDF) and individual discipline feasible (IDF) (Cramer et al., 

1994), or the Bi-Level Integrated System Synthesis (BLISS) approach (Sobieszczanski-

Sobieski and Kodiyalam, 1999), where analysis models at a single level are integrated 

under a master problem introduced as an authority to achieve the overall design goal. 

Furthermore, ATC should not be confused with strategies for nonhierarchical systems, 

such as Concurrent Subspace Optimization (CSSO) (Sobieszczanski-Sobieski, 1989), or 
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formulation choices for design optimization statements at individual problem elements, 

such as simultaneous analysis and design (SAND) or nested analysis and design (NAND) 

(Balling and Sobieszczanski-Sobieski, 1994). In contrast, ATC represents a multilevel 

decision-making hierarchy for the design of systems consisting of an arbitrarily large 

hierarchy of levels of analysis and design models representing systems, subsystems, and 

components.  

The global convergence theory of ATC (Michelena et al., 2003) asserts that 

weighting coefficients can be found such that consistency deviation terms converge to 

zero. However, it will be shown that for problems with attainable targets, strictly 

consistent designs can be found with any positive finite weighting coefficients, but for 

problems with unattainable targets, strict design consistency cannot be achieved with 

finite weighting coefficients. Thus, the selection of proper weighting coefficients is 

necessary to achieve a solution within acceptable inconsistency tolerances. This result is 

particularly relevant when intentionally using “stretch targets” or “stretch goals,” terms 

used in management communities to describe setting very high, usually unattainable, 

goals in order to motivate employees (Lingle and Schiemann, 1999). In the applications 

of this dissertation, the top level goal is maximization of profit, and no attainable target is 

set.  

In this chapter the issue of consistency for unattainable targets is discussed, and 

an iterative approach is proposed to find weighting coefficients that achieve solutions 

with user-specified inconsistency tolerances. The method is then generalized and 

demonstrated with several examples. 

3.2 CONSISTENCY FOR UNATTAINABLE TARGETS 

In the ATC global convergence proof Michelena et al. (2003) proved that when 

elements of the ATC hierarchy (Eq. (3.4)) are solved separately and iteratively using 
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certain coordination strategies, the system will converge to the solution of the relaxed 

AAO formulation, Eq. (3.3). They go further to assert: “given that consistency and 

feasibility are assumed for the original design target problem, it is possible to find 

weights wR
(i+1)k and wy

(i+1)k such that εR
(i+1)k and εy

(i+1)k ... converge to zero. ... This implies 

that the ATC process, recursively applied to the problem hierarchy, produces an optimum 

solution of the original design target problem.”  

The concepts of feasibility and consistency deserve further discussion here. 

Feasibility of the original design target problem means that a design exists that satisfies 

all constraints. Feasibility of the ATC elements means a local design exists at each ATC 

element Pij that satisfies all of the constraints at that element. Consistency of the ATC 
formulation further supposes a solution exists such that Ri

(i+1)k = 1
( 1)
i
i k
+
+R  and yi

(i+1)k = 
1

( 1)
i
i k
+
+y  for all i, j∈Ei, k∈Cij, which implies that εR = 0 and εy = 0 for all elements. 

Feasibility of the original design target formulation implies that a design exists in the 

decomposed ATC formulation that is feasible at all elements and consistent among 

elements. 

In this section it is demonstrated that despite existence of a feasible, consistent 

design, the ATC formulation will not find this design with finite weighting coefficients 

unless the design meets the top level targets exactly. Specifically, if a feasible solution to 

the original problem exists that meets the top level targets exactly, then any choice of 

positive, finite weighting coefficients in the ATC formulation will yield a consistent 

solution. If such a solution does not exist, the ATC formulation will not yield a consistent 

solution for any finite weighting coefficients. However, an ATC solution can be found 

with arbitrarily small inconsistency deviations if weights are chosen appropriately. 
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Figure  3.2: Existence of error-zeroing weights proposed by Michelena et al. (2003) 

Michelena et al. (2003) proposed a Pareto optimization analogy to illustrate the 

existence of error-zeroing weights, as shown in Figure  3.2. They observed that Eq. (3.4) 

contains a weighted sum of deviation metric terms, and they visualized the solution as a 

Pareto set between terms in the objective function, showing how larger weighting 

coefficients for parent-child deviation terms yield points with lower consistency deviation 

between parent and child at the expense of minimizing deviation from the top level 

target. However, this figure could be misleading. Note that if a consistent, feasible design 

exists that meets the top level targets, then the design would map to the origin in Figure 

 3.2, and any other design would be either dominated by or equivalent to it in this space. 

Therefore, in this case the Pareto surface degenerates to a single point, the origin, which 

can be achieved with any positive weighting coefficients. If such a design does not exist, 

then it will be shown in Eq. (3.7), Eq. (3.13), and Eq. (3.16) that in general the consistency 

deviation approaches zero only as the weighting coefficients for consistency approach 

infinity. So, in this case the vertical axis is tangent to the Pareto surface, and there are no 
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finite error-zeroing weights. This is important for applications where unattainable targets 

are used purposefully or when the designer is uncertain if targets can be achieved. 

A simple example will demonstrate this situation. Let us examine an 

unconstrained level-0 element with a single level-1 child. The level-0 element is called l, 

and the level-1 element is called k. There are no linking variables and only a single top 

level target T is considered. Following Eq. (3.4), the level-0 problem (P0l) is written as: 
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( ) ( )

0 0
0 1

2 20 0 0 1
0 0 1 1 1 12 2,

minimize  , .
l k

R
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x R
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Writing out the squared l2 norm in terms of vector elements by using the angle 

bracket symbol < > to denote vector elements indexed with α, and dropping the 

functional dependency notation for r0l, the objective function f0l at level-0 is 
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α α

α

= − + −∑ w R R  (3.6)  

 

The first order necessary conditions for optimality of an unconstrained problem 

require that if a (local) solution to Eq. (3.6) exists, than the gradient of the objective 

function with respect to the response targets 0
1kR  at that point must be zero:  
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This last equation shows that the optimal design will not be strictly consistent 

( 0 1
1 1k k≠R R ) for positive, finite weights unless the top level target is met exactly or the 

derivative of the response function with respect to 0
1kR happens to be zero at the optimum. 

If top level targets are unattainable (T – r0l) ≠ 0, then the inconsistency deviation error 

( 0 1
1 1k k−R R ) will be nonzero, except in the special case where the derivative of the 

response function is zero at the optimum, which can happen mostly by coincidence. Thus, 

in general ( 0 1
1 1k k−R R ) approaches zero only as the terms of 1

R
kw  approach infinity.  

At this point one is tempted to simply set large weights. However, apart from the 

ATC convergence requirement, the size of the weights will also have a scaling effect on 

the nonlinear programming algorithm used to solve the element problem. Adverse scaling 

will increase computational time or altogether prevent solution of the element problem. 

Additionally as will be shown later, in multilevel hierarchies the resulting deviations at 

any particular element depend on ratios of the weights at that element to weights at the 

parent element, and there are interactions between weights for linking variables wy and 

for response variables wR. So, simply setting all weighting coefficients to large values 
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will not necessarily result in small inconsistency deviation values. The task then is to find 

appropriate weights such that the resulting inconsistency deviation is acceptable. One 

way to approach this task is to use the results of Eq. (3.7) to calculate estimates of the 

weighting terms 1
R
kw  required to achieve acceptable consistency errors 1

R
kθ  for each of the 

response targets 0
1kR . To do this, we set the left hand side of the equation to the desired 

inconsistency 1
R
kθ  and solve for the weights: 
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Thus, in this example the weighting update method for finding appropriate 

weights to achieve consistency error tolerances 1
R
kθ  would follow these steps: 

1. Set initial-guess weights (say, 1
R
kw  = [1, 1, ..., 1]T).  

2. Solve the ATC problem and calculate the top-level target deviation and the 

derivative of the response function at the solution. 

3. If the deviation tolerance is not satisfied at the solution, use Eq. (3.8) to find new 

weighting terms, and return to step 2. 

3.3 GENERALIZATION OF THE WEIGHTING UPDATE METHOD 

The goal of the weighting update method is to automatically identify appropriate 

weighting coefficients that achieve designs with acceptable deviation tolerance values for 
the response variables at each element R

ijθ  and for the linking variables at each parent 

coordinating element ( 1)
y
i j+θ . The problem is first solved using starting values for 

weighting coefficients. The solution to that problem is used to calculate a linear 

approximation of the weighting coefficients needed to achieve the desired tolerances. 
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Weights are updated with this approximation, and the problem is solved again. This 

process is repeated until the inconsistency deviation tolerance is achieved, namely, the 

final solution satisfies the conditions 
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To generalize the method presented in the previous section, one of the KKT first 

order necessary conditions for optimality of constrained nonlinear problems, which 

involves the Lagrangian, is examined. From Eq. (3.4), the Lagrangian Lij of element j at 

level i is 
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where μ and λ are the vectors of Lagrange multipliers for the inequality and equality 

constraints respectively. Expressing the norms using vector terms indexed with the 

symbol α, we have 
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If a feasible solution to Eq. (3.4) exists, one property of the KKT first order necessary 

conditions states that at the (local) solution the gradient of the Lagrangian with respect to 

each term β of the response target vector Ri
(i+1)γ for element γ is zero. 
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Therefore, at the solution the deviation between response variable copies at parent and 

child level is 
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Note that this equation holds for all elements except the top level element. To achieve 
desired response variable deviation tolerances within ( 1)

R
i γ+θ for each element in Ri

(i+1)γ, 

each weighting term β in ( 1)
R
i γ+w  should be updated as 
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 (3.14)  

Note again that this equation holds for all levels except the top level, where the weighting 

coefficient vector is not updated. Top level response deviations reflect failure of the 

design to meet the top level targets, rather than inconsistencies in the design, and the top 

level weighting coefficient vector is set by the modeler to express the relative importance 

of matching each top level target; it is not updated. While all weighting coefficient 

vectors reflect the relative importance of matching variable copies, the lower-level 

vectors are updated such that the final preference reflects that which is needed to achieve 

user-defined inconsistency tolerances. 

Additionally, at the solution the gradient of the Lagrangian with respect to the 

linking variables of element j is zero. 
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Therefore, the deviation between linking variable term β in yi
ij and the parent 

coordination copy in 1i
ip
−y  is 
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This term represents deviation between linking variable copies at element j and the parent 

coordination copy. Recall that linking variables are shared by elements at the same level 

and coordinated at the parent level. To achieve a desired deviation tolerance between 

elements at the same level, the weight for each term β must be set high enough so that the 

difference between copies at any two child elements is less than or equal to the tolerance. 

The updating calculation for the linking variable weighting coefficients is then 
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and where Cβ
(i-1)p is the set of children of parent element p that contain linking variable β 

(i.e., Ψ drops out for children where <Sj
Tyi

ij>β = 0). 

In summary, the generalized weighting update method involves iteratively solving 

the ATC formulation and updating the weighting coefficient vectors of each element 

(which express relative preferences for meeting each target) to achieve a solution with 

user-specified inconsistency deviation tolerances for each response variable θR and each 

linking variable θy. The method is implemented with the following steps: 

4. Set an acceptable inconsistency deviation tolerance for each response variable and 

each linking variable, and set initial weights (for example, set all weights to 1).  

5. Solve the ATC problem. 

6. If the inconsistency deviation tolerance is not satisfied at the solution, update each 

term in each weighting coefficient vector using Eq. (3.14) and Eq. (3.17), and 

return to step 2. 

3.4 DEMONSTRATION 

To illustrate the topic of strict consistency for unattainable targets a simple 

example is used where the target (zero in this case) is unattainable: 
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The solution to this problem is z1 = 1. In the relaxed formulation of this problem, copies 

of z1 are made at level-0 element l and at level-1 element k, using the R notation to 

designate responses (there are no local variables or linking variables), and the weighted 

deviation between the copies is constrained less than or equal to ε. The positive, finite 

weight w is used as the weighting term. The relaxed AAO problem (before 

decomposition) is then: 
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Note that the relaxed AAO problem is used in the remainder of this example, and the 

problem is not decomposed for ATC, since Michelena et al. (2003) showed that these 

formulations yield equivalent solutions. At a KKT point, the gradient of the Lagrangian is 

zero. 
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This shows that ε is nonzero at the KKT point for any finite weight; however, w 

can be found to achieve ε arbitrarily close to zero. It is important to note that ε 

approaches zero as w approaches infinity or zero, and the goal is to ensure that the 

inconsistencies between the responses at each level are within an acceptable tolerance, 

rather than focusing on the value of ε. The inconsistency ( 1 0
1 1k kR R− ) approaches zero only 

as w approaches infinity. 

In addition, to demonstrate the need to avoid setting arbitrarily large weights, this 

problem was implemented in Matlab© 6.5.0 (MathWorks, 2004) using the fmincon 

function with the feasible starting point [ 0
1R 1

1R  ε]T = [2 5 5]T and the following 

parameters: TolCon = TolFun = TolX = 10-10. The algorithm and parameters are specified 

here because the algorithm behavior depends on the parameters and starting point; 

however, this example serves to show the basic trends. Figure  3.3 shows the number of 

function evaluations needed to converge to a solution for each value of w. The figure 

shows an upward trend, emphasizing the need to avoid large weighting terms when 

possible. 
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Figure  3.3: Number of function evaluations required to find the solution as a 

function of the weighting term 

Figure  3.4 shows the resulting inconsistency deviation ( 1 0
1 1R R− ) at the optimum 

for each value of w. The graph shows a trend of reduced error as the weighting term is 

increased, although the error never reaches zero.  

1.E-10

1.E-08

1.E-06

1.E-04

1.E-02

1.E+00
1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05

weight (log)

Co
ns

is
te

nc
y 

D
ev

ia
tio

n 
(lo

g)

 
Figure  3.4: Inconsistency at the optimum as a function of the weighting term 

In general, it is difficult to set appropriate weights simply by guessing. The 

weighting update method is applied to this example to show how appropriate weights are 

found. In this example, the response function r0l is a linear function of 0
1R , so the 

derivative of the response function is a constant (=1), therefore, the use of the weighting 

update method to find appropriate weights yields, 
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The update procedure was implemented for this example with an inconsistency tolerance 

goal of θ = 10-2, and a starting weight of w = 1. The proper weight needed to achieve this 

inconsistency tolerance, w = 9.95, was found after three weighting update iterations and a 

total of 89 function evaluations. 

3.5 GEOMETRIC PROGRAMMING EXAMPLE 

The geometric programming example, proposed by Kim (2003), is used here as a 

multi-level example with linking variables to demonstrate the weighting update method. 

The original design target problem is 
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The original problem will be decomposed first as a two-level ATC hierarchy with three 

elements, as proposed by Kim (2003), and secondly as a three-level ATC hierarchy with 

five elements, as proposed by Tzevelekos et al. (2003). The feasible starting point z = [5, 

5, 2.76, 0.25, 1.26, 4.64, 1.39, 0.67, 0.76, 1.70, 2.26, 1.41, 2.71, 2.66]T is used for all 

trials, and the acceptable inconsistency tolerance value of 10-2 is used for all response 

variables and linking variables. 

3.5.2 Two-Level Decomposition  

In the two-level decomposition, following Kim (2003), the problem is partitioned 

into three elements: one level-0 element, A, with two level-1 children, B and C. The 

equality constraints of the original problem h1, h2, h3, and h4 are solved for z1, z2, z3, and 

z6 respectively and used as response functions of elements A, A, B, and C respectively. 

The objective function of each element is then to minimize deviation between targets and 

responses at that element, as in Eq. (3.4), where the top level targets are both zero. The 

variable z11 is treated as a linking variable between elements B and C, variables z4, z5, and 

z7, are local variables of element A, variables z8, z9, and z10 are local variables of element 

B, and variables z12, z13, and z14 are local variables of element C. The constraints g1, g2, 

g3, g4, g5, and g6 are associated with elements A, A, B, B, C, and C respectively. Kim 

(2003) provides a picture of this decomposition for reference. 
The problem was first solved with default weights [ ]1 1 1 1R R y

B C A= = =w w w . At the 

solution, resulting inconsistency deviations are 0.688, 0.649, and 0.961 for z3, z6, and z11 

respectively, all of which are larger than the acceptable tolerance value of 10-2. Using the 

weighting update method, the weights are updated with Eq. (3.14) and Eq. (3.17), and the 

new problem is solved. This process of updating and solving is repeated four times before 

converging. The final weights, 1
R
Bw  = 14.534, 1

R
Cw  = 16.561, and 1

y
Aw  = 27.572, yield 

inconsistencies of 10-2 for z3, z6, and z11. The weighting update method successfully found 
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the weighting coefficients that yield a solution with the desired inconsistency tolerance. 

These results are summarized in Table  3.1. 

3.5.3 Three-Level Decomposition 

In the three-level decomposition, following Tzevelekos et al. (2003), the problem 

is partitioned into five elements: one level-0 element A with two level-1 children, B and 

C, and two level-2 elements, D and E, which are children of B and C respectively. In the 

formulation z5 is treated as a linking variable between elements B and C, z11 is set as a 

parameter with known (optimal) value 1.30, the equality constraints of the original 

problem h1, h2, h3, and h4 are used to calculate z1, z2, z3, and z4 as response functions of 

elements B, C, D, and E respectively, and the response function of element A is f = (z1
2 + 

z2
2), with the top level target set to zero. The variable z4 is a local variable of element B, 

variable z7 is a local variable of element C, variables z8, z9, and z10 are local variables of 

element D, and variables z12, z13, and z14 are local variables of element E. The constraints 

g1, g2, g3, g4, g5, and g6 are associated with elements B, C, D, D, E and E respectively. 

The problem was first solved with default weights 

[ ]1 1 1 2 2 1y R R R R
A B C D E= = = = =w w w w w . At the solution, resulting inconsistencies are 1.47, 

1.26, 0.78, 0.80, and 1.05 for z1, z2, z3, z5, and z6 respectively, all of which are larger than 

the acceptable tolerance value of 10-2. Using the weighting update method, the weights 

are updated with Eq. (3.14) and Eq. (3.17), and the new problem is solved. This process of 

updating and solving is repeated five times before converging. The final weights, 1
y
Aw = 

109.70, 1
R
Bw = 99.34, 1

R
Cw = 103.59, 2

R
Dw = 85.96, and 2

R
Ew = 98.05, yield inconsistencies 

of 10-2 for z1, z2, z3, z5, and z6. The weighting update method successfully found weights 

that yield a solution with the desired inconsistency tolerance. These results are 

summarized in Table  3.1. 
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Table  3.1: Results of the two-level and three-level geometric programming examples 

  Two-Level Three-Level 

  Default 
weights 

Weighting 
update 
method 

Default 
weights 

Weighting 
update 
method 

wy
1A 1 27.72 1 109.70 

wR
1B 1 14.61 1 99.34 

wR
1C 1 16.64 1 103.59 

wR
2D - - - - 1 85.96 W

ei
gh

tin
g 

C
oe

ff
ic

ie
nt

s  
(a

t s
ol

n.
) 

wR
2E - - - - 1 98.05 

z1 - - - - 1.47 0.01 
z2 - - - - 1.26 0.01 
z3 0.69 0.01 0.78 0.01 
z5 - - - - 0.80 0.01 
z6 0.65 0.01 1.05 0.01 R

es
ul

tin
g 

In
co

ns
is

te
nc

y 

z11 0.96 0.01 - - - -  

3.6 ACCURACY 

It is important to stress that inconsistencies in response and linking variables 

affect the entire solution, not only the copied variables themselves. Table  3.2 summarizes 

the solutions to the original, 2-level ATC, and 3-level ATC formulations. For the 2-level 

and 3-level formulations, results are shown for default weights (all weights = 1) and for 

the weighting update method (WUM) with inconsistency tolerances of 10-2 for all 

variables. In the table, the * symbol indicates that the variable has nonzero inconsistency 

at the solution, and the value of the variable copy at the parent level is reported. The † 

symbol indicates that the variable was treated as a static parameter. Notice that solutions 

using the default weights are far from the solution to the original problem, whereas 

solutions using the weighting update method are close for all variables. Smaller 

inconsistency tolerances result in solutions closer to the solution of the original problem. 
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Table  3.2: Optimal solution to AAO, 2-level ATC, and 3-level ATC formulations 

 Original 2-Level ATC 3-Level ATC 

  AAO Default 
Weights

WUM 
(10-2) 

Default 
Weights

WUM 
(10-2) 

z1 2.84 2.25 2.83 0.75* 2.82* 
z2 3.09 2.04 3.07 0.64* 3.07* 
z3 2.36 1.53* 2.35* 1.58* 2.35* 
z4 0.76 0.76 0.76 0.90 0.76 
z5 0.87 1.00 0.87 0.70* 0.87* 
z6 2.81 1.21* 2.79* 1.76* 2.80* 
z7 0.94 1.30 0.94 0.64 0.93 
z8 0.97 0.93 0.97 0.97 0.97 
z9 0.87 1.07 0.87 0.86 0.86 
z10 0.79 0.93 0.80 0.80 0.80 
z11 1.30 0.94* 1.30* 1.30† 1.30† 
z12 0.84 0.84 0.84 0.84 0.84 
z13 1.77 1.27 1.76 1.76 1.76 
z14 1.55 0.96 1.54 1.55 1.55  

3.7 LOCAL CONVERGENCE 

One purpose of using the weighting update method is to avoid setting weights 

arbitrarily high to avoid costly iterations; however, the weighting update method requires 

an outer loop of additional update iterations to converge on the desired weights, so it is 

worthwhile examining and comparing the convergence efficiency. The two-level 

geometric programming problem was resolved using the required weights found by the 

weighting update method directly as starting weights, thus achieving the desired tolerance 

without any weighting update iterations. This represents the best possible case that could 

be attained by guessing weights. Still, in this case the algorithm required almost twice as 

many function evaluations per element to converge as did the weighting update method. 

These results are summarized in Table  3.3. Note that the Matlab function fmincon, based 

on SQP, was used in all cases. 
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Table  3.3: Speed of convergence statistics for the geometric programming problem 

 Number of Function 
Evaluations 

Num. 
Weight 
Updates 

Original Problem 
AAO 25,173 - - 

2 Level ATC 
Default Weights 

A: 241  B: 110 
C: 115 

- - 

2 Level ATC 
Weighting Update 

 A: 18,002  B: 8,639 
C: 8,517 

4 

2 Level ATC 
Required Weights 

A: 31,777  B: 15,316 
C: 16,297 - - 

3 Level ATC 
Default Weights 

A: 195  B: 158 
C: 152  D: 24  E: 19 - - 

3 Level ATC 
Weighting Update 

A: 45,092  B: 34,087 
C: 35,449  D: 984  E: 905 5 

 

At first this may appear counterintuitive, but there is an explanation: It took 

longer to converge when starting with the required weights because the starting point is 

not close to the solution. Large weighting coefficients act to slow progress of the 

algorithm by restricting the deviation between parent and child elements at each ATC 

iteration. Conceptually, this can be thought of as an effect similar to that of a trust-region 

algorithm, where high weighting coefficients have the effect of tight trust regions, 

preventing large moves at each iteration. In contrast, the weighting update method first 

solves the problem with small weighting coefficients, allowing the algorithm to move 

quickly in the design space and converge to a point close to the final solution. The 

weights are then updated (increased), and the new problem is solved starting at the 

solution to the problem with the previous weighting coefficients. In this way, the 

weighting update method first moves quickly to the proximity of the solution, then 

tightens tolerances and closes in precisely on the final solution. Results vary based on the 

problem, acceptable inconsistency tolerance, and the starting point; however, this 
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example shows that using the weighting update method can sometimes be substantially 

more efficient than even best-case scenario guessing.  

Further study on local convergence properties of ATC and the weighting update 

method is needed before these results can be generalized. Note that in contrast with 

notions of asymptotic local convergence developed for AAO algorithms, e.g., standard 

nonlinear programming, local convergence concepts have not been rigorously defined for 

any system optimization method relying on decomposition, including ATC. 

Table  3.3 also shows that the ATC decomposition can be solved with fewer 

function evaluations per element than the original AAO formulation. It is difficult to 

compare these cases directly since the objective function of each element is different than 

the objective function of the AAO formulation; however, generally, each decomposed 

element will take less computational time per function evaluation than the AAO 

formulation, and decomposition allows additional possibilities of parallel computing. 

These results are encouraging because they show that in some situations the decomposed 

formulation can be solved in less time than the AAO formulation. 

3.8 CONCLUSIONS 

This chapter showed that it is important to set ATC weighting coefficients 

appropriately to achieve inconsistency deviations within an acceptable tolerance when 

top level targets are unattainable. Setting appropriate weights is nontrivial, particularly 

for multilevel hierarchies where weights at various levels influence each other in complex 

ways. Setting weights too small can result in solutions far from the solution of the 

original problem, and setting weights too large can result in excessive computational cost 

and numerical problems. The weighting update method can automatically find weighting 

coefficients required for generating a solution with user-specified inconsistency 

tolerances. This method can help ATC users to achieve acceptable solutions without the 
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burden of trial-and-error searching for appropriate weighting coefficients, which can be 

intractable for multilevel problems. Despite the added computation involved in iteratively 

updating the weights, the total computational cost can sometimes be lower than solving 

the problem directly with the required weights or solving the problem AAO. Future work 

is needed to define and understand local convergence properties of coordination 

strategies for hierarchical partitioned systems and bring more rigor to solution efficiency 

definitions for decomposed optimization strategies. 

3.9 NOMENCLATURE 

⋅  Vector norm 

α
⋅  Vector element α (where α indexes the vector elements, ranging from 1 to the 

length of the vector) 

 ○ Element-by-element vector multiplication, for example  
[a1, a2]T ○ [b1, b2]T = [a1b1, a2b2]T

 and a ○ b = diag(abT) 
ijc  Number of elements that are children of element j at level i 
ijC  The set of elements that are children of element j at level i 
iE  The set of elements at level i of the hierarchy 
ijf  Objective function for element j at level i 

ijg  Vector function of inequality constraints for element j at level i in negative null 
form 

ijh  Vector function of equality constraints for element j at level i in null form 
i  ATC hierarchy level index (starts at level 0) 
j  ATC element index 
k  ATC element index, used to designate children of element j 
l  ATC element index designating the top level element 

ijL  The Lagrangian for the formulation of element j at level i 
p  ATC element index, used to designate the parent of element j 

ijP  Problem formulation of element j at level i 
ijr  Vector function that calculates responses for element j at level i 

i
ijR  Vector of response variable copies at level i for element j 

1i
ij
−R  The (i–1)th level parent-copy of the vector of responses that function as targets 

for element j at level i 

jS  Binary selection matrix for element j specifying which terms in the parent 
coordination vector are relevant to element j 
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T  Vector of top level targets (= R-1
0l) 

i
ijx  Aggregation vector for all input variables to the response function of element j at 

level i 
i
ijx  Vector of local decision variables for element j at level i 
i
ijy  Vector of linking variables for element j at level i 

( 1)
i
i j+y

 

Vector of coordinating variables for the linking variables in the children of 
element j at level i. This vector includes one copy of each linking variable from 
all of element j’s children 

R
ijw  The weighting coefficient vector for the deviation of responses between element j 

at level i and its parent 
( 1)
y
i j+w

 
The weighting coefficient vector for the deviation of linking variables 
coordinated at element j level i 

α  Index for terms in a vector 
β  Index for a specific term in a vector 

R
ijε  The tolerance variable for consistency of targets set at element j level i and the 

responses of j’s children  
y

ijε  The tolerance variable for consistency of linking variables coordinated at element 
j level i for child elements at the (i+1)th level 

γ  ATC element index, used to designate a specific child of element j 
ijμ  Vector of Lagrange multipliers for inequality constraints at element j level i 
ijλ  Vector of Lagrange multipliers for equality constraints at element j level i 
R
ijθ  Vector of user specified tolerances for inconsistency deviation between response 

variables of element j at level i and targets set by j’s parent 
( 1)
y
i j+θ

 
Vector of user specified tolerances for inconsistency deviation between linking 
variables at level i+1 that are coordinated at parent element j at level i 
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CHAPTER 4  
 

COORDINATION OF MARKETING PREFERENCE MODELS 
WITH ENGINEERING PERFORMANCE MODELS 

In this chapter the analytical target cascading methodology is applied to 

coordinate marketing profit maximization goals, built upon econometric choice models of 

consumer preference, with engineering design models of product feasibility and 

performance to achieve joint solutions with both technical and market feasibility. Here 

design of a single product is pursued from the perspective of a single profit-seeking 

producer. It is shown that the solution obtained through coordination is superior to that 

achieved by treating the two disciplines independently. This chapter serves to introduce a 

number of concepts that will be expanded upon in Chapter 5 and Chapter 6. The material 

in this chapter is based on publications by Michalek, Feinberg, and Papalambros (2004, 

2005). 

4.1 INTRODUCTION 

Product development, as a costly and time-consuming prelude to the introduction 

of new products, has been the object of intense study by practitioners and academics in 

both marketing and engineering design. The academic literature proposes a number of 

models to help guide product planners in assessing consumer needs or “value systems,” 

as well as to capitalize on synergies in the production process itself. As such, the entire 

process is typically broken down into a number of stages which, for parsimoniousness 

and reasons of disciplinary boundaries, are addressed separately in product optimization. 

For example, in marketing one may ask, given a set of known characteristics and levels – 
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and, presumably, an expedient method for delivering them in one product at an attractive 

price point – which combination would most appeal to consumers, or which combination 

would be most profitable. Engineering design faces the converse problem of delivering 

an optimal, feasible product given a set of desired performance targets, features and costs. 

That is, each discipline works under constraints and guidelines set by the other. 

In marketing conjoint studies, for example, product characteristic ‘levels’ are 

chosen to be in line with engineering guidelines and so, in a sense, are conditional upon 

them. If engineering cannot deliver a specific product characteristic or some particular 

value of it, consumers are not asked for their reactions to it. So, what we learn about 

consumer preferences, and thereby the set of products produced, is contingent on 

knowing in advance which targets are technically infeasible or unrealistic. Similarly, 

engineering design models aim to maximize or achieve target levels of performance 

characteristics, subject to physical and production constraints, without knowing if 

consumers would want and pay for them.  

A turnkey system formalizing product optimization through coordinated 

communication between established marketing and engineering design models has not 

emerged for a number of reasons. First and foremost are reasons of historical 

development and disciplinary boundaries: Research on product development in marketing 

has long differed from that in engineering design in terms of product representation and 

choice of performance and success metrics (Krishnan and Ulrich 2001). For example, in 

marketing a product is often modeled as a “bundle of attributes” (e.g., McAlister 1982), 

over which consumers have preferences represented by utilities, so that firms can 

manipulate the former to maximize the latter. In engineering design, by contrast, products 

may be described as complex assemblies of interacting components, for which parametric 

models are built to represent design decisions, such as shape, size, and configuration, 

which then are manipulated to maximize performance objectives. Measurements of 

“success” also differ between the two disciplines, with marketing assessing degree of 
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market fit, consumer satisfaction, overall share and ultimately profit, and engineering 

design concerned with technical performance, innovativeness and cost effectiveness. The 

two disciplines even point to different critical success factors external to the design 

process itself: Marketers stress the importance of positioning, advertising messages, 

choosing the right price tier and understanding “consumer needs” using data, while 

engineers generally use intuition when dealing with customer needs, emphasizing the 

creativeness and functionality of the product concept and working toward technical 

objectives such as reliability, durability, environmental impact, energy use, heat 

generation, manufacturability and cost reduction, among others. In short, the two 

communities do not so much disagree on the product development process as have 

different scopes, perspectives, languages and notions of drivers of success. 

Second, marketing and engineering design models differ in terms of domains and 

control variables, and so their corresponding models of the product development process 

do not easily speak to one another. For example, in marketing, a chief goal is simply 

figuring out what consumers want, addressed through such methods as focus groups, test 

markets, surveys and measurement models like conjoint. Consumer preferences are taken 

as primitives, and one optimizes over levels of product characteristics, looking for ‘sweet 

spots’ in the product characteristic space. Engineering design, by contrast, seeks to meet 

specific performance goals, conditional on existing production processes and the realities 

of physics and geometry. In short, both optimization variables and the nature of 

constraints are very different. Formal models attempting to combine them would 

therefore have to span an unusually broad domain. 

Among the main problems identified by Krishnan and Ulrich (2001) is effective 

communication between marketing and engineering design. Even with full information 

and broadly-validated modeling frameworks, miscommunication can lead to sub-optimal 

product designs, a problem particularly pronounced for high-tech products where the 

marketing and engineering design domains are widely separated. Such claims have broad 
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antecedents in prior empirical and theoretical research. Gupta et al. (1986) studied the 

interface between marketing and R&D in American hi-tech firms, and found that other 

factors (besides standard market uncertainty and firm strategy explanations) exert strong 

effects, most notably organizational design and “sociocultural” differences between 

marketing managers and their R&D counterparts. This is hardly confined to US firms: 

Song and Parry (1992) confirmed these findings for over 200 analogous firms in Japan, 

while also cataloguing subtle points of difference between the two nations’ development 

cultures. Souder (1988), in analyzing a vast database of product development projects, 

found a variety of consistent problem types between marketing and R&D managers, and 

thus formulated a model to improve integration between the two. Griffin and Hauser 

(1992) further considered the multiple interfaces between marketing, engineering and 

manufacturing, comparing the effects of Quality Function Deployment (QFD) to more 

traditional project development approaches. They consistently underscore the critical role 

and nature of information flow, and how QFD uniquely allows enhanced “horizontal” 

flow through the development team. 

In this chapter, a new approach is proposed to link marketing and engineering 

product design decision-making formally. In doing so, the intent is not to merge the two, 

but to make use of their respective strengths and to capitalize on models that are 

especially well-suited to joint optimization. From marketing, methods from discrete 

choice analysis are adopted, as applied to efficient conjoint designs; both have deep 

theoretical roots and have been validated in hundreds of disparate empirical studies 

throughout the world (Cattin and Wittink 1982, Wittink and Cattin 1989, Wittink et al. 

1994). From engineering design, the analytical target cascading methodology is adopted, 

in addition to general design optimization methodologies. It is demonstrated how these 

pre-existing methods can work in tandem to converge on optimal product designs, 

avoiding the time-consuming, error-prone and costly iterations that often characterize 

complex product development processes. 
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Several key ideas pervade this approach. The first is a departure from assumptions 

made in certain marketing models, which often hold that design problems are primarily 

ones of capital: With sufficient funds, any desired combination of product characteristics 

can be achieved. Although marketers are aware that, strictly speaking, some such 

combinations are quite difficult to attain (Urban and Hauser, 1993) it is fairly common in 

conjoint studies, for example, to allow product characteristics to be paired according to 

the needs of the experimenter (e.g., Haaijer 1999). Such a premise is less commonly 

enacted by engineers, who deal more directly with feasibility constraints: designs that 

cannot exist under present technology or that are physically impossible with any 

technology. The methodology presented is particularly suited to support the study of 

complex durables where feasibility constraints prohibit some combinations of 

characteristics from being achievable at any cost. The empirical application in this 

chapter considers such constraints, where some product characteristic combinations 

literally are impossible to achieve, not just difficult or costly.  

The second idea is the often-underestimated complexity of interrelations among 

engineering constraints, even for simple artifacts such as the dial-readout scale studied 

later in this chapter. When this complexity is further mapped onto the product 

characteristics space, simple strategies, like restricting product characteristic levels to 

feasible combinations in a conjoint study, has little value and will not lead to optimal 

solutions. The simple case study of this chapter is an empirical demonstration of such a 

situation, and illustrates the need for caution when studying design domains of higher 

complexity.  

The final idea is the key role of iteration: Marketing and engineering design 

decisions must be iteratively updated, preserving the individuality of each discipline but 

converging to the optimum for the product, not for the discipline. If marketing sets targets 

without iterative interaction with engineering design, results can be substantially inferior 

than under the proposed ATC coordination method. This is especially intriguing, given 
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that the model used to account for consumer preferences can call upon the wealth of 

methods developed for conjoint measurement, methods that offer optimal product designs 

from a marketing viewpoint – so long as they are checked against their technical 

realization.  

 In the next sections a short review of the relevant literature in marketing and 

engineering design is provided, ATC is introduced as a formal linking mechanism 

between marketing and engineering design, and its use is demonstrated on a simple 

durable product: a dial-readout bathroom scale. 

4.2 MARKETING AND ENGINEERING IN PRODUCT DESIGN 

4.2.1 Marketing Product Planning Models 

Kaul and Rao (1995) provide an integrative review of product positioning and 

design models in the marketing literature. They differentiate between product positioning 

models, which involve decisions about abstract perceptual attributes, and product design 

models, which involve choosing optimal levels for a set of physical, measurable product 

characteristics. In this dissertation only measurable product characteristics are used; 

however, a comprehensive framework similar to the one proposed by Kaul and Rao could 

be used to include perceptual attributes, product positioning, and consumer heterogeneity. 

In this dissertation, conjoint-based product design models from a marketing perspective 

will be referred to as product planning models. 

Optimal product planning in the marketing literature is typically posed as 

selection of optimal price and product characteristic levels that achieve maximum profit 

or market share. For complex products, where engineering constraints may prevent some 

combinations of product characteristic levels from being technically attainable, it is 

difficult to define explicitly which combinations of characteristics are feasible. Even if 
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these combinations can be defined and eliminated from a conjoint study, the optimal 

solution using the conjoint data may still contain infeasible combinations of product 

characteristics. For such products, planning decisions made without engineering input 

may well yield inferior solutions.  

4.2.2 Engineering Design Models 

The engineering design optimization literature focuses on methods for choosing 

values of design variables that maximize product performance objectives. Papalambros 

and Wilde (2000) provide an introduction to engineering design optimization modeling 

techniques, strategies and examples. When multiple conflicting optimization objectives 

exist, the solution is a Pareto set of optimal products, and the choice of a single product 

from that set requires explicit expression of preferences among objectives. Such 

preferences are notoriously difficult to define in practice. Some methods use interactive, 

iterative searches to elicit preferences, relying on intuition in navigating the Pareto 

surface and choosing an appropriate design (Diaz, 1987).  

As discussed in Chapter 2, recent efforts in the design literature take the approach 

of resolving tradeoffs among technical objectives by proposing models of the producer’s 

financial objective (Hazelrigg, 1988; Li and Azarm, 2000; Gupta and Samuel, 2001; 

Wassenaar and Chen, 2003; Georgiopoulos, 2003; Georgiopoulos et al., 2004). Gu et al. 

(2002) build on this work using the collaborative optimization MDO framework to 

coordinate decision models in the engineering and business disciplines. In the approach 

here, by contrast, a hierarchy of product planning and engineering design models are 

coordinated to design a product using ATC, which is proven to converge to joint 

solutions for arbitrarily large hierarchies, as discussed in Chapter 3. Unlike prior 

approaches in engineering design, explicit econometric models of consumer preference 
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distributions are developed conditional on actual survey choice data for coordination with 

engineering design decisions.  

4.2.3 Prior Approaches to Integrating Engineering into the Marketing Product 
Design Literature 

Over the last decade, the marketing literature has increasingly turned to questions 

of integration with engineering design and production, usually noting the difficulty of 

doing so. Early discussions of problems integrating information from various sources in 

the product development process include Griffin (1997) and Wind and Mahajan (1997). 

Griffin was among the first to highlight the use of cross-functional teams to shorten – and 

purportedly optimize – the product development process, a process especially lengthy for 

innovative and for highly complex products. Wind and Mahajan went so far as to issue a 

warning about the “inadequacy” of modeling techniques in marketing to encompass the 

entire new product development process, particularly as design incorporates information 

from multiple sources. Certain externalities can come into play as well; for example, 

Moorman and Slotegraaf (1999) highlight how information in the external environment 

can stimulate firms to deploy their technology and marketing capabilities so as to 

influence the level and speed of relevant product development activities. They conclude 

that the most valuable characteristic of firm capabilities may be their ability to serve as 

“flexible strategic options.” How they might accomplish this, in practical terms, is still 

largely an open question.  

Part of the ‘integration problem’ is certainly one of terminology and 

conceptualization. Garcia and Calantone (2002), for example, detail the often 

contradictory ways in which notions of innovation are used in the new product 

development literature, particularly in marketing and engineering design. They 

emphasize the importance of maintaining both marketing and technological perspectives 

when discussing innovations and the relative lack of empirical work directed at “really 
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new” innovations, and offer a set of measures to help classify innovations across the 

domains of practitioners and academics. 

Researchers in marketing have often pointed to engineering design and production 

as the key contributors to product success or failure. Sethi et al. (2001) stress that 

multiple studies have found that the primary determinant of new product success is 

innovativeness, the extent to which a new product provides meaningfully unique benefits, 

rather than the ability to satisfy pre-existing wants of the type uncovered in a typical 

conjoint study. Srinivasan et al. (1997), in addressing the concept selection stage of a 

new product development process, emphasize the importance of utilizing both product 

characteristic-based customer preference and product cost models, and they offer 

empirical evidence for the need to push beyond such models to more complete 

“customer-ready” prototypes. Halman et al. (2003) additionally consider the advantages 

of a platform-based approach to product development, showing how economies-of-scale 

enhance both marketing and physical production. Although they are primarily interested 

in product lines (as opposed to individual products), they underscore the paucity of 

literature linking marketing with engineering practice in product management. 

Hauser (2001), by contrast, emphasizes the sheer complexity of the development 

process, in terms of coordination of resources and agents with multiple criteria for 

success (for example, speed to market, customer satisfaction and product quality). He 

applies agency theory to formulate a set of metrics and a weighting method to help firms 

balance and optimize such complex development processes, with variables spanning 

concerns from both marketing and engineering design. 

A great majority of research on new product success has focused on product 

characteristics and the product development process, rather than interactive and ancillary 

factors. In their study of product launch support, Hultink et al. (2000) examine data on 

many hundreds of product introductions and identify divergent product success criteria 

for what they distinguish as “consumer goods” and “industrial goods.” For example, the 
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former seem to benefit from strategies that defend market positions, while the latter 

benefit from those that leverage technological innovations to penetrate new markets. 

Furthermore, the optimal marketing ‘mix’ – the relative emphasis on consumer-oriented 

variables like promotion, display and advertising, and more nuts-and-bolts technological 

dimensions – differs systematically between the two product types, so it is unsurprising to 

see them receiving different degrees of emphasis in the marketing and engineering design 

communities. However, Kahn (2002) finds that marketing assumes primary responsibility 

for making market forecasts across both types of goods, with a considerably shorter 

horizon for “consumer goods.” 

Pullman et al. (2002) present one of the few studies on the relative effectiveness 

of marketing-based and engineering-based approaches to optimal product design; 

specifically, they consider conjoint analysis (a marketing-based method, and one used in 

the present study) and QFD (a more engineering-oriented approach). They found that the 

two approaches converged on many of the most important features, but that the 

engineering approach was better able to highlight those characteristics which had both 

positive and negative aspects. Further, they found that the marketing approach better 

identified current consumer preferences, while the engineering approach better identified 

core consumer needs. A major conclusion of their study is that the two approaches should 

be pursued in tandem. Still, no formal system combining them is presently available to 

the design community. While this dissertation does not directly address tools such as 

QFD, which offer help to designers in the absence of mathematical product models, it 

instead presents a formal methodology to coordinate results of conjoint analysis with 

product models when such models can be called upon. 

Finally, Leenders and Wierenga (2002) offer a major review of extant approaches 

to the interplay and integration of marketing and engineering design with a particular 

emphasis on relative effectiveness. They found that one of the most effective methods is 

simply locating marketing and product development team members closer together to 
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facilitate the interchange of information and, presumably, to encourage a form of joint 

optimization. They caution, however, that while encouraging this sort of information 

exchange does indeed enhance new product performance, it nevertheless carries 

substantial costs, mainly in the great deal of complexity intrinsic in formalizing such 

relationships. Although it does not formally address industrial design (aesthetics) or 

manufacturing (physical production), the present study serves to initiate development of 

the very formalization between marketing and engineering design which prior authors 

have underscored as problematic. 

4.2.4 New Product Development.  

Although the NPD literature is too vast to summarize here competently, other 

authors have done so in articles devoted to the subject. Brown and Eisenhardt (1995), in a 

broadly integrative survey, present a snapshot of the burgeoning product development 

literature, distinguishing three major themes, development as rational planning, as a web 

of communication, and as “disciplined” problem-solving. Based on these broad 

distinctions, they fashion a model of critical success factors in product development, 

paying unusual attention to the distinct roles of various actors – senior management, 

project leaders, suppliers, purchasers – and the vital interplay afforded by communication 

among them at various stages of the development process. Meta-analyses of the product 

performance literature are provided by Montoya-Weiss and Calantone (1994) and by 

Henard and Szymanski (2001); both synthesize decades of prior research in the area with 

an eye towards generalizations, though the former does report a large number of points of 

divergence, despite commonalities in methodological approach in the surveyed 

literatures. Henard and Szymanski (2001) focus specifically on the key determinants of 

relative product success. Of two dozen such factors identified by prior authors, they find 

that the most broadly critical include product advantage, market potential, the ability to 
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match customer needs, and pre-existing firm proficiencies. Interestingly, the role of 

communication between various firm entities is largely that of mediator, in that many of 

the critical success factors can be directly affected by it. 

For the purposes here, among the key conclusion of all these prior lines of 

research is this: Fostering effective, ongoing communication between marketing and 

engineering design (among other entities) is a critical factor in the eventual success of a 

product development project. The methodology presented next is uniquely suited to 

accomplishing exactly that goal in a rigorous, mathematical design system. 

4.3 METHODOLOGY 

Here ATC, introduced in Chapter 3, is proposed as a joint system for product 

development that calls upon methodologies from both engineering design and marketing. 

The ATC framework allows a joint planning and engineering design problem to be 

formally decomposed into a (marketing) product planning subproblem and an 

engineering design subproblem. Each of these separately has been the object of intense 

study, and among the felicities of ATC is the ability to call on methods for optimizing 

each of these subproblems in order to attack the much more difficult joint problem and to 

prove that obtained solutions are identical. The product planning subproblem is well-

known to marketers, as it involves choosing product characteristics and price (e.g., as 

warranted by a conjoint or similar model) that will maximize some firm-level objective 

function. Here, a simple model of expected firm profit is used, contingent on an estimated 

discrete choice model for demand, such as logit or probit. The ATC formalism allows 

flexibility in this regard, and profit is just one among any number of possible firm-level 

objectives. The engineering design subproblem is quite different, and involves choosing a 

feasible design that achieves known target product characteristics as closely as possible. 

Using ATC, the subproblems are iteratively solved until the joint system converges upon 
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a consistent optimal product design. Although the model is presented formally in the 

following sections, the main ideas are depicted in Figure  4.1. 

 
Figure  4.1: ATC formulation of the product planning and engineering design 

subproblems 

In this setup the marketing product planning subproblem requires that profit be 

maximized with respect to product characteristics and price, but also stipulates minimal 

deviation from an achievable engineering design; it is in this last requirement that the 

formulation differs from the one typical in marketing applications. The engineering 

design subproblem is in some sense the dual: It sets design decisions to minimize 

deviations from the product characteristics requested by marketers, but must respect 

engineering constraints, which often are exogenous in the sense of being dictated by, for 

example, geometry and physics. The two problems ‘speak’ to one another in a very 

natural sense. In real organizations, it is typical for one group, either marketing or 

engineering design, to deliver an initial set of specifications, which the other attempts to 
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meet, starting off an actual iterative process between the two. Here models are used to 

perform iterations and to reach a desirable, feasible, and consistent solution. Potential 

savings in reducing the ‘physical’ iteration between groups of people are not addressed 

directly, but these likely will be considerable if the models required for ATC are 

available.  

4.3.1 Analytical Target Cascading 

As discussed in Chapter 3, analytical target cascading is a methodology for 

systems optimization. It works by viewing a complex system as a decomposable 

hierarchy of interrelated subsystems, each of which can be analyzed and optimized 

separately and then coordinated (Kim 2001). In order to apply ATC, one must have a 

mathematical model for each of the subsystems – which in general can be numerous, 

although this chapter refers to only one engineering design subsystem – so that one can 

compute subsystem response as a function of decisions made for that subsystem. Given 

the various mathematical models for the subsystems, the modeler organizes them into a 

hierarchy, as in the computer example shown in Figure  4.2; note that the top level 

represents the overall system and each lower level represents a subsystem of its parent 

element. The process would be similar for even small durables, although the number of 

subsystems and their potential interactions would be smaller. For example, in the dial-

readout scales studied here, the hierarchy consists only of one marketing subsystem 

(parent) and one engineering design subsystem (child); however, in general both the 

marketing and engineering models could consist of a hierarchy of any number of 

submodels.  
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Figure  4.2: Hypothetical ATC hierarchy for a computer workstation 

In the ATC process, top-level system design targets are propagated down to 

subsystems, which then are optimized to match the targets as closely as possible. The 

resulting responses are rebalanced at higher levels by iteratively adjusting targets and 

designs throughout the hierarchy to achieve consistency, the latter process called the 

coordination strategy. Chapter 3 showed that, using certain classes of coordination 

strategies, the ATC formulation will converge to the same solution as the un-decomposed 

(or “all-at-once”) problem, within a user-specified tolerance. 

Using ATC can be advantageous because it organizes and separates models and 

information by focus or discipline, providing communication only where necessary. 

Some problems that are computationally difficult or impossible to solve all-at-once can 

be solved using ATC, and in some cases ATC can result in improved computational 

efficiency because the formulation of each individual element typically has fewer degrees 

of freedom and fewer constraints than the all-at-once formulation. 

As mentioned earlier, the formulation and example presented in this chapter 

contains a hierarchy of only two elements: the marketing product planning subproblem M 

and the engineering design subproblem E, which is the child (sub-level) of M. However, 

for complex systems ATC allows the flexibility to model the engineering design 
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subproblem as a hierarchy of subsystems and components rather than with a single 

element. It is possible to conceive of a formulation where marketing tasks are also 

modeled as a hierarchy such that the product planning subsystem interacts with 

engineering design while other subsystems represent other aspects of the marketing mix 

such as promotion, packaging, pricing and positioning. 

In the following subsections, the engineering design model and product planning 

model used in this chapter are described in detail. 

4.3.2 ATC Engineering Design Subproblem 

In the engineering design subproblem, design characteristics z are calculated as 

functions of the design variables x using the response functions r(x), where the variables 

x are constrained to feasible values by constraint functions g(x) and h(x). General 

procedures for defining design variables x, response functions r(x), and constraint 

functions g(x), and h(x) to define a product design space are well established in the 

design optimization literature (Papalambros and Wilde, 2000); however, modeling 

specifics are entirely product dependent. The objective function of the engineering 

subproblem is to minimize deviation between the product characteristics achieved by the 

design zE and the targets set by marketing zM. Using ATC notation introduced in Chapter 

3, this objective function is written as 

 
( ) 2

2M E−w z zo , (4.1)  

 

where || ||22 denotes the square of the l2 norm, w is a weighting coefficient vector, and ○ 

indicates term-by-term multiplication, such that [a1 a2 ... an] ○ [b1 b2 ... bn] = [ab1 ab2 ... 

abn]. For complex products, engineering constraints typically restrict the ability to meet 

some combinations of product characteristic targets, and the ATC process acts to guide 
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marketing in setting achievable targets while designing feasible products that meet those 

targets. 

4.3.3 ATC Marketing Product Planning Subproblem 

In the marketing planning subproblem, a fairly simple model of profit, Π, is 

adopted, which in the standard way is taken to be revenue minus cost, 

 

( )V Iq p c cΠ = − − . (4.2)  

 

Here, q is the quantity of the product produced and sold (product demand), p is the selling 

price, cV is the variable cost per product, and cI is the investment cost. It would be further 

possible to augment this model in any number of ways popular in the extant literature, for 

example, a discount function to capture the time value of money, a separate term to 

account for fixed costs or salvage value, or a concave loss-like function for risk and 

uncertainty. Nevertheless, Eq. (4.2) captures the main forces at work, and can be readily 

modified. Among the firm’s decision variables are pricing and product characteristics. 

For simplicity here the variable and investment costs cV and cI are considered constant 

across all possible product designs; however, they could also be written as functions of 

the engineering design decisions, as will be discussed in Chapter 6. Note that overall 

demand q depends on price p as well as on product characteristics z. 

A straightforward version of choice-based conjoint using the standard logit model 

is called upon to establish a plausible demand function q as a function of the decision 

variables z and p; see the Appendix for a detailed introduction to discrete choice models, 

and see, for example, Louviere and Woodworth (1983) for an early application of a 

similar model. Only the design of a single product is considered here, and so the types of 



 71 

heterogeneity corrections allowed by more recent latent class and hierarchical Bayes 

approaches are less relevant here than they would be in the case of the product lines 

discussed in Chapter 5, thus simplifying implementation considerably. Andrews et al. 

(2002) provide a full discussion of these issues specifically in the context of conjoint. 

Finally, demand is formulated with the producer operating as a monopolist or at least in a 

market where the firm’s decision variables do not result in predictable systematic 

variation in the actions of other firms (i.e., in a so-called “zero conjectural variations” 

setting). It is possible to adopt a game theoretic setting to account for potential oligopoly, 

and a version of such a set-up applied in a similar production-based context is discussed 

in Chapter 7 and in Michalek, Papalambros and Skerlos (2005). 

A vast body of work in discrete choice analysis has enabled the modeling of 

choices made in uncertain environments (Train, 2003). As is typical in marketing 

applications, a random utility formulation is used to link observed covariates – here, price 

and product characteristics – to observed individual-level choices. Formally, there is a set 

J of product alternatives numbered 1, 2, ..., J with deterministic components {v1, v2, …, 

vJ} and associated errors {ε1, ε2, …, εJ}; to account for the possibility of no alternative 

being acceptable, there is also an ‘outside good,’ indexed as alternative 0, with error ε0 

and attraction value v0 normalized to zero (v0 = 0). The probability Pj that we observe a 

choice of alternative j is equal to the probability that alternative j has the highest utility: 

 

Pr ,j j j j jP v v jε ε′ ′ ′⎡ ⎤= + ≥ + ∀ ∈⎣ ⎦J  (4.3)  

 

Computational efficiency depends critically on the distribution assumed for the ε 

random error terms in Eq. (4.3). Errors can take several forms, and it generally requires 

extremely large samples for assumptions about distributional error to have any 

substantive impact; consequently, researchers often work with error specifications 
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allowing the most tractability. For example, if errors are assumed to be normally 

distributed, then the form of Pj is called the multinomial probit model, which does not 

admit of closed-form expressions for choice probabilities in terms of underlying 

attractions. However, if ε terms are assumed to be Type II extreme-value (or Gumbel) 

distributed (i.e., Pr[ξ < x] = exp[-exp(-x)]), as in Guadagni and Little (1983), then it can 

be shown that 
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 (4.4)  

 

where the “1” in the denominator accounts for the outside good, with v0 = 0 (see Train 

2003, Chapter 3 for proof). This form is called the multinomial logit model (MNL). Note 

that, even in a monopolist setting, the presence of an outside good ensures that the 

probability of “no choice” is always non-zero, and so choice probabilities for undesirable 

or overly expensive products will be low. 

It is assumed that v can be measured as a function of observable quantities such as 

price, product characteristics, consumer characteristics, etc. In this dissertation only price 

and product characteristics are considered. A rule is needed for mapping prices and 

product characteristics into the deterministic component of utility v. A good deal of 

recent work examines non-parametric methods for accommodating individual-level 

(Kalyanam and Shively 1998; Kim et al. 2003c) or latent utility functions (Andrews et al. 

2002). These are, however, computationally intensive and difficult to embed within an 

iterative optimization scheme. Instead, a standard linear mapping of product 

characteristic levels (conjoint part-worths) is used, fitting natural splines to interpolate 
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intermediate values. The observable component of utility vj for product j is then written 

as 

 

1 1
j jv

ζ

ζω ζω
ζ ω

β δ
ΩΖ

= =

= ∑∑ , (4.5)  

 

where δjζω is a binary dummy variable such that δjζω = 1 indicates alternative j possesses 

characteristic or price ζ at level ω, and βζω is the “part-worth” coefficient of characteristic 

or price ζ at level ω. In δjζω the elements of the product characteristic vector z are 

enumerated as ζ = {1, 2, ... Z}, and price p included as the term ζ = 0. Each product 

characteristic or price ζ is discretized into Ωζ levels, ω = {1, 2, ... Ωζ}. One advantage of 

using discrete levels is that it does not presume linearity with respect to the continuous 

variables. For example, we cannot assume that a $5 price increase has the same effect for 

a $10 product as it does for a $25 product. 

Given a set of observed choice data, values can be found for the β parameters 

such that the likelihood of the model predicting the observed data is maximized. A great 

deal of research in marketing is devoted to recovering model parameters through latent 

classes, finite mixtures or using hierarchical Bayes methods (Andrews, Ainslie, and 

Currim, 2002); however, here the standard maximum likelihood formulation (Louviere et 

al., 2000) is used. The log of the sample likelihood for a particular individual on a 

particular choice occasion t is: 
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where Φjt = 1 if the observed choice on choice occasion n is alternative j and Φjt = 0 if j is 

not the observed choice. Here Jt is the set of alternatives available on choice occasion t. 

Eq. (4.6) is maximized with respect to the βζω terms after summing across all individuals 

and choice occasions. In this way, the part-worth coefficients βζω are obtained for each 

level ω of each product characteristic or price ζ.  

In all random utility models, such as the logit used here, one must be careful 

about model identification; for example, adding a constant term to all attraction values v 

shifts them upward to the same extent and does not change choice probabilities predicted 

by the logit model. Thus, in using Eq. (4.5), there is an infinite number of solutions for 

optimal β values that predict equivalent choice probabilities and therefore have identical 

likelihood values. Standard practice is to impose an identification constraint on the 

system of coefficients, which unambiguously chooses just one among all possible 

‘optimal’ solutions. Such constraints typically set a linear combination of the coefficients 

to zero. For clarity, we select from the infinity of equivalent solutions the one solution 

where the mean coefficient value 
1

ζ
ζω

ζ ζ

βΩ

= Ω∑  is the same for all ζ. By adding this constraint 

the model has ( )
1

1 1ζ
ζ

Ζ

=

+ Ω −∑  degrees of freedom, and the solution is uniquely defined 

(i.e., “identified”).  

The βζω terms represent part-worths of discrete values but have no information 

about intermediate values. To optimize over continuously valued product characteristics 

and price, it is necessary to estimate utilities for such intermediate values. To this end, 

polynomial splines can be used, because linear splines are not differentiable at knots (the 

estimated values). In the case study to follow natural cubic splines are used although with 

a greater number of characteristic levels higher-order splines would be possible. Lastly, 

then, the deterministic component of utility can be written as a function of the 

continuous-valued product characteristics values z and price p using the spline function 
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Ψζ of the discrete level part-worths βζω for each characteristic or price ζ. If price is 

indexed as ζ = 0, the attraction value is written as  

 

( ) ( ) ( )0
1

,j j j jv p p ζ ζ
ζ

Ζ

=

= Ψ = Ψ + Ψ∑z z , (4.7)  

 

where the angle bracket notation <zj>ζ indicates the ζ th element of the vector zj. 

Thus far, only the question of relative preference among the alternatives has been 

addressed, as embodied by choice probability. The model specification is completed by 

invoking a known market potential, S. This is reasonable, given the quasi-monopolist 

setting, although it is acknowledged that markets with some degree of category expansion 

– as a function of price and product characteristics – would need to have market potential 

measured as a function of those quantities, after which optimization could be carried out. 

Given market potential S, demand qj for product j is linearly related to choice 

probabilities: 

 
1

1j jv
j j

j
q sP Se eν ′

−

′∈

⎡ ⎤
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⎣ ⎦
∑
J

 (4.8)  

 

Such market potentials can be given exogenously at the outset or estimated 

through a variety of techniques based on historical data or test markets (see Lilien et al. 

(1992) for a full review of such methods). The ATC methodology requires only 

representation of demand as a function of price and product characteristics, not 

necessarily one related to the form chosen for this or any particular study. 

Maximum likelihood estimation can be used to fit β parameters to any set of 

observed choice data; however, collinearities in the characteristics and price of the choice 
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sets can make accurate parameter estimation difficult and can cause problems 

generalizing to new choice sets (Louviere et al., 2000). Conjoint analysis (CA) has been 

widely used to develop efficient, orthogonal and balanced survey designs (experimental 

designs) to determine which product characteristics are important to consumers, and 

appropriate levels for each characteristic. There is a vast literature on conjoint analysis 

and appropriate experimental designs, and the reader is directed to any of the classic or 

recent articles, notably Louviere’s (1988) expository article, the review by Green and 

Srinivasan (1990) or Kuhfeld’s (2003) exhaustive account. 

Conjoint studies present subjects with a series of products or product descriptions, 

which they evaluate. Products can be presented in various ways, but characteristic levels 

are always made clear, either in list form, pictorially, or both. Subjects can indicate their 

preferences among products by ranking (i.e., putting in an ordered list), rating (for 

example, on a 1-10 scale) or choosing their favorite from a set. Choice-based conjoint is 

used for data collection because it is more natural for respondents (who choose products, 

rather than rating or ranking them in their daily lives). Concordant with standard practice 

(Kuhfeld, 2003), efficient designs are generated to collect maximum information about 

preferences with a minimum number of questions, offering successive sets of products 

and asking which is most preferred in each, or whether none is acceptable (the “no 

choice” option). 

4.3.4 Complete Formulation 

Figure  4.3 provides an overview of the modeling process. The demand model is 

constructed by collecting consumer choice data using a choice-based conjoint survey. 

The logit demand model part-worth coefficients for the discrete product characteristic 

levels are then fit to the data using maximum likelihood techniques, and splines are fit 

through these discrete levels. These splines, fixed during optimization, then act to 
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calculate demand in the marketing subproblem. The marketing subproblem and 

engineering design subproblem are coordinated by passing target and response product 

characteristics back and forth until convergence. 
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Figure  4.3: Diagram of the modeling process 

Figure  4.4 depicts a schematic of the complete ATC formulation of the product 

development problem for a single-product-producing monopolist, conditional on the 

preference splines of the demand model. In this formulation there is only one product, so 

the product index j is dropped. In the product planning subproblem, price p and product 

characteristic targets zM are chosen to maximize profit Π while minimizing the deviation 

between the product characteristic targets set by marketing zM and those achieved by the 

engineering design zE using weighting coefficients w to specify the tradeoff between the 

two objectives. Profit Π is calculated as revenue minus cost as in Eq. (4.2), and demand q 

is calculated using the logit model in Eq. (4.7)- (4.8) with known market potential s. In the 

engineering design subproblem, design variables x are chosen to minimize the deviation 

between characteristics achieved by the design zE and targets set by marketing zM using 

Eq. (4.1) subject to engineering constraints g(x) and h(x). These two subproblems are 
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solved iteratively, each using standard nonlinear programming techniques (Papalambros 

and Wilde, 2000) to solve each subproblem until the system converges. The weighting 

update method from Chapter 3 may then be used to find weighting coefficient values w 

that produce a solution satisfying user-specified tolerances for inconsistency between 

marketing and engineering for each term in z. This method is important for producing 

consistent solutions in cases where the top level subproblem does not have an attainable 

target: In this case profit is maximized rather than setting an attainable profit target. 
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Figure  4.4: ATC formulation of the product planning and engineering design 

problem 
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4.4 EMPIRICAL APPLICATION: DIAL-READOUT SCALES 

The potential of the joint marketing and engineering design model is 

demonstrated in the design of a standard household dial-readout bathroom scale. Scales 

possess a number of attractive features for illustrative purposes: Consumers are nearly 

uniformly familiar with them; the ‘range’ of bathroom scales in the marketplace is 

relatively small, even among inexpensive consumer durables, and as such would have to 

be considered moderately differentiated at most; even the best scales are not very costly, 

so one could potentially measure price effects well; the number of characteristics 

consumers value is not large, the number of ‘levels’ (part-worths) within each 

characteristic is reasonable, and characteristics and levels can be known in advance 

through prior studies and on-line data; finally, lack of mechanical complexity makes it 

possible to formulate a small, explicit set of geometric and physical constraints for the 

engineering design subproblem. These simplifications are convenient, but the 

methodology presented here can be used for most durable products, even if certain 

modeling aspects may vary considerably (in terms of arduousness) among products.  

4.4.1 Marketing Planning Subproblem 

Marketers must first identify which product characteristics under their control are 

of interest to consumers, and which levels they can distinguish. A great deal of 

information on bathroom scales was made available for this work in a proprietary report 

indicating which characteristics figured high in consumer preferences. Some, like 

“color,” could be interchanged or manipulated on the fly without interaction with other 

scale components, and were thus left out of the experimental design. It was also 

considered which characteristics would be especially important to convey in an on-line 

purchase environment, the environment the experiment was meant to loosely simulate, 

given that the study was itself conducted on the web. Finally, it is important that the 
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chosen characteristics can be directly quantified and easily conveyed to respondents in an 

unambiguous manner; thus, nebulous descriptors such as “nicely proportioned” were 

eschewed in favor of actual proportions. Five product characteristics – weight capacity, 

aspect ratio, platform area, tick mark gap and number size, plus price – were adopted 

because of their relevance to consumers and designers, as well as their prevalence in on-

line purchase descriptions and pictures; these appear, along with the levels for each, in 

Table  4.1. Each characteristic was discretized into five levels, which allowed adequate 

spline interpolation, as shown in Figure  4.5. These levels were chosen to span the range 

of values of products in the market based on a sample of 32 different scales sold on the 

internet, to ensure realism and to capture realistic anticipated trade-offs. Characteristics 

such as brand name were deliberately avoided because of great differential familiarity 

and lack of a direct tie-in with the design of the underlying product. 

Table  4.1: Product characteristic and price levels 

k Description Metric Units Levels 
z1 Weight capacity Weight causing a 360° dial turn lbs 200 250 300 350 400 
z2 Aspect ratio Platform length divided by width -- 6/8 7/8 8/8 8/7 8/6 
z3 Platform area Platform length times width in2 100 110 120 130 140 
z4 Tick mark gap Distance between 1-lb tick marks in. 2/32 3/32 4/32 5/32 6/32
z5 Number size Length of readout number in. 0.75 1.00 1.25 1.50 1.75
p Price US Dollars $ 10 15 20 25 30 
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Figure  4.5: Interpolated spline functions 

An efficient choice-based conjoint design (50 sets of three-products, plus “no 

choice”) was used and implemented on the Internet. Respondents were solicited through 

announcements on numerous internet newsgroups as well as through two classes at the 

University of Michigan, one in marketing research, the other in engineering design. All 
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respondents2, 184 in total, were offered incentives in the form of sweepstakes for gift 

certificates in various amounts. A great deal of effort was put into having the choice task 

correspond to the sort found at on-line shopping sites. To that end, scales were presented 

in terms of their underlying product characteristic information in list format and 

pictorially, including a close-up of the dial to facilitate comparison across the last two 

characteristics; a screen capture is provided in Figure  4.6. 

 
Figure  4.6: Online conjoint scale choice task 

                                                 

2 Demographic data were also solicited from respondents. The sample is 58% male. For men, 
mean height, weight and age are 70.7 inches, 177 lbs. and 28.2, respectively; corresponding 
values for women were 64.6 inches, 129 lbs. and 26.5. Respondents were also asked three 
questions relevant to scale purchase behavior: (1) Do you need vision correction to see clearly at 
a distance of 6 feet?; (2) Have you tried (deliberately) to lose at least ten pounds in the last year?; 
(3) Have you purchased a scale in the past two years? Female and male affirmative proportions 
were {0.49, 0.40, 0.22} and {0.48, 0.36, 0.22}, respectively, and were not statistically 
distinguishable. No significant systematic relationships between these variables and preference 
patterns in the conjoint task were noted. 
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As dictated by the conjoint design, options involving physically or geometrically 

infeasible product characteristic level combinations were included, because responses 

were used to measure consumer value systems (part-worth utilities) and trade-offs, not to 

be restricted to feasible designs in the engineering design subproblem. Not requiring such 

a feasible set to be explicitly delineated in advance is among the main strengths of the 

ATC approach.  

Model parameters were estimated, as described earlier, using maximum 

likelihood and a Newton type algorithm3. The resulting β values are listed in Table  4.2; 

these values have been scaled so that the mean in each set of characteristics is the same. 

The average β value for each characteristic is -0.004, corresponding to the relative 

attractiveness of scales with respect to the “no choice” option, which for identification 

purposes has v0 = 0 identically. These values show reasonable trends: Respondents 

monotonically prefer larger numbers and lower cost, but have interior preferences for 

weight capacity, platform area, shape (aspect ratio) and interval mark gap. One might 

argue that more weight capacity is always better, and so body weight data was collected 

on participants; the heaviest was 280 lbs., so none would in fact have required either of 

the two highest capacity levels (so the mild utility decline may be attributable to wanting 

to avoid excess capacity or even not wishing to appear as if it were needed). Natural 

cubic spline functions Ψ, shown in Figure  4.5, were fit to these β values for each 

characteristic and for price. Based on discussions with a major scale manufacturer, 

(exogenous) values for cost cV = $3 per unit and for initial investment cI = $1 million 

                                                 

3 Estimation for the conjoint model was based on maximum likelihood using standard gradient 
search methods; all starting values converged to identical optima. At the optimum, the log-
likelihood, LL = -10983. This model can be compared to a series of nested alternatives: to a 
seven-parameter model which sets equal levels within characteristics, but allows the 
characteristics themselves to vary (LL = -12066); to a one-parameter model which estimates only 
the “no choice” option’s relative attractiveness (LL = -12716); and to a ‘zero parameter’ model 
which assigns equal probability to all choices (LL = -12753). Each can be very strongly rejected 
against the preceding one.   
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were assumed, as well as for market size S, which was set to 5 million, the approximate 

yearly market for dial scales in the United States. Using this last figure and the estimated 

splines, demand q was computed using Eq. (4.7)- (4.8). 

Table  4.2: Part-worth coefficient beta values 

Weight Capacity Platform Area Size of Number 
200 lbs. -0.534 100 in.2 0.015 0.75 in. -0.744 
250 lbs. 0.129 110 in.2 -0.098 1.00 in. -0.198 
300 lbs. 0.228 120 in.2 0.049 1.25 in. 0.235 
350 lbs. 0.104 130 in.2 0.047 1.50 in. 0.291 
400 lbs. 0.052 140 in.2 -0.033 1.75 in. 0.396 

Platform Aspect Ratio Interval Mark Gap Price 
0.75 -0.058 2/32 in. -0.366 $10 0.719 
0.88 0.253 3/32 in. -0.164 $15 0.482 
1.00 0.278 4/32 in. 0.215 $20 0.054 
1.14 -0.025 5/32 in. 0.194 $25 -0.368 
1.33 -0.467 6/32 in. 0.100 $30 -0.908 

 

4.4.2 Engineering Design Subproblem 

Reverse engineering was used to create the engineering design submodel. Three 

scales of different construction were purchased and disassembled; this allowed a 

determination of the relevant functional components and their dependencies and 

interrelations. These are shown in Figure  4.7, with the resultant design variables for the 

engineering design submodel.  
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Figure  4.7: Disassembled scale showing components and design variables 

Analysis of the three different scales indicated they operated on essentially 

identical principles. In Figure  4.7, levers A create mechanical advantage and translate the 

force of the user’s weight from the cover B to coil spring C which is displaced 

proportionally to the applied force; a pivot lever D transfers the vertical motion of the 

spring to the horizontal motion of gear rack E, after which pinion gear F translates the 

rack’s linear motion to rotation of the dial G. Although this basic topology is common to 

the three scales examined, dimensions vary; for example, the ratio of dial-turn per applied 

force depends on the dimensions of the levers, the rack and pinion, and the spring 

properties. Because the topology is common, it is possible to represent a parametric space 
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of design alternatives using a set of design variables. Figure  4.7 shows the set of fourteen 

design variables chosen for this study, all of which are real-valued, positive, and 

continuous in nature. Other dimensions were considered to be fixed parameters y with 

values based on the observed scales, as shown in Table  4.3.   

Table  4.3: Engineering design model parameters 

Name Description Value Units 
y1 Gap between base and cover 0.30 in 
y2 Minimum distance between spring and base 0.50 in 
y3 Internal thickness of scale 1.90 in 
y4 Minimum pinion pitch diameter 0.25 in 
y5 Length of window 3.00 in 
y6 Width of window 2.00 in 
y7 Distance between top of cover and window 1.13 in 
y8 Number of lbs measured per tick mark 1.00 lbs 
y9 Horizontal distance between spring and pivot 1.10 in 
y10 Length of tick mark + gap to number 0.31 in 
y11 Number of lbs that number length spans 16.00 lbs 
y12 Aspect ratio of number (length/width) 1.29 - 
y13 Min. allowable dist. of lever at base to centerline 4.00 in 

  

Eight mathematical constraint functions g(x) were developed based on geometric 

and mechanical relationships to ensure that the design variable vector x represents a 

meaningful, feasible design. First, the dial (G) diameter x12 must be small enough to fit 

inside the base widthwise, where the base width is measured as the cover width x14 minus 

the gap y1 between the cover and the base on both sides: 

 

12 14 12x x y≤ − . (4.9)  
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The dial G must also fit lengthwise inside the scale base (x13-2y1) with sufficient room for 

the spring plate (x7+y9): 

 

12 13 1 7 92x x y x y≤ − − − . (4.10)  

 

The length of the short levers (x3+x4) must be small enough to fit inside the base 

lengthwise (x13-2y1): 

 

( )3 4 13 12x x x y+ ≤ − . (4.11)  

 

The position along the long lever of the short lever joint x5 must be within the bounds of 

the long lever length x2: 

 

5 2x x≤ . (4.12)  

 

In the fully extended position, the end of the rack E (x7+y9+x11+x8) must fit inside the 

scale body lengthwise (x13-2y1): 

 

7 9 11 8 13 12x y x x x y+ + + ≤ − . (4.13)  

 

However, the length x8 of the rack E must be long enough to span the space between the 

pivot lever D and the pinion F: 
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( ) 12
8 13 1 7 7 9 102

2
xx x y y x y x⎛ ⎞≥ − − + − − −⎜ ⎟

⎝ ⎠
. (4.14)  

 

The two long levers connect to the top edge of the base rather than the side. Therefore the 

lever length (x1+x2) is limited by the width dimension of the scale body (x14-2y1). Using 

the Pythagorean Theorem:  

 
2

2 2 14 1
1 2 13 1 7

2( ) ( 2 )
2

x yx x x y x −⎛ ⎞+ ≤ − − + ⎜ ⎟
⎝ ⎠

. (4.15)  

 

However, for stability the long levers must be long enough (x1+x2) to attach to the top 

edge of the base at a minimum distance y13 from the centerline. Again, using the 

Pythagorean Theorem: 

 

( ) ( )2 2 2
1 2 13 1 7 132x x x y x y+ ≥ − − + . (4.16)  

 

In addition, simple bounds are provided to ensure that all variables are positive. Given 

that all x are positive, any real-valued vector x that satisfies Eq. (4.10)- (4.16) represents a 

valid, feasible design. 

Next, the response functions r(x) that calculate product characteristics z in terms 

of the design variables x are defined. Assuming the scale is made up of rigid bodies 

(except for the spring) and using standard static force and moment balancing (Hibbeler, 

1993), the weight capacity z1 can be derived as a function of the position of the cover 

force on the long (x1) and short (x3) levers, the length of the long (x1+x2) and short (x3+x4) 

levers, the position of the joint x5, the dimensions of the pivot (x10 and x11), the pitch 

diameter of the pinion x9 and the spring constant x6: 
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. (4.17)  

 

The aspect ratio is the length of the cover divided by its width:  

 

13
2

14

xz
x

= . (4.18)  

 

The area of the scale cover is its length times its width:  

 

3 13 14z x x= . (4.19)  

 

The arc length of the gap between 1-lb interval tick marks is proportional to the dial 

diameter x12 and inversely proportional to the weight capacity z1 (see Eq. (4.17)):  

 

12
4

1

xz
z

π= .  (4.20)  

 

Finally, the number length, a measure of overall printed number size, is calculated in 

terms of the dial diameter x12 and weight capacity z1 using trigonometry based on the 

fixed span of numbers along the tick marks y10 (the printed number is assumed to span a 

fixed number of tick marks), the positioning of the numbers on the dial y11, and the aspect 

ratio (length / width) of the rectangular space allocated for the number y12:  
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Equations  (4.17)- (4.21) form the vector function r(x), which maps design variables x 

onto product characteristics z so that product characteristics can be calculated for any 

design. The design variables x are constrained to feasible values by the constraint 

functions g(x); therefore, the resultant product characteristic combinations z = r(x) are 

also restricted to feasible combinations. 

4.5 RESULTS 

The engineering design and marketing subproblems were solved iteratively until 

convergence using the Matlab function fmincon, based on the sequential quadratic 

programming method (Papalambros and Wilde, 2000), to solve each subproblem. This 

gradient-based search algorithm generates local optima, and global optima can only be 

found through multi-start. The reported solution represents the best local optimizer found 

over several starting points based on the dimensions of scales used for reverse 

engineering4. At the solution, shown in Table  4.4 the optimal scale design is bounded by 

                                                 

4 The marketing and engineering design subproblems were each solved using the Matlab 6.5.1 
function fmincon, based on SQP (Papalambros and Wilde, 2000), with default parameter settings. 
Convergence of the ATC subproblem coordination was strictly defined as occurring when each 
subproblem is unable to improve its objective function value over the optimal solution from the 
previous iteration. The number of ATC coordination iterations required to converge varies 
depending on the starting point and weighting coefficients used. Using the starting point 
generated by the disjoint case with weighting coefficients of 105, the system converged in 1815 
ATC iterations, and the resulting inconsistency between marketing targets and engineering design 
characteristics are less than 0.3% for all characteristics. Use of smaller weighting coefficients 
yields faster convergence but greater inconsistency between marketing targets and engineering 
design characteristics, as discussed in Chapter 3. For example, weighting coefficients of 104 yield 
convergence in only 31 ATC iterations with inconsistencies less than 10% for all characteristics. 
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active engineering constraints that ensure the dial, the spring plate, and the levers are not 

too large to fit inside the scale. The optimal scale characteristics are within the range of 

scales found in online e-commerce, and none of the variable bounds are active except for 

x7, which is unique because it is explicitly bound by the specified parameter value of y2, 

rather than an arbitrary bound.  

Table  4.4: Optimal scale design 

 

In the engineering model several product characteristics are functions of the ratios 

of some of the design variables. For example, an increase in lever length can be traded off 

for a changed spring constant, force placement, pinion gear pitch diameter, or pivot lever 

dimensions to yield an equivalent weight capacity. This means that two different designs 

with appropriate design variable ratios may exhibit the same product characteristics, and 
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also that an infinite number of design solutions are equivalent from a marketing 

perspective. One such design is reported in Table  4.4. Additional models representing 

cost structures in terms of design variables or part commonality among product variants 

in a product line could be used to select a single design among the set of otherwise 

equivalent designs; however, this possibility was not explored here. 

4.5.1 Comparison of ATC with Disjoint Decision-Making 

One might question whether the joint method proposed here has a substantial 

impact on product design and, ultimately, resulting profit. The role of ATC in avoiding 

infeasible products has been emphasized; however, this example demonstrates the impact 

that ATC can have on profitability. Let us examine a case of disjoint decision-making by 

marketing and engineering design, similar to the methodology proposed by Cooper et al. 

(2003), where (1) marketing defines desired product characteristics, (2) engineering 

designs a feasible product to meet the requested characteristics as closely as possible, and 

(3) marketing prices the actualized product.  

In the first step, marketing chooses the optimal price and product characteristic 

combination conditional on the monopolist / single-product framework and known 

consumer preference data (arrived at using conjoint, a discrete choice model, and the 

profit function). This step is referred to as Analytical Target Setting (Cooper et al., 2003). 

Based on the optimal price and characteristics at this stage, expected price, market share 

and profit are $28.04, 64.3% and $79.5M, respectively as shown in Table  4.5. There is no 

guarantee that a feasible product can be designed that exhibits the desired target 

characteristics. So, engineering designs a feasible product that meets the product 

characteristics requested by marketing as closely as possible. At this point the product 

design is considered fixed, but price is an easily changed variable, so it can be 

reconsidered based on the characteristics of the achieved design (a simple form of Cooper 
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et al.’s “Reduced ATS” problem). The resulting price, share and profit in this scenario 

are $25.54, 54.8% and $60.8M as shown in Table  4.5. This involves a sizeable decrease 

in price and share, and a truly enormous drop in profit from what marketing had 

originally planned using target product characteristics. Consumers often desire 

combinations of product characteristic values that are difficult or impossible to produce 

together, so it is important to examine the realizable share and profit levels. In a scenario 

such as this, marketing may accuse engineering design of failing to deliver, while 

engineering design may blame marketing for requesting a product that could not be built, 

causing substantial unnecessary compromises in the final product design. With 

contingent, sequential decision-making each side would be in the right from its own 

perspective, but the final decisions would be inferior. 

For comparison, let these two groups use ATC as a tool for communication, 

considering both the tradeoffs among desirable product characteristics and the feasibility 

of obtaining these characteristics. In this case, an entirely different product is designed, 

with price, market share and profit of $26.41, 59.0% and $68.0M, as shown in Table  4.5. 

Although the price is not much higher than in the disjoint case above, share and profit are 

significantly improved. This difference in profitability is non-trivial, approximately 

$7,200,000, a 12% increase over the ‘best feasible’ design offered by engineering design 

based on ‘optimal’ marketing target specifications alone. Thus, ATC, using the same 

submodels, converges to a jointly optimal solution offering far better market prospects. 
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Table  4.5: Comparison of disjoint solution vs. ATC-coordinated solution 

   Disjoint Joint 

 Description Unit Initial 
Marketing Plan 

Final Product 
Design ATC 

z1 Weight capacity lbs 283 222 254 
z2 Aspect ratio -- 0.946 1.041 0.997 
z3 Platform area in.2 124.2 127.8 133.4 
z4 Tick mark gap in. 0.136 0.1322 0.116 
z5 Number size in. 1.75 1.478 1.33 
p Price $ $28.04 $25.54 $26.41 
Pj Market Share % 64.3% 54.8% 59.0% 
Π Profit $ $79.5 M $60.8 M $68.0 M 

  

4.6 CONCLUSIONS 

From the perspective of the producer, marketing and engineering design ideally 

work together to achieve a common goal: creating the product with greatest value for the 

firm. As detailed here and in earlier cited research, goals, language and modes of 

operation in the two disciplines tend to insulate each from the other. The practical upshot 

is that each tends to solve problems relative to constraints ‘exogenously’ set by the other. 

The proposed methodology, based on analytical target cascading, allows the disciplines 

to remain largely independent yet to link their product subproblems formally, using time-

tested models from both fields. 

It is instructive to consider what this joint methodology offers each of the 

constituent communities. For the marketing community, ATC goes beyond merely 

facilitating communication and cutting down time-consuming iterations; it helps 

whenever marketers confront even moderately complex products and/or production 

processes in which some combinations of desired characteristics are technologically 

impractical or even physically impossible. This ‘feasible set’ of products is seldom one 

which can be easily described in the product characteristic space, and is ordinarily a 
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function of the technical decisions of the product. In short, the method allows marketers 

to dispense, at least initially, with questions of “what can be made?” and focus instead on 

what they do best: discerning what consumers most value. 

The method offers distinct benefits for the engineering design community, 

helping to contextualize design decisions within the larger framework of the firm and 

how it satisfies its customer base. Instead of resolving engineering tradeoffs – for 

example, among competing performance objectives, as in multiobjective optimization – 

purely in terms of technological or physical possibility, it allows such decisions to be tied 

directly into the firm’s overall objective, that of producing a successful and profitable 

product. The proposed methods would allow, for example, sensitivity analysis, where 

small design changes could be mapped to their eventual profit implications. Such an 

analysis would be unthinkable without a conjoined system of consumer needs and 

resultant demand, as provided by the marketing sub-model and linked through ATC. 

This ATC coordination methodology can be readily extended to far greater 

complexity using known methods. For example, the consumer response model was made 

as simple as possible, based on a homogenous-coefficient logit model. Well-known 

hierarchical Bayes methods could be substituted to allow inference for heterogeneous 

populations, and probit models with full error covariance could help account for potential 

IIA problems (Kahneman and Tversky 1979), albeit at great loss of tractability. In turn, 

models allowing heterogeneous preferences (and thus demand) would allow one to 

design product lines. This extension is explored in detail in Chapter 5. It would even be 

possible to improve extant conjoint methods by allowing them to generate only feasible 

tasks: those which maximize utility measurement accuracy within the range of 

technologically possible product configurations. 

On the engineering side, a great emphasis was placed on an overarching 

engineering design sub-model, which was based on a single product topology appropriate 

for rectangular dial-readout scales. Product variety could be enhanced by incorporating 
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multiple product topologies, with the potential for automatic topology generation (as in, 

for example, Campbell et al., 1998). A deliberately simple cost model was chosen for 

illustration; however, more detailed cost models can be integrated to the engineering 

decision-model. By doing so, it would be possible to have another sort of feedback, 

wherein the marketing sub-model sets target production cost and the engineering design 

sub-model designs feasible products that meet cost targets. This extension is explored in 

detail in Chapter 6. Product lines or families can be accommodated on the engineering 

side as well, enabling study of component- and process-sharing effects on the production 

cost structure (Fellini et al. 2003) or the use of flexible and reconfigurable manufacturing 

equipment (Koren et. al., 1999).  

In closing, there are several points to stress for both communities. The first 

involves the viewpoint, common in marketing, that design constraints can generally be 

overcome by allotting appropriate funds. In some cases they cannot. Marketing methods 

must learn to take note not only of costly designs, but also of utterly infeasible ones, a 

concept foundational in the ATC formulation presented here. This can only improve 

predictive accuracy, and simultaneously reduce data requirements for the dominant 

models used in new product forecasting. In parallel, the engineering design community 

must accept that price and consumer preferences are aspects of design just as real as those 

determined by physics. Second, determining which product characteristic combinations 

are infeasible can be difficult even when producing only a single product as simple as the 

scales considered in this chapter. Even if infeasible combinations are eliminated in 

conjoint questions, optimal solutions may still be infeasible; this is particularly important 

for continuous variable formulations. The ATC approach allows marketing and 

engineering design each to formulate its own sub-model, using methods most familiar to 

each, and to link them afterward, so that an optimal joint decision can be reached. 

Finally, designs reached using ATC necessarily converge on joint optimality and, as 

such, guarantee better profitability – or any other chosen metric – than the suboptimal 
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solutions achieved by solving the engineering design and marketing design problems 

sequentially. Given its relative ease of implementation, this last benefit will likely prove a 

deciding factor in the willingness of firms to adopt ATC processes for complex design 

projects 
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CHAPTER 5  
 

HETEROGENEITY OF PREFERENCES 
AND THE DESIGN OF PRODUCT LINES 

The previous chapter introduced a methodology for coordinating product 

development decisions between marketing and engineering design using analytical target 

cascading. The scope was limited to design of a single product, and the preference model 

used to predict demand for the product was homogeneous: i.e., differences in individual 

preference are explained only as random draws of the error term in a single demand 

model with a single set of parameters. In other words, all heterogeneity of preferences 

across the population is modeled in the unobserved error term, and the model does not 

attempt to describe the structure of heterogeneity over the population. Under the 

properties of this model, including the IIA property (Louviere et al., 2000), a single 

product emerges as the optimum, and design of a line of products is not meaningful. In 

this chapter, a more complex model of consumer preferences is developed, accounting for 

heterogeneity of preferences across the population, and the model is used to optimize a 

product line. The decomposition offered by ATC is particularly important in this instance 

because the design of each individual product is treated as a separate subproblem. If all 

products were to be designed at once, the dimensionality and complexity of the search 

space would dramatically increase with the number of products. ATC offers a method for 

coordinating these individual design problems in such a way that the combination of the 

products in the marketplace performs optimally. The material in this chapter is based on 

an article by Michalek et al. (2005). 



 104 

5.1 BACKGROUND 

It is a truism bordering on cliché that producers sell not merely isolated products, 

but product lines. As such, each producer competes against both itself (cannibalization) 

and rivals, and it must determine how to do so effectively. The academic community has 

responded with an array of techniques to select sets of products, which, considered 

jointly, optimize a given objective function, typically total profit for the line. 

Marketing approaches to what has become known as the product line selection 

problem (Green and Krieger 1985; McBride and Zufryden 1988; Dobson and Kalish 

1988) or product line design problem (Kohli and Sukumar 1990) have been many and 

varied. Certain commonalities, however, can be noted across them: elicitation of 

consumer preferences; an econometric model for mapping preferences onto product 

characteristics; an explicit demand or objective function; and, linking these, an 

optimization method. The space of product characteristics is typically modeled with 

discrete variables, and searching the space is often prohibitive (certain m are known to be 

NP-hard), so the lion’s share of prior research has been devoted to efficient, scalable 

optimization algorithms (Chen and Hausman 2000; Steiner and Hruschka 2002). Each of 

the components of this body of work is sufficiently well-developed to consider it a 

mature methodology, deployable when market and product characteristics are well 

understood. 

In the engineering community, design decision-making models typically involve 

maximizing a set of performance objectives to best meet a set of exogenously determined 

product characteristic targets. Recently, researchers in this community have begun to 

study optimal product line design in the context of models of producer objectives (Li and 

Azarm, 2002); however, the bulk of such efforts in engineering focus on the study of 

product commonality and platforms (Fellini, 2003; Simpson, 2004).  
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One might question why firms do not simply integrate marketing decision making 

with engineering design and production from the outset. The conclusion of the extant 

literature on the topic is that there are non-trivial impediments to such integration (e.g., 

Griffin 1997, Wind and Mahajan 1997). Hauser (2001) highlights the difficulty of 

coordinating resources and agents across functional areas, each with idiosyncratic notions 

of “success,” suggesting a set of metrics for that purpose. The goal here is less one of 

measurement than pragmatism: embedding marketing and engineering product line 

design models into a deployable formal framework that admits of real consumer choice 

data and that can be reliably optimized. 

In the real world of product development, marketers and engineers face the 

continual challenge of having to conform to one another’s constraints. Marketers, 

including those in the academic community, predicate their methods and models on an 

understanding of what might be termed the “product characteristic space”: the 

characteristics, and levels of those characteristics, which can be manipulated to attract 

consumers and generate profit. In contrast, design engineers work in the “design space,” 

selecting values for detailed, technical design variables in order to achieve desired target 

product characteristics. If engineering is unable to design and produce a feasible product 

that is sufficiently close to the targets identified in the marketing analysis, additional 

rounds of measurement, design and intercommunication must be undertaken. It has been 

amply documented in the product development literature that this back-and-forth passing 

of product characteristic targets between those who study preferences for products and 

those who engineer and build them is costly, time-consuming and, most importantly, can 

lead to sub-optimal final designs (Griffin and Hauser, 1992; Krishnan and Ulrich, 2001). 

How this might be rectified in formal product line design models has remained an open 

question, and the extension presented in this chapter addresses this question. 

Part and parcel of creating a formal system for product line optimization is to 

allow marketing and engineering design models to ‘speak to’ one another in a well-
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defined, efficient, and convergent manner. Their domains and terminology differ, even 

when restricted to questions of product design (Krishnan and Ulrich, 2001).  A first step, 

therefore, in fashioning an overarching model for product line optimization is 

standardizing terminology and defining proper coordination of overall objectives so that 

each discipline can bring to bear its own proven modeling techniques. One historical 

obstacle to achieving this objective is differences in control variables: Marketing makes 

use of primary research methods, for example, questionnaires and focus groups, to infer 

what consumers want; that is, consumer preferences are taken as primitives. A typical 

approach in the literature is to view each product as a “bundle of attributes” (McAlister 

1982) and use measured consumer preferences to locate “sweet spots” in the space of 

consumer-defined product characteristics. Engineers, however, do not optimize with 

respect to product characteristics or attributes themselves, but instead manipulate “lower-

level” design variables to achieve goals for these characteristics or attributes. For 

example, what may be conveyed to a consumer as “sturdy” or “durable” (perceptual 

attributes) must be translated into the set of technical specifications for physical 

characteristics (loading conditions, allowable deflections, yield strength) that engineers 

will meet through manipulation of design variables (metal thickness, spring tension, etc.), 

subject to inviolable physical and geometric constraints. This interaction is largely absent 

from the marketing literature on product line optimization, and it is among the main 

contributions of the methodology introduced in this chapter.  

By extending the material introduced in Chapter 4, this chapter introduces a novel 

approach to the product line optimization problem, one which formally links marketing 

and engineering product design submodels in order to ensure feasibility of the product 

line while pursuing producer objectives with respect to customer preferences. This 

approach calls on proven strengths of models in both disciplines best suited to 

intercommunication and joint optimization. From marketing, hierarchical Bayesian (HB) 

methods and choice-based conjoint analysis are employed to build data-driven discrete 
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choice models of demand using a general representation of consumer preference 

heterogeneity and capitalizing on Monte Carlo techniques. From engineering design, 

engineering performance design optimization models are utilized and the ATC 

methodology is extended for the multi-product case. ATC coordination of existing 

marketing methods, such as conjoint analysis, discrete choice analysis and demand 

forecasting, with engineering performance design optimization models allows optimal 

product line designs to emerge seamlessly and without tedious, human-mediated 

iterations between marketing and engineering design submodels. As in Chapter 4, joint 

optima are produced that are superior to those arising from independent marketing and 

engineering design optimization. 

This chapter proceeds by outlining key concepts and reviewing the relevant 

methods and literature from both marketing and engineering product design. ATC is then 

adapted to link models from the two disciplines for product line design formally, and 

several alternative models of demand are constructed for use within the ATC 

methodology. Finally, it is demonstrated how a full product line might be devised for the 

dial-readout bathroom scale example. 

5.1.1 Marketing Product Line Design Literature 

The product line design literature in marketing is largely concerned with setting 

product characteristic and price levels to maximize profit or some alternative metric like 

sales or market share. As discussed at length subsequently, this optimization is bedeviled 

both by combinatorial complexity and by the simple need to avoid product characteristic 

combinations that engineering design cannot physically produce.  

Product line optimization entails a number of intrinsic tradeoffs. Rutenberg 

(1971) put the main one succinctly, as balancing “…the disutility of refusing to provide 

each segment of customers with an item fitting its exact requirements versus economies 
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of scale achieved in producing and inventorying each item.” From this premise, he 

explored the optimal ‘depth’ of a product line (the number of unique items to produce) 

through dynamic programming techniques. A main contribution of the ensuing train of 

work on product line optimization is the integration of formal methods of nonlinear and 

discrete optimization with value/utility measurement techniques such as conjoint 

analysis. Given a set of either individual-, segment- or market-level preference functions 

– and there are important differences among these, which are explored subsequently – 

research in marketing has focused on efficiently optimizing some objective conditional 

on them. Among the earliest work in this vein was that of Zufryden (1977, 1982), who 

proposed an integer programming formulation for optimal design of both single and 

multiple products in a line. Green and Krieger (1985) subsequently showed how to 

extend existing single product design optimization heuristics to entire product lines. They 

were also among the first to acknowledge the prohibitive nature of any sort of global 

optimization and suggest heuristic alternatives that perform well in practice (Green and 

Krieger 1987b, 1992).  

The general product line optimization problem was rendered into what might be 

called its current form by Dobson and Kalish (1988) and by McBride and Zufryden 

(1988). Dobson and Kalish consider a known set of related or substitute products and ask 

how their characteristics can be optimally set by a monopolist to maximize some criterion 

of interest, ordinarily line profit. Importantly, they show how appropriate data can be 

obtained from consumers, how the model can be estimated, and what sort of heuristics 

can be applied to solve the line optimization problem for real applications. They did, 

however, need to invoke a number of assumptions as a nod to technology as it existed at 

the time. The most important of these is that the market is either composed of 

homogeneous customer segments or that estimation be done at the individual level, for 

which there is rarely the luxury of sufficient per-respondent data. McBride and Zufryden 

(1988) treat the problem in a rigorous mathematical fashion, extracting individual 
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consumer measurements from conjoint analysis, and selecting appropriate product 

characteristic levels using integer programming. They show that their proposed system 

can solve realistic product line problems using what are, by today’s standards, modest 

computational resources. 

A great deal of subsequent research sought computationally efficient algorithms 

to pinpoint the ‘best’ product (or set of products) from all available candidates. Kohli and 

Krishnamurti (1987) and Kohli and Sukumar (1990) provide an extensive analysis of 

dynamic programming heuristics for single-product solutions using hybrid conjoint 

designs relative to a number of objective functions. In looking back to these proposed 

methods, one must remember that computational efficiency is an evolving concept. The 

Bayesian econometric and ATC approach advocated here, for example, were well beyond 

feasibility even a decade ago. Dobson and Kalish (1993) incorporate conjoint data into a 

mathematical programming formulation with differential costs across various product 

profiles. Moreover, they not only show formal equivalence to the well-known (NP-

complete) problem of plant location, but that their generalized version of the product line 

design problem can be addressed using the greedy interchange heuristic. Realizing that 

practical progress on the line design problem depended on robust, scalable heuristic 

methods to search the high-dimensional discrete space of possible solutions, Nair, Thakur 

and Wen (1995) showed that so-called beam search heuristics were arguably superior to 

any which had been previously analyzed, and could find near-optimal multi-product 

solutions even for line design problems with many product characteristics and levels. 

Chen and Hausman (2000) extend prior approaches to choice-based conjoint, 

highlighting certain special properties which allow the product line problem to be solved 

efficiently. Unfortunately, these properties fail to hold unless consumer preferences are 

presumed homogeneous, so their approach cannot be adapted for much practical work on 

choice modeling. Among the most recent methods is that of Steiner and Hruschka (2002) 

who adopt a genetic algorithm formulation (Balakrishnan and Jacob 1996) to locate near-
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optimal product line designs efficiently. They find GAs to be practical even for conjoint 

designs with many product characteristics and levels, identifying the globally optimal 

solution in the vast majority of cases and never erring by more than 4%.  

5.1.2 Conjoint Analysis in Product Line Design 

Among the most durable of marketing methodologies is conjoint analysis, the 

dominant approach to measuring ‘consumer value systems’ and thereby projecting the 

success of new product concepts. Since its introduction (e.g., Green and Rao 1971), the 

method has grown in sophistication along with computational resources and econometric 

methods (Louviere 1988; Green and Srinivasan, 1990; Green and Krieger 1996; Kuhfeld 

2003). Indeed, conjoint analysis has been used successfully in the design of thousands of 

products across the world (Cattin and Wittink 1982, Wittink and Cattin 1989, Wittink et 

al. 1994). Much recent work focuses on the accurate representation of consumer 

heterogeneity, with a growing consensus in favor of HB formulations (Lenk et al., 1996; 

Huber and Train, 2001; Allenby and Rossi 2003), which are adopted here. Although not 

conceived purely as a method for product design optimization, conjoint analysis has 

nonetheless consistently provided the raw material upon which such frameworks have 

been built. Kaul and Rao (1995) expertly survey this literature.  

By computational necessity, early research relied on the most tractable forms of 

conjoint analysis, based on either rankings or ratings, and only subsequently were 

extensions made to choice-based data (e.g., Louviere and Woodworth 1983). In 

addressing this problem, Chen and Hausman (2000) underscore difficulties hindering 

prior research, notably, that “one practically needs to build the entire choice simulator 

into the (optimization) program.” They also point out that choice-based conjoint analysis 

typically presumes “the aggregated probabilistic representation of customer choice, 

which… diminishes most of the model’s capability of accessing market heterogeneity at 
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the ‘individual’ level and potentially leads to counterintuitive results.” While this is true 

if researchers rely on a homogeneous representation of consumer preference, one can 

appeal to a number of alternative heterogeneity formulations, as surveyed by Huber and 

Train (2001) and Andrews, Ansari and Currim (2002). 

5.1.3 Engineering Design Literature 

By contrast to the marketing literature, the bulk of the engineering design 

literature relevant to product line design focuses on studying product commonality and 

product platforms (Fellini, 2003; Simpson, 2004; Kokkolaras et al., 2002), which is 

outside the scope of this dissertation. Within the DBD literature, introduced in Chapter 2 

and Chapter 4, Li and Azarm (2000) proposed a two-step approach that they later 

extended to address product line design (2002) by first generating a set of designs that are 

Pareto-optimal in performance and then selecting a product line from that set based on a 

“first choice” model of demand using stochastic algorithms. This sequential approach can 

be effective for product line design cases where preferences for product characteristics 

are strictly monotonic across the consumer population (e.g., fuel economy, reliability, 

etc.) because in these cases the same Pareto set is relevant to all consumers, and 

individuals differ only in their preferred tradeoff among the competing performance 

objectives. In the scale example no such universal Pareto set exists because different 

consumers have different ideal points for size, shape, and other valued product 

characteristics. 

Additionally, as discussed in Chapter 2 and Chapter 4, a host of MDO methods 

exist for decomposing complex problems into subproblems and coordinating their 

solutions. The ATC methodology is used here because of its capacity to accommodate 

arbitrarily large hierarchies through coordinating targets and linking variables and 

because it has proven convergence properties. 
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5.1.4 Proposed Methodology 

Like Chen and Hausman (2000), a number of assumptions are invoked in this 

model to focus on product line optimization issues; specifically: that the total potential 

market size can be (exogenously) determined; that customers purchase either zero or one 

product from the line; that a customer’s purchase decision is not overtly influenced by 

those of other customers; and that production can be scaled up or down as needed to suit 

demand. This formulation is well-suited to stable, durable goods categories, which 

comprise the majority of line optimization decisions. It is arguably less appropriate for 

rapidly-developing product classes (e.g., high-tech products), or those where aggregate 

demand is erratic. Unlike Chen and Hausman (2000) or other prior research in the area, 

only mild parametric assumptions are made about how to represent consumer 

preferences. Indeed, one of the main attractions of this approach is a fully Bayesian 

account of a most general form of preference heterogeneity and a method for line 

optimization conditional upon it. And, as in Chapter 4, a framework is provided for 

dealing with technologically ‘unachievable’ product combinations, treating them as an 

integral part of the modeling formulation. 

Contingent on customer preference information, Steiner and Hruschka (2002) 

classify profit optimization methods into “one step” and “two step” types. The former 

optimizes directly over product lines as described by part-worth values and an objective 

(profit) function; the latter, realizing the combinatorial difficulties of such a search, first 

engage in some form of reduction of the full set of potential products, and search this 

reduced set for the best item(s). Generally speaking, culling the full set of potential 

products into a set of ‘promising candidates’ is non-trivial (Green and Krieger 1987a, 

1987b, 1989). In this regard, the work here follows Kohli and Sukumar (1990), searching 

the entire space of possibilities without prior restrictions or pre-processing. However, the 

discrete nature imposed by the form of conjoint data (characteristics discretized into 
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levels) is relaxed through natural cubic spline interpolation at the individual level to 

account for preferences at intermediate characteristic values. While the resulting ‘profit 

surface’ can therefore be highly non-linear and complex, it is locally smooth and 

continuous, allowing the use of efficient nonlinear programming algorithms and ensuring 

that ATC will converge, typically in a reasonable amount of time. 

The proposed product line design methodology entails three stages: First, 

consumers choose among products in a choice-based conjoint setting, given a set of 

presented product characteristics; second, respondent choices are used as input data to 

estimate heterogeneous demand models, and the resulting preference coefficients are 

interpolated using splines; and third, ATC is used to coordinate optimization over the 

space of feasible product designs that yield optimal product characteristics. The first two 

stages are viewed as preprocessing for the ATC model.  

The chapter proceeds by defining the ATC methodology for coordinating a 

product line in Section  5.2, conditional on a model to predict demand; describing three 

alternative discrete choice demand model specifications in Section  5.3; and finally, 

demonstrating the methodology with the application to dial-readout scales in Section  5.4 

and discussing results in Section  5.5.  

5.2 ATC COORDINATION OF MARKETING AND ENGINEERING MODELS 

In this section the framework from Chapter 4 is extended so that a single 

“marketing subproblem” that plans the product line is coordinated with a set of 

“engineering design subproblems,” one for each product in the line. An informal 

depiction of this process appears in Figure  5.1: The marketing subproblem involves 

determining price and (target) product characteristics for the full product line to 

maximize a known objective function, which can be profit or some other measure of 

interest to the firm, without deviating too much from the feasible designs achieved by 
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engineering, while each “engineering design subproblem” requires determining a feasible 

design – one conforming to known constraints – that hews as closely as possible to 

product characteristic targets set in the marketing subproblem. 

Marketing Planning Subproblem
maximize profit and 
minimize deviation from the design achieved by engineering 
with respect to price and product characteristic targets for 

each product in the product line 
where profit depends on demand and price, and                   

demand depends on product characteristics and price 

Design of Product 1 
minimize deviation from product 

characteristic targets 
with respect to design variables 
subject to engineering constraints 
where product characteristics 

depend on the design decisions  

Design of Product 2 
minimize deviation from product 

characteristic targets 
with respect to design variables 
subject to engineering constraints 
where product characteristics 

depend on the design decisions  

Design of Product J 
minimize deviation from product 

characteristic targets 
with respect to design variables 
subject to engineering constraints 
where product characteristics depend 

on the design decisions  

L  

Product 
characteristic 

targets for 
design 1 Product 

characteristics 
achieved by 

design 1 

Product 
characteristic 

targets for 
design 2

Product 
characteristics
achieved by 

design 2

Product 
characteristic 

targets for 
design J 

Product 
characteristics 
achieved by 

design J 

 
Figure  5.1: ATC statement of product planning and engineering design coordination 

The marketing product planning subproblem differs from that in typical marketing 

applications in one critical way: Supposedly “optimal” product characteristics and price 

must be associated with a product that can be achieved by a feasible engineering design. 

The engineering design subproblems differ from those in typical engineering design 

applications in that no arbitrary weights need be assigned to specify multiobjective 

optimization tradeoffs in each of the engineering design subproblems: Instead, they are 

resolved by iteratively optimizing to meet product characteristic targets set by marketing. 

It is the interplay of minimizing deviations between target and achieved characteristics 

while pursuing a management goal (profit maximization) that ATC formalizes through 

iteration. Iteration between groups of real people – as opposed to mathematical 

subproblems – entails substantial fiscal and opportunity costs, both costs which ATC 

helps avoid.  
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The chief organizational benefit of ATC is that it separates models by discipline: 

Marketers can build submodels based on, say, conjoint analysis and new product demand 

forecasting, engineers can formulate models for product design and production, and other 

functional groups can focus on what they know how to do well. No functional area need 

become an expert in modeling the others, since ATC coordinates models with well-

defined interfaces.  

The following sections lay out the engineering design and marketing design 

subproblems explicitly.  

5.2.1 ATC Marketing Subproblem 

The marketing subproblem objective is to maximize profit Π with respect to the 

price pj and the vector of real-valued product characteristic targets zM
j for each product j 

in the product line j = {1, 2, ..., J} while minimizing deviation from the characteristics of 

the feasible design achieved by engineering zE
j. Many profit formulations are suitable for 

the marketing objective function, and firms can specify arbitrarily sophisticated functions 

based on their experience, internal accounting and historical demand forecasting. As 

before, an especially simple profit (Π) formulation is adopted, revenue minus cost, so that 
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where pj is the (retail) price of product j, cV
j is the unit variable cost of product j, cI

j is the 

investment cost for product j, which represents all costs of setting up a manufacturing 

line for product j, and qj is quantity of product j sold (demand), which is a function of the 

product characteristics zM
j’ and price pj’ of all products j’ = {1, 2, ..., J}. It is assumed that 

product commonalities enabling investment cost sharing and improving economies of 
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scale do not exist, so each new product requires new manufacturing investment. Further 

elaborations on this basic model are easily accommodated; for example, discounted 

future earnings, salvage values for finite horizons, and loss or risk functions can all be 

readily grafted onto Eq. (4.2) using known techniques. In general, cV
j and cI

j can be 

considered functions of market conditions or engineering decisions, although in this 

example they are taken as constants. Given a demand model to calculate qj as a function 

of the vector of (target) product characteristics zM
j and price pj for all products j in the 

line, which will be developed in the next section, the profit function is fully defined; 

however, the objective function also involves minimizing deviation from the 

characteristics of the feasible design achieved by engineering zE
j, which are held constant 

while solving the marketing subproblem. As before, this deviation for each product j is 

represented in ATC using the square of the l2 norm of the weighted deviation vector, 
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where || ||22 denotes the square of the l2 norm, wj is the weighting coefficient vector for 

product j, and the ○ operation indicates term-by-term multiplication, so that [a1 a2 ... an] 

○ [b1 b2 ... bn] ≡ [a1b1 a2b2 ... anbn]. For this formulation, the weighting coefficients wj 

need only be chosen sufficiently large so that the deviation between the product 

characteristic targets set by marketing zM
j and those achieved by engineering zE

j at the 

solution is acceptably small. Finally, the marketing subproblem, conditional on a model 

for demand, is written as: 
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In Section  5.3, conjoint analysis, discrete choice modeling and Bayesian Markov 

Chain Monte Carlo (MCMC) methods are used to develop the functional relationship 

between demand q and the marketing decision variables zM and p. 

5.2.2 ATC Engineering Design Subproblems 

In each engineering design subproblem j, a vector of design variables xj is 

manipulated to achieve product characteristics zE
j, where zE

j is expressed as a function of 

xj using a vector valued response function zE
j = r(xj). The design variable vector xj is 

restricted to feasible values by a set of constraint functions g(xj) < 0 and h(xj) = 0, and so 

vales for product characteristics zE
j = r(xj) are implicitly restricted to values that can be 

achieved by a feasible design. Papalambros and Wilde (2000) present general procedures 

for defining x, r(x), g(x) and h(x) for engineering design problems, although details are 

necessarily case-specific. The objective of each engineering design subproblem is to 

minimize deviation between the engineering design product characteristics zE
j and the 

marketing targets zM
j, which are held constant in the engineering design subproblems, 

and where deviation is measured as the square of the l2 norm of the weighted deviation 

vector. The engineering optimization problem for product j can then be written as 
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5.2.3 Complete ATC Formulation 

Figure  5.2 conveys a mathematical description of the concepts in Figure  5.1, 

showing the flow of the ATC-based product line optimization model for a single 

producer, where the number of products in the line J is determined through a parametric 

study: i.e., during optimization the number of products J in the product line j = {1, 2, …, 

J} is held fixed, separate optimization solutions are found for each value of J = {1, 2, ...}, 

and the value of J that produces the solution with the highest profit is selected. In the 

marketing product planning subproblem (Eq. (5.3)) vectors of characteristic targets zM
j 

and price pj are chosen for each product j in order to maximize profit Π (i.e., revenue 

minus cost), as defined in Eq. (4.2). This is achieved while minimizing the deviation 

between the product characteristic targets set by marketing zM
j and those achieved by 

each engineering design zE
j, using weighting coefficients wj to specify the tradeoff 

between the objectives. The demand model, which will be developed in the next section, 

is left as a generic function in Eq. (5.3) and Figure  5.2. In each engineering design 

subproblem (Eq. (4.1)), design variables xj are chosen to minimize the deviation between 

characteristics achieved by the design zE
j and targets set by marketing zM

j subject to 

engineering design constraints g(x) and h(x). 
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 Marketing Planning Subproblem 
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Figure  5.2: Mathematical ATC formulation of product planning and engineering 

design coordination 

5.3 MODELS OF PRODUCT DEMAND 

This section outlines the models used to predict demand for a product as a 

function of the product characteristics and prices of all of the products in the marketing 

subproblem of the ATC formulation. Three different discrete choice models of demand, 

which differ in their assumptions about the form of the stochastic error terms and the 

representation of preference heterogeneity, are presented, and each model is fit to data 

obtained through the online choice-based conjoint study.   

5.3.1 Conjoint Choice Data Collection  

In the choice-based conjoint survey, as described earlier, the respondent is 

presented with a series of questions or “choice sets” t = {1, 2, ..., T}. In each choice set t, 

the respondent is presented a set of product alternatives j∈Jt including the option to not 
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choose any of the product alternatives: the “no choice” option. Each choice set contains 

hypothetical products with each characteristic and price set to one level among the sets of 

discrete levels shown in Table  5.1.  

Table  5.1: Product characteristic and price levels 

Description Metric Units

z 1
Weight 
capacity

Weight causing a 
360° dial turn 200 250 300 350 400 lbs

z 2
Aspect
ratio

Platform length 
divided by width 6/8 7/8 8/8 8/7 8/6 --

z 3 Platform area Platform length 
times width 100 110 120 130 140 in2

z 4 Tick mark gap Distance between 1-
lb tick marks 2/32 3/32 4/32 5/32 6/32 in.

z 5
Number

size
Length of readout 

number 0.75 1.00 1.25 1.50 1.75 in.

p Price US Dollars 10 15 20 25 30 $

Levels

 

The characteristic and price levels of the product alternatives in each choice set are 

chosen to be balanced and to collect data efficiently (as per Kuhfeld 2003, who provides 

a comprehensive overview). The resulting data are the observed choices that each 

respondent makes in each choice set: Φijt, where Φijt = 1 if respondent i chooses 

alternative j in choice set t, and Φijt = 0 otherwise. These {Φijt} are then used to estimate 

the parameters of the demand model for the marketing subproblem, as illustrated in 

Figure  5.3.  
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Figure  5.3: Diagram of the modeling process 

 

5.3.2 Discrete Choice and Random Utility Models 

As before, a utility framework is adopted (Train, 2003) to derive total line 

demand. Many of the previous product line optimization formulations (e.g., Dobson and 

Kalish, 1988; McBride and Zufryden, 1988; Li and Azarm, 2002) adopt a “first-choice” 

model of demand, where utility is written as a deterministic function of the product and 

consumer characteristics, and the product with the highest utility is presumed to be 

chosen deterministically. Here a random utility model is used instead where the utility of 

each product to each consumer is assumed to depend on the product’s characteristics, the 

consumer’s idiosyncratic preferences for those characteristics (which are estimated from 

choice data), and a random error component, for which a specification must be given 

explicitly and from which choice probabilities formally arise. Demand is then written in 

terms of the probability of each individual choosing each alternative. The use of a 

random utility model avoids the discontinuities intrinsic to the ‘first choice’ model, and is 

 

xj 

Design 
Decisions 

Performance 
Model zM

j 

Product 
Characteristic 

Targets 

Demand 
Model  

Ψiζ

qj 
Product 
Demand 

Fit Demand 
Model to Data 

g,h 

Design 
Constraints 

y 

Design 
Parameters 

Preference 
Splines 

Φijt 

Choice 
Data 

zE
j 

Product 
Characteristics 

βiζω

Preference 
Coefficients 

ATC Engineering Subproblem ATC Marketing Subproblem 

DEMAND MODEL PREPROCESSING 

ATC 
Iterations Profit 

Model 

pj 

Product 
Prices 

Π 
Total 
Profit 

Conjoint 
Survey 

Fit 
Splines 

ATC OPTIMIZATION PROCESS 



 122 

important for generalizing the product design space to a continuous space so that efficient 

gradient-based nonlinear programming optimization algorithms can be called upon. 

Throughout, subscripts are used to designate a set of representative individual 

consumers (or groups thereof) i = {1, 2, ..., I} and a set of product alternatives j = {1, 2, 

..., J}. Although the set of product alternatives can be consumer- or choice-occasion-

specific (for example, in the conjoint choice sets), for clarity the additional subscripting 

these would require is avoided. Individuals i are assumed to derive from each product j 

some utility value uij that is composed of a deterministic component vij, which is a 

function of the observable aspects of the choice scenario, and an unobservable random 

error component ε ij, so that uij = vij + ε ij . It is assumed that each individual will choose 

the alternative that gives rise to the highest utility, i.e., alternative j is chosen by 

individual i if uij > uij’ for all j’≠ j. The probability, Pij, that alternative j is chosen by 

individual i on a particular occasion can therefore be computed as: 

 

{ }Prij ij ij ij ij j j
P v vε ε′ ′ ′∀ ≠

⎡ ⎤= + ≥ +
⎣ ⎦

. (5.5)  

 

The value of Pij depends on the assumed error (εij) distribution. Two such 

distributions are used in essentially all choice modeling work: normal and double 

exponential, resulting in the logit and probit models, respectively. It is well-known 

(Amemiya 1985) that very large samples are required to distinguish results produced by 

the logit and probit specifications. Each offers advantages: The normal distribution is 

expedient for Bayesian computation, due to conjugacy properties; the double exponential 

distribution allows a closed-form expression for Pij, which is precise and computationally 

efficient for optimization. 

The deterministic component of utility v is taken as a function of observables such 

as price and product characteristics, or even consumer covariates, etc. Here only price 
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and product characteristics are considered, elements under joint marketing and 

engineering control. As a practical matter, some rule is required to map characteristics 

into v. Recent econometric work explores non-parametric representations for individual-

level (Kalyanam and Shively 1998; Kim et al. 2004b) or latent utility functions 

(Andrews, Ainslie and Currim 2002). In order to accommodate post hoc iterative 

optimization, each characteristic ζ of the real-valued characteristic vector zMj is divided 

into a set of discrete levels ω = {1, 2, ... Ωζ } and a linear mapping of discrete product 

characteristic levels (conjoint part-worths) is adopted, accounting for possible non-

linearities with respect to the underlying continuous variables using spline interpolation 

for intermediate values, which will be discussed later. The deterministic utility νij that 

individual i derives from product j is therefore written as 

 

0 1
ij i jv

ζ

ζω ζω
ζ ω

β δ
ΩΖ

= =

= ∑∑ , (5.6)  

 

where the binary dummy δjζω = 1 indicates alternative j possesses characteristic ζ at level 

ω, and βiζω is the part-worth coefficient of characteristic ζ at level ω for individual i. To 

clarify notation, in δjζω the elements of the product characteristic vector zM
j (which does 

not include price) are enumerated ζ = {1, 2, ... Z}, and price p is included in δjζω and 

labeled as element ζ = 0. Note that each product characteristic ζ is either intrinsically 

discrete or is discretized into Ωζ levels, ω = {1, 2, ... Ωζ }. The use of discrete levels is 

crucial: It does not presume linearity with respect to the underlying continuous variables 

(e.g., a $1 price decrease cannot be presumed to have the same effect for a $10 product 

and a $100 one, and preferences for values of product characteristics cannot, in general, 

be assumed monotonic). 

In using choice models, one must account for the real possibility that none of the 

presented alternatives is deemed acceptable; this is accomplished through an ‘outside 
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good’ or ‘no choice option.’ This outside good is included throughout the empirical 

application, and it plays the vital role of ensuring that the total demand for a set of 

undesirable or overly expensive products will be low. In the absence of an outside good, 

consumers are forced to choose from the inside goods, and demand depends only on 

differences in offered product characteristics (cf. Berry, 1994). Haaijer, Kamakura and 

Wedel (2001) survey the useful properties of such a “no choice” option as well as how to 

best accommodate it in conjoint designs. Throughout, the no choice option is indexed as 

alternative 0, with error εi0 and attraction value vi0 for individual i, where v is normalized 

to zero (vi0 = 0; ∀i) for identification purposes. 

For purposes of comparison, three demand models are presented that arise from 

different specifications in each of the following elements: (1) heterogeneity in the part-

worth coefficients β over the population, and (2) the distributional form of the stochastic 

error components of utility εij; details on estimation of the part-worth coefficients are 

presented in each case.  

5.3.3 A Simple Homogenous Heterogeneity Specification  

In the simple homogeneous case, as used in Chapter 4, all individuals are 

presumed to belong to the same segment (i.e., they are all presumed to have the same 

preference coefficientsβζω, and therefore the same deterministic component of utility vj 

for a given product), so the consumer segment index i drops out. If, the stochastic error 

terms εij are taken to be independent and identically distributed across products and to 

follow the “extreme value” (or “double exponential”) distribution (i.e., Pr(εij < α) = -

exp(-exp(-α))), then the choice probability Pjt in Eq. (5.5) for product j in choice set t 

reduces to the well-known logistic (logit) expression: 
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, (5.7)  

 

where vj is defined in Eq. (5.6). In this and the next section, the logit model is used as it 

allows closed-form expressions for choice probabilities; the probit case, discussed in 

detail in a subsequent section, is analogous in every way other than the error 

specification, and neither is to be preferred on a priori grounds. Given observed 

consumer choice data Φ, the parameters βζω can be estimated using maximum likelihood 

techniques that are available in many statistical packages: Values for the part-worth 

coefficients βζω are found in order to maximize the probability that the model in Eq. (5.6)-

 (5.7) predicts the observed choice data. Specifically, if Φijt defines the observed choices 

such that Φijt = 1 if individual i selects alternative j from choice set Jt on choice occasion 

t, and Φijt = 0 otherwise, then the probability that (a random draw from) the model will 

predict the same choices observed in the data is given by  

 
S

1 1

IT

ijt jt
t i j t

P
= = ∈

Φ∏∏∏
J

. (5.8)  

 

When choosing the β coefficients to maximize this quantity, it is standard practice to 

maximize the log of the likelihood (which, due to monotonicity, retains the same 

maximum) in order to improve search-based numerical properties of the formulation, so 

that 

 

( )
S

1 1
arg max log
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ijt jt
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ζω

ζω
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, (5.9)  
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where Pjt is defined by Eq. (5.7), and vj is defined by Eq. (5.6). Equation  (5.9) yields an 

infinity of equivalent solutions for the β coefficients because, for example, adding a 

constant to each vj leaves their relative values unchanged, and so does not affect choice 

probabilities in the logit model (location invariance). To therefore ‘identify’ the model, a 

linear combination of the β coefficients for each characteristic is set to zero. Specifically, 

we select from the infinity of equivalent coefficient vectors the one where the mean value 

1
ζ

ζω ζω
βΩ

=
Ω∑  is the same for all ζ. By adding this constraint, the model has 

( )1
1 1ζζ

Ζ

=
+ Ω −∑  degrees of freedom per individual, and the solution is uniquely 

identified. 

Such models have two important shortcomings. The first limitation is the 

assumption of independently and identically distributed error specifications across 

alternatives, producing unrealistic substitution patterns: Often referred to as the 

independence from irrelevant alternatives (IIA) property, the assumption of uncorrelated 

error terms in the model implies that the model will underestimate the degree to which 

two highly similar objects compete with one another. Secondly, the model above assumes 

homogenous preferences for the consumers where differences among consumer choices 

are explained only through random draws of the error component, which is unrealistic in 

most cases (Leeflang et al., 2000) since consumers typically differ in behavior and 

preferences. Failure to correctly model this heterogeneity leads to biased parameter 

estimates, which can adversely affect profitability of the resulting solution, particularly 

when designing product line. In the following sections two alternative models are 

presented that have more realistic patterns for heterogeneity.  

5.3.4 A Discrete Mixture Heterogeneity Specification  

The limitations of the homogeneity restriction can be addressed by presuming that 

there exist a fixed number of consumer segments B, where each segment b = 1,2,...,B 
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contains sb fraction of the population, and individuals in segment b have identical 

preferences βbζω, but preferences differ between segments. This is the well-known 

discrete mixture or latent class model (Kamakura and Russell 1989). In this model, a 

certain individual belongs to segment b with probability sb, and the deterministic 

component of utility vbj derived from product j by a member of segment b is given by 

Eq. (5.6) using the homogeneous within-segment preferences βbζω. If an independent and 

identically distributed (i.i.d.) extreme value error distribution is again specified, the 

unconditional choice probability Pjt of choosing product j from choice set t is now the 

weighted sum: 
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′∈

⎛ ⎞
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎝ ⎠

∑ ∑
J

, (5.10)  

 

where vbj is defined in Eq. (5.6). As with the previous aggregated model, the discrete 

mixture model is straightforward to estimate using the maximum likelihood technique 

with respect to the β and sb terms. As before, the probit case differs only in error 

distribution. Model selection (to choose among different values of B) can be achieved 

through standard measures as BIC, which is used here (Kadane and Lazar, 2004). 

Latent classes b can be viewed as market segments, a concept with which 

managers are comfortable, and which are appealing if there are advantages in targeting 

these segments separately, for example, via production or advertising (Leeflang et al., 

2000; Wedel and Kamakura, 2000). The discrete mixture model also helps address the 

IIA criticism. It is well-established that such problems are exacerbated, particularly in 

choice-based conjoint (CBC) models, when heterogeneity is not adequately accounted 

for. In summarizing their vast empirical experience with CBC models, Sawtooth (Orme, 

1998) concluded “IIA is much more problematic with aggregate logit and much less a 
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problem with methods that recognize respondent heterogeneity, such as Latent Class and 

ICE (Individual Choice Estimation).” Nevertheless, it is often argued that a discrete 

representation of heterogeneity is too restrictive, in particular when true preferences are 

continuously distributed. In such a case, a finite mixture model leads to an artificial 

partitioning into homogeneous segments (Leeflang et al., 2000). If a continuous mixing 

distribution is assumed instead (e.g., a random coefficient specification with a single 

normal mixing component), results are known to be sensitive to the (subjectively) 

specified distribution of the random components, and an overt misspecification can lead 

to biased results (Nevo, 2000, or Kim, Menzefricke and Feinberg 2004a). In the 

following section a model is introduced that combines both discrete and continuous 

heterogeneity to approximate a wide variety of heterogeneity ‘shapes.’  

5.3.5 A Heterogeneous Normal Mixture Specification  

The heterogeneous probit model presented here includes several past conjoint 

choice models as special cases (Keane 1992, McCulloch and Rossi 1994, Haaijer 1999), 

as well as both model types described above. A specification is adopted which allows for 

correlated part-worth values within each mixing component, unlike in the previous two 

specifications. (Note that these correlations are between model β coefficients, not 

unobserved ε error terms, which is a separate issue.) We can test explicitly whether these 

correlations are warranted by restricting them to zero and noting whether and how fit 

measure results suffer. Formally, individual aggregate part-worth coefficient vectors βi, 

containing the elements βiζω for individual i, are assumed to be drawn from a mixture of 

multivariate normal distributions. Although the individual-level part-worth parameters 

βiζω for the previous models could be obtained by maximum likelihood (e.g., Louviere et 

al., 2000), such an approach is impractical for the ‘continuous’ heterogeneity 

representations in this section. Instead, hierarchical Bayes methods are used to estimate 
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model parameters via MCMC techniques (Andrews, Ainslie, and Currim, 2002). Allenby 

and Rossi (2003) persuasively argue for the superiority of HB-based methods over 

alternative approaches. The DIC statistic (Spiegelhalter et al., 2002) is then used to 

compare candidate models (i.e., to choose the best number and form of the mixture 

components), as detailed later.  

If error terms εij are normally distributed and are independent across individuals, 

alternatives and choice sets, Eq. (5.5) gives rise to a probit model, which offers certain 

attractive conjugacy properties in a Bayesian setting, but does not yield probabilities in 

closed form5. Furthermore, it is assumed that βi is drawn from a mixture of B multivariate 

normal distributions, so that 

 

( )
1

~ ,
B

b b b
b

s N
=

∑β θ Λ , (5.11)  

 

where sb is the fraction of the market in ‘segment’ b. Here θb is the vector of means for βi, 

and Λb is a full-variance covariance matrix (against which diagonality can be checked). 

This allows for a very flexible representation, with both discrete and continuous 

heterogeneity (Lenk and DeSarbo 2000). 

This specification is still not free of the IIA criticism, due to i.i.d. errors. While it 

is important not to downplay potential IIA problems, they are mitigated by a reasonably 

large number of ‘well mixed’ conjoint choice sets, as is the case for the scale application, 

and, above all, appropriate heterogeneity correction. In this case, because the multivariate 

distribution describing βi has a non-diagonal covariance matrix even when there is a 

                                                 

5 As discussed above, here normal error terms are used and the consequent probit model for Pj. It is in any 
case typically possible to post-process MCMC draws to convert between estimates obtained through 
various error specifications, using auxiliary Metropolis steps. 
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single mixing component, product alternative part-worth values are not independent 

across consumers, reducing the impact of IIA (Nevo, 2000; or for an alternative account, 

see Haaijer et al. 1998).  

Although Bayesian estimation methods are more forgiving in this regard than 

classical counterparts (Rossi and Allenby 2003), care still must be taken to ensure 

appropriate model identification; as before, the model specification is completed by 

setting the “no choice” value (Haaijer et al. 2001) to zero separately for each individual. 

In this way, the estimated individual-level coefficients are easily interpreted as (1) 

deviations from the “no choice” value, and (2) as being the same, on average, across 

product characteristics. Note, then, that the range of the coefficients within-characteristic 

corresponds to how strongly that characteristic influences choice for a particular 

individual. Relatively unimportant characteristics will be ‘flat’, and this flatness will vary 

by individual. 

Estimation of this particular form of probit model is facilitated through data 

augmentation. The latent variables uij enable straightforward application of MCMC 

techniques when βi comes from a single normal distribution. Conditionally on these latent 

values, the formulation is simply a Bayesian linear model (Lenk et al. 1996, Spiegelhalter 

et al. 1996, McCulloch and Rossi, 1994). Incorporation of the mixture of normals instead 

of a single normal, however, does not complicate matters when Dirichlet distribution is 

used to define a conjugate prior for sb, because the full conditionals are also ordered 

Dirichlet (Lenk and DeSarbo 2000). Given conjugate priors, the full conditional 

distributions can be readily derived for all model parameters (e.g., Rossi and McCulloch 

1994, Lenk and DeSarbo 2000). Specifically, the following MCMC scheme is used: 

 
Draw sequentially from , , , , ,ijt i b b i bu sϕΞ Ξ Ξ Ξ Ξ Ξβ θ Λ , 
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where Ξ is notational shorthand for all previously sampled quantities, i.e.,{uijt, βi, θb, Λb 

ϕi, sb}, plus the observed choice data, {Φijt}. Under this scheme, uijt are drawn from a 

truncated normal distribution; βi’s are drawn from subject-specific multivariate normal 

distributions; θb is drawn form a multivariate normal distribution; Λb is drawn from an 

Inverse Wishart distribution; and segment probabilities sb are drawn from an ordered 

Dirichlet distribution. The variable ϕi is used only within the MCMC chain to draw the 

group membership of individual i at each iteration, conditional on the other parameters, 

so that ϕI ∈ {1, 2, ..., B}. 

The Gibbs sampler draws sequentially from these full conditionals and, after 

numerous iterations, a sample from the true posterior density is obtained (Diaconis and 

Saloff-Coste 1998). Estimates from a classical mixture of probit models are used as 

starting values, and the Gibbs sampler is iterated until a stationary posterior is obtained. 

To mitigate autocorrelation in the Gibbs sequence, only every 10th draw is retained for 

data thinning, after a burn-in of 50,000 iterations. Convergence for the MCMC routine 

was examined through iteration plots and by re-running the program with different 

starting values, including those obtained by estimating a homogeneous version of the 

model. In all cases, posterior means were stable across start values, and histograms of 

posterior marginals revealed no systematic differences.  

In order to choose among the different number of segments B in the mixture 

representation for βi, the Deviance Information Criterion (DIC) statistic proposed by 

Spiegelhalter et al. (1998) is used. This method is particularly suited to complex 

hierarchical (Bayesian) models in which the number of parameters is “not clearly 

defined” (Spiegelhalter et al. 2002). Classical methods like the Akaike’s information 

criteria (AIC) or Bayesian information criteria (BIC), which are appropriate for inference 

using aggregate models and discrete mixtures (as in the previous two sections), rely on a 

synthetic measure of complexity, typically a (linear or multiplicative) function of the 

number of parameters in the model and the total quantity of observations. By contrast, the 
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DIC statistic determines the ‘effective number of parameters’ entailed by the model 

specification itself, and so eschews calculations based on the number of parameters or 

observations, likelihoods, and particular penalty functions. Spiegelhalter et al. (1998) 

illustrate the use of DIC in a wide range of applications and find it to perform well across 

them, particularly so for hierarchical models. Furthermore, DIC is readily computed from 

standard MCMC output. 

Formally, DIC is defined as 

 
( ) ( )DIC 2D D= Ξ + Ξ , (5.12)  

 

where Ξ is an aggregation vector containing all model parameters, D is the deviance 

function  

 
( ) ( )( ) ( )( )2log Pr 2logD fΞ = − Φ Ξ + Φ , (5.13)  

 

the overbar indicates posterior mean, and f is a scaling function related only to the data 

and not to model parameters. After the Gibbs sampler has converged and a sample of 
both Ξ and D(Ξ) is obtained, ( )D Ξ  and ( )D Ξ  are readily computed as sample means 

across the MCMC draws. Spiegelhalter et al. (2002) provide additional detail. 

Computation of DIC for a mixture representation of the part-worth coefficients 

requires, unlike in the Gibbs sampler itself, the direct calculation of Pij, as would the LL 

for the probit model itself 6. This probability must be computed at every iteration of the 

                                                 
6 See also §7.3 of Spiegelhalter et al. (1998), for a longitudinal binary-choice probit example with individual-specific 

random intercepts. 
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Gibbs sequence (after the burn-in), for each individual and each choice set (though only 

for the chosen alternative). In the scale application there are four alternatives in each 

conjoint choice set (including the no-choice option), so this entails reducing a four-

dimensional integral (e.g., Haaijer, 1999), which can require long running times for high 

accuracy (Genz, 2004). If the errors are independent, it is possible to reduce this to a one-

dimensional integral by integrating across the error distribution for the item in question, 

so that 
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where Fε is the normal cumulative distribution function. There are many specialized 

methods for carrying out this computation, including numerical integration, both full and 

quasi Monte Carlo algorithms, and the highly efficient GHK simulator (Hajivassiliou et 

al. 1996; or, see Haaijer 1999). To ensure accuracy for this important quantity – model 

comparison hinges upon it – it can be computed by a variety of methods: GHK; adaptive 

Simpson’s and Radau quadrature; Niederreiter sequences; Genz’s specialized algorithm; 

and GAUSS’ (Aptech, 2000) built-in procedure. In the scale application no differences 

were found among them to at least five significant digits, suggesting a high degree of 

confidence in the numerical results.  

The model put forth thus far yields several sets of quantities, and it is helpful to 

take stock of them in non-technical terms. For each survey respondent, the model offers a 

set of draws from (the posterior distribution of) that respondent’s coefficients βiζω. One 

could then use this information for inferences about that particular individual, or the 

specific set of individuals used to calibrate the model. Taking a Bayesian perspective and 

focusing instead on parameters of the hierarchical model alone, {sb, θb, Λb}, which 
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describe the mixture distribution, these parameters can be thought of as generating the 

individual-level βi values, and so are the appropriate quantities for inference and 

prediction. It is important to realize that these are not known with certainty (i.e., sb, θb, 

and Λb are themselves random variables), and they possess a jointly-specified posterior. It 

is this posterior over which optimization occurs. To do this requires integration over the 

posterior choice surface arising from the MCMC chain for these parameters. 

In the empirical application, optimization over this posterior surface is achieved 

through Monte Carlo integration, as follows: When the chain has stabilized, new values 

of βi are generated as the chain continues to run, and they are thinned to reduce serial 

correlations; specifically, 10000 values are generated and every 10th is retained. It is this 

resulting set of 1000 βi draws which are used to represent the population (the posterior 

surface) throughout the optimization. Note that higher fidelity to this surface can be 

achieved simply by generating additional βi values.   

5.3.6 Spline Interpolation Conditional on Generated Coefficients 

The part-worth coefficient values βiζω represent individual-level preferences for 

each characteristic at each discrete level used in the conjoint study, and as such convey 

no direct information about intermediate values of the product characteristics and price. 

Optimizing over presumably continuously-valued product characteristics (including 

price) requires interpolation to such intermediate values. Natural cubic splines in 

particular have a number of desirable properties for interpolating vis-à-vis optimization, 

particularly so near endpoints (De Boor, 2001). Although a greater number of within-

characteristic levels would enable higher-order splines, previous research has found even 

quadratic splines to suffice in a variety of Bayesian choice model applications (Kim et al. 

2004b). Through interpolation the deterministic component of utility can be written as a 

function of continuous-valued product characteristics zj and price pj using natural cubic 
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spline functions Ψiζ fit through the discrete levels ω = {1, 2, ..., Ωζ} of the discrete part-

worth coefficients βiζω for each individual i and each product characteristic (plus price) ζ .  

Natural cubic splines are fit through the set of discrete points by solving a system 

of equations corresponding to the coefficients of a set of cubic polynomials, each defined 

over the range between a pair of adjacent discrete levels, such that each polynomial 

passes through the two discrete points at its range boundaries, each polynomial matches 

the first and second derivative of adjacent polynomials at the discrete levels, and the 

second derivative of the extreme endpoints are zero. The resulting spline curve Ψiζ for 

each individual i and each characteristic ζ passes through the discrete βiζω values at each 

discrete level ω (each node), and the curve will possess a continuous derivative function, 

which is important for gradient-based optimization. Indexing characteristics as ζ = 1,…, 

Ζ and price as ζ = 0, the interpolated value of the observable component of utility is  

 

( ) ( )M
0 0

1

ˆ , ,ij i i j i i jv pω ζ ζω ζ
ζ

β β
Ζ

=

= Ψ + Ψ∑ z , (5.15)  

 
where <zM

j>ζ indicates the ζth element of the vector zM
j. These interpolated îjv  give rise, 

through the random utility specification, to expected individual choice probabilities Pij, 

which are summed across individuals to generate total expected market share. It is 

important to realize that the ATC methodology requires only that demand be rendered as 

a function of price and product characteristics and does not hinge on a particular 

functional specification for this relationship. The demand surface emerging from this 

entire procedure – Bayesian estimation of the mixture-of-normals heterogeneity model, 

generation of candidate coefficients for Monte Carlo integration, and natural cubic spline 

interpolation – is complex, and may possess local minima. 
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5.3.7 Assessing Demand 

In summary, three random utility discrete choice model specifications, with 

varying levels of capacity to represent heterogeneity, have been presented: a simple 

homogeneous model, a heterogeneous discrete mixture, and a heterogeneous (continuous) 

normal mixture. Data used to assess consumer preference are collected using a choice-

based conjoint exercise designed to provide the greatest efficiency (lowest parameter 

variance) relative to the number of choice tasks (Kuhfeld, 2003). The part-worth 

coefficients of each model are then fit to the choice data using classical maximum 

likelihood techniques or, in the case of the (HB) heterogeneous mixture of normal 

distributions, MCMC methods. The part-worth coefficients, which express preferences 

for discrete levels of the product characteristics and price, are then used as inputs to fit 

natural cubic splines (one for each individual for each product characteristic) to project 

preferences for intermediate values. This set of splines is the final result of the demand 

modeling, and it is used directly to calculate demand in the marketing subproblem of the 

ATC formulation. This process is summarized in Figure  5.3. 

Given that all products are available to all consumers at the time of purchase, 

calculating demand for product j is simply a matter of multiplying the (unconditional) 

probability that a randomly selected individual will choose product j by the market 

potential S. The market potential is assumed to be exogenously determined through any 

of a number of pre-market forecasting techniques (see Lilien et al. 1992), and it is taken 

as a given. To illustrate, under simple logit-based demand, demand for product j is then 

given by 
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where îjv  is calculated in Eq. (4.7) using the spline functions derived from the part-worth 

values of the appropriate discrete choice model specification. For the simple 

homogeneous case, there is only one “individual” i, and si = 1. For the discrete mixture 

case, i indexes the latent classes (segments), so that i = {1, 2, ..., B}, and si is the size of 

segment i. For the mixture-of-normals heterogeneity case, i refers to the draws taken 

from the MCMC chain, so that i = {1, 2, ..., ID}, where ID is the number of draws, and si = 

1/ID. For a particular case, Eq. (5.16) can be used to specify demand in Figure  5.2 for 

ATC product line optimization coordination.7 

5.4 APPLICATION 

The proof of the proposed methodology lies in its ability to design a real product 

line. Here, the methodology is applied to the design of a line of dial-readout bathroom 

scales. While the methodology can be used for durables of any type, so long as they are 

in a fairly stable market, scales possess several features which make them attractive for 

purposes of illustration, as mentioned previously. From a marketing perspective, 

consumers are highly familiar with scales through personal interaction, have a good idea 

of which product features appeal to them, and the number of these features is not 

prohibitively large. Moreover, mechanical bathroom scales are neither highly 

differentiated nor a commodity product, with prices in a relatively restricted and well-

known range. From an engineering design perspective, dial-readout scales are 

straightforward enough that one can readily specify a succinct list of design variables and 

a set of physical and geometrical constraints they need obey. ATC has been applied to 

                                                 
7 The probit model entails a normal error specification, so that choice probabilities must be calculated using numerical 

methods, rather than the standard logit formula of Eq. (5.16). In this applications, several such methods were used 
– quasi Monte Carlo (Niederreiter sequences), quadrature (Radau) and a logit-based approximation (as per 
Amemiya, 1985), which allow direct application of Eq. (5.16) – finding them to agree to at least five significant 
digits. 
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design vastly more complex products (for example, Kim et al., 2002); in fact, one of its 

chief virtues is that it can, through hierarchical decomposition, accommodate products 

consisting of numerous interacting subsystems. That is, the method illustrated here 

seamlessly ‘scales’ to far more complex products, so long as their designs are 

appropriately codified. Next, the marketing planning and engineering design subproblems 

are defined, after which they are formally linked via ATC. 

5.4.1 Marketing Subproblem 

The same product characteristic discretization and conjoint survey data described 

in Chapter 4 are used here to fit each of the three demand models. Exogenous parameters 

were set as follows: cV = $3 per unit, cI = $3 million for initial investment, and market 

size S = 5 million, the approximate yearly US dial-readout scale market. Being 

completely exogenous, these values are easily altered, and in fact the entire demand 

specification can be. Finally, the marketing subproblem in Figure  5.2 is formulated as in 

Eq. (5.3), with the demand model specified in Eq. (5.6) and Eq. (5.16) and using functions 

constructed through the part-worth coefficients β obtained from the conjoint choice data 

Φ. 

5.4.2 Engineering Design Subproblems 

The same engineering design variables, constraint functions, and response 

functions from Chapter 4 are used here, and a copy of the engineering model is 

constructed for each product j, formulated as in Eq. (4.1), where the response functions r 

and constraint functions g are given in Chapter 4, and no equality constraints h exist in 

this example. This completes the engineering design model. While the specifics of such a 

model necessarily differ across various product types, the method by which the model 

was developed is general. 
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5.5 RESULTS 

There are two main components to the approach advocated here: econometric, for 

the extraction of decomposed individual-level preferences and generation of the 

preference splines, and optimization-based, for the determination of the best number of 

products and their positionings conditional on the preference splines. These are each 

examined in turn. 

5.5.1 Demand Model Results 

Table  5.2 lists DIC results for the normal mixture model and classical likelihoods 

for the discrete mixture and homogeneous models. The continuous heterogeneity models 

appear up through the two-segment solutions, which were chosen by DIC, while the 

latent class models appear up through 7 segments, at which point BIC topped out. 

Table  5.2: Comparison of heterogeneity specifications: discrete latent class vs. HB 
random parameters 

Discrete Heterogeneity (Classical Latent Class) 
Segments df Classical LL BIC 

1 25 -10983 22194 
2 51 -10239 20944 
3 77 -9784 20271 
4 103 -9537 20014 
5 129 -9336 19850 
6 155 -9187 19788 
7 181 -9059 19770 
8 207 -8948 19785 
Continuous Heterogeneity (HB Random Parameters) 

Segments Cov(Beta) Classical LL* DIC 
1 Diagonal -3813 12432 
2 Diagonal -3713 12073 
3 Diagonal -3656 11961 
4 Diagonal -3638 12029 
1 Full -4051 11742 
2 Full -4016 11674 
3 Full -4017 11745  
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It is plainly apparent that: (1) continuous heterogeneity (normal mixure) alone is 

superior8 to discrete heterogeneity (latent class) alone, up through even a fairly large 

number of segments (as per Allenby and Rossi 2003); (2) a correlated (random) 

coefficients specification for the normal mixture model is superior to an uncorrelated one; 

and (3) more than one segment in the normal mixture model is supported. In short, the 

most general specification fares best, and each of its attributes – correlated coefficients, 

and both discrete and continuous heterogeneity – is useful in presenting an accurate 

representation of consumer preferences. In the following sections, this ‘full’ model is 

referred to primarily, and others are called upon only peripherally for comparison 

purposes.  

As described at length earlier, the hyperparameters in the hierarchical set-up were 

estimated using the Bayesian MCMC chain and used to generate a large number (1000) 

of part-worth coefficient vectors (βi), which serve to stochastically integrate over the 

posterior choice surface. Posterior means of these resulting βi values are listed in Table 

 5.3, and the resulting splines are shown graphically in Figure  5.4, along with mean values 

for the discrete mixture and homogeneous cases; recall that for identification purposes 

these values are scaled so that the sum in each set of characteristics is zero, making for 

easier visual comparison. There are several things to note here. First, the listed mean beta 

values are generated from a mixture distribution, and as such do not correspond to any 

model parameters directly, but to weighted averages of them. Second, a comparison of 

the values used in the optimization (1000 generated values from the posterior mixing 

distribution) to the averaged posterior Betas for our actual (n = 184) respondents 

indicates very close agreement; the greatest deviation is less than 0.06, small relative to 

                                                 
8 The classical homogeneous, latent class and Bayesian continuous heterogeneity representations are informally 

compared here using classical LL values (calculated at the posterior mode for the Bayesian models). These 
differences are dramatically in favor of the continuous heterogeneity specifications, far more so than can be 
attributed to posterior uncertainty (as captured by DIC). 
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the overall range of Beta values. Finally, in each of the six attribute spline graphs, the 

heterogeneous model is most ‘arched’ or highly sloped, suggesting the presence of some 

consumers with relatively strong preference differentials across attribute levels (it should 

be emphasized that part-worth values have a nonlinear mapping onto choice probabilities, 

and hence demand, so an “averaged part-worth” is only a rough guide to comparing 

across heterogeneity specifications). 

Table  5.3: Average part-worth coefficient beta values with each characteristic zero-
mean scaled 

homo-
geneous

discrete
mixture

mixture of
normals

200 lbs. -0.5295 -0.6944 -1.1888
250 lbs. 0.1331 0.1449 0.2519
300 lbs. 0.2321 0.2782 0.4539
350 lbs. 0.1081 0.1505 0.2783
400 lbs. 0.0562 0.1210 0.2047

6/8 -0.0543 -0.1009 -0.1406
7/8 0.2570 0.3157 0.4748
8/8 0.2816 0.3974 0.5007
8/7 -0.0211 0.0056 0.0362
8/6 -0.4632 -0.6181 -0.8712

100 in.2 0.0192 0.0531 -0.0431
110 in.2 -0.0940 -0.0198 -0.0480
120 in.2 0.0533 0.0566 0.1186
130 in.2 0.0508 0.0034 0.0998
140 in.2 -0.0293 -0.0937 -0.1273
2/32 in. -0.3622 -0.7065 -0.6915
3/32 in. -0.1595 -0.1240 -0.1967
4/32 in. 0.2191 0.3332 0.3806
5/32 in. 0.1983 0.2580 0.3126
6/32 in. 0.1044 0.2389 0.1950
0.75 in. -0.7402 -0.8462 -1.4291
1.00 in. -0.1941 -0.2500 -0.2604
1.25 in. 0.2394 0.2792 0.4555
1.50 in. 0.2947 0.3805 0.6200
1.75 in. 0.4002 0.4366 0.6140

$10 0.7227 0.9682 1.5863
$20 0.4862 0.6802 1.1556
$30 0.0583 0.2023 0.4637
$40 -0.3636 -0.4697 -0.5490
$50 -0.9036 -1.3815 -2.6567

0.0247 -0.0387 0.8366

z 5

p

no choice

z 1

z 2

z 3

z 4
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A number of trends are apparent across these mean estimated coefficient values. 

Unsurprisingly, price appears to exert the strongest influence, and is decisively 

downward-sloping (this is true of the posterior means for each of the n = 184 original 

participants). One might have expected similarly monotonic preferences for number size 

and weight capacity, but this is only true for the former; apparently, too high a capacity 

was viewed as ‘suboptimal’ by the respondents, on average. Note that these beta values 

reflect pure consumer preference, and not any sort of constraint resulting from infeasible 

designs, which can only arise from the engineering design submodel. Preferences for the 

other three variables (platform area, aspect ratio (i.e., shape) and interval mark gap) all 

have interior maxima.  

5.5.2 Product Line Optimization Results 

Conditional on the generated splines arising from the HB conjoint estimates 

(using the mixture-of-normals-based demand model), the engineering design and 

marketing subproblems are solved iteratively until convergence. Optimization was 

carried out in MATLAB, with each subproblem solved using the sequential quadratic 

programming method (Papalambros and Wilde 2000), an efficient gradient-based 

algorithm. The ATC system is solved for a fixed product line size J, and a parametric 

study is performed to determine the value of J that produces the most profitable overall 

product line (i.e., solutions are found for cases J = {1, 2, ...}, and the solution that 

produces the highest profit is chosen). As is typical, local optima are generated; global 

optima can only arise using multi-start. Figure  5.5 shows the best resulting profit across 

several local minima (found using ten runs with random starting points) for each case J = 

{1, 2, ..., 7}. It is clear that a product line with four products is most profitable, and Table 

 5.4 details this solution.  
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Figure  5.4: Plots of the average splines for each product characteristic and price 

under the three demand models 
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Figure  5.5: Resulting profit as a function of the number of products in the line 

Note that several of the resulting scale designs are bounded by active engineering 

design constraints; this is necessary to ensure that the scale is physically tenable, for 

example, that the dial, spring plate and levers can be accommodated in the case. Note as 

well that all the scales in the line lie well within the range available through online 

retailers. Looking across the table, and considering primarily marketing attributes, one 

might term the resulting products “large square scale” (27.4% of the market), “large-

number portrait scale” (21.0%), “small, low capacity landscape scale” (18.6%) and 

“high-priced, middle-of-the-road” scale (11.3%).   
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Table  5.4: Optimal scale designs for the heterogeneous market 

1 2 3 4
Π Profit (Millions) $

Market share % 27.4% 21.0% 18.6% 11.3%
z 1 Weight capacity lbs. 292 262 200 255
z 2 Aspect ratio - - - 0.980 1.156 0.921 0.986
z 3 Platform area in.2 140 122 105 135
z 4 Tick mark gap in. 0.103 0.116 0.121 0.116
z 5 Number size in. 1.221 1.351 1.293 1.331
p Price $ $22.89 $24.53 $23.84 $30.00
x 1 Lever dimension in. 8.53 8.62 6.42 7.28
x 2 Lever dimension in. 2.82 3.17 3.21 4.20
x 3 Lever dimension in. 1.95 9.72 24.00 15.75
x 4 Lever dimension in. 0.13 0.65 4.32 1.95
x 5 Lever dimension in. 2.82 1.92 3.18 2.47
x 6 Spring constant lb./in. 200.0 200.0 2.7 48.7
x 7 Spring location in. 0.50 0.50 0.50 0.50
x 8 Rack length in.. 7.07 4.40 3.41 3.89
x 9 Pinion size in. 0.25 0.29 12.02 1.91
x 10 Pivot dimension in. 0.50 0.80 1.43 0.54
x 11 Pinion dimension in. 0.64 1.43 1.90 1.78
x 12 Dial diameter in. 9.52 9.67 7.66 9.35
x 13 Cover length in. 11.72 11.87 9.86 11.55
x 14 Cover width in. 11.95 10.27 10.70 11.71
g1 Dial fits in base in. -1.83 0.00 -2.44 -1.75
g2 Dial fits in base in. 0.00 0.00 0.00 0.00
g3 Lever fits in base in. -8.17 -8.70 -1.75 -6.54
g4 Lever joint location in. 0.00 -1.25 -0.02 -1.73
g5 Rack fits in base in. -1.81 -3.85 -2.35 -3.69
g6 Sufficient rack length in. -3.93 -1.49 -2.13 -0.88
g7 Lever fits in base in. -16.17 -0.38 -9.50 -8.41
g8 Sufficient lever length in. -0.03 -6.99 0.00 -6.43E
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It is important to emphasize again that the design space does not map one-to-one 

with characteristics communicated to consumers. This comes about because the 

engineering design model specifies some product characteristics as functions of 

interactions between design variables. To take one example, weight capacity (z1) can be 

achieved by adjusting the relative values of the pivot lever dimensions (x10, x11), lever 

lengths (x1+x2, x3+x4), spring constant (x6), force placement (x1, x3), joint position (x5) and 
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pinion gear pitch diameter (x9). The resulting ‘iso-weight-capacity’ surface is highly non-

linear, but the key point is that an infinite number of design solutions can appear 

equivalent in terms of what can be conveyed about them to consumers; that is, multiple 

designs may exhibit identical product characteristics. A manager could enact any number 

of criteria post hoc to choose from among such a continuum, or detailed cost data and 

preferences for commonality could drive selection of a single engineering design among 

the set of possibilities, although such strategies are not pursued here since the primary 

intention is to focus on ensuring existence of a feasible design that attains the preferred 

product characteristic targets. 

In the following sections ATC product line coordination results are compared to 

an alternative disjoint approach, and the effects of heterogeneity representations on 

product line solutions are explored. 

5.5.3 Effectiveness of ATC Coordination 

A major contribution of the methodology presented here is to provide rigorous 

coordination between marketing and engineering models in order to find a joint solution 

that is optimal under consideration of both customer preferences and engineering 

feasibility. As in Chapter 4, to demonstrate the importance of this coordination, the 

coordinated ATC solution was compared to the solution obtained through a disjoint 

sequential approach, which has previously been referred to as Analytical Target Setting 

(Cooper et al. 2003). In the disjoint scenario, marketing sets price and product 

characteristic targets based on consumer preference data without engineering feasibility 

information (marketing subproblem) and passes these targets to engineering design 

teams. The engineering teams then design feasible products that meet the targets as 

closely as possible (engineering subproblems) without further iteration, leaving price as 

the only marketing variable that can be changed post-design. In this disjoint scenario, 
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marketing produces a plan for a line of four scales with a predicted market share of 

83.4% and resulting profit of $81.2 million. There is no reason to believe these products 

will be feasible, as they are based solely on consumer preferences, which often involve 

contradictory characteristics. That is, when one looks beyond consumer preferences and 

considers only the space of realizable products, product lines and their profit potentials 

can change substantially. In the disjoint case, these (unachievable) targets are passed to 

engineering teams who each design a feasible product to achieve product characteristics 

as close as possible to the targets requested by marketing without further iteration. The 

resulting products differ significantly from the initial plan and therefore have 

characteristics that are less preferred by consumers, resulting in an actual market share of 

70.5% and profit of $67.9 million: 16% less than marketing’s original (unachievable) 

prediction. If, instead, the ATC process is used to iteratively coordinate marketing profit 

and preferences with engineering performance and feasibility, the resulting joint solution 

is a line of four different products, resulting in 78.2% market share and $72.4 million 

profit. In this case, coordination resulted in a feasible product line with 6% higher 

profitability than that resulting from disjoint decision-making. These results are 

summarized in Table  5.5.  

Table  5.5: ATC coordination vs. disjoint decision-making 

 

Resultant 
Line Market 

Share 

Resultant 
Profit 

Best line targets predicted 
by marketing (infeasible) 83.4% $81.2  

Feasible engineering 
designs closest to 
marketing targets 

70.5% $67.9  

ATC coordination to 
produce a joint solution 78.2% $72.4  

 

It is worth noting that in this case the original marketing plan and the ATC 

coordinated solution both contain four products in the line, but, in general, these two 
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cases need not yield lines of the same size, and in many cases marketing will have a 

tendency to overestimate the optimal line size J because of an overoptimistic assumption 

about how much “coverage” of the product characteristic space is possible. Also, in this 

disjoint scenario marketing “leads” by developing the original plan and engineering 

design “follows” by attempting to meet product characteristic targets. The reverse 

situation, where engineering “leads,” is possible when all consumers have monotonic 

preferences for product characteristics (e.g.: fuel economy and performance for a vehicle) 

by first having engineering design a set of Pareto optimal products and then allowing 

marketing to pick a line from that set of products (see Li and Azarm, 2002). However, in 

this example, preferences for characteristics are non-monotonic, so no such common 

Pareto set exists, and without preference information, engineering has no well-defined 

optimization objective. 

5.5.4 Heterogeneity Representation 

The methodology presented here has several independent components. As such, it 

is reasonable to ask whether one or another might be made less sophisticated or 

sidestepped entirely, with little change in substantive outcome. Specifically, what might 

be the profit implications of doing so? While it is true that the methodology is modular – 

ATC can be applied, for example, with a different demand formulation or another form of 

heterogeneity correction – it is valuable to ascertain whether the modeling choices made 

within that modular framework are warranted, and how strongly. Although it is not the 

main focus of this research, it is instructive to consider whether similar optimal line 

designs can be obtained through simpler forms of heterogeneity modeling. Using the 

simple homogeneous model of demand is pointless for generating product lines because 

the IIA property leads to product lines with duplicate products, so the discrete mixture 

model, or latent class model, is compared with the normal mixture model. Since the 
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discrete mixture model is natively supported in many statistical packages, it might prove 

convenient for line optimization. Though fit statistics (Table  5.2) alone argue that the 

discrete mixture model is dramatically inferior to the normal mixture specification, this 

does not necessarily mean that, conditional on the resulting estimates, the resulting 

optimal line will be dramatically inferior. 

Table  5.6 lists a comparison between the resulting profitability (evaluated post 

hoc with the normal mixture model) of the optimal solutions found using the discrete and 

continuous mixture approaches for optimization. Not only do these cases result in 

different product line solutions (a line of six products under the discrete mixture model 

vs. a line of four products under the normal mixture model), but the solution deriving 

from the discrete mixture model suffers a decrement in profit of 18.4%9. Furthermore, the 

discrete mixture specification results in a profit surface with more numerous and more 

pronounced local minima, including local minima with duplicate products such as the 

solution found in Table  5.4, acting to impede the optimization process. Thus, even a 

relatively sophisticated heterogeneity representation can offer very different, and 

potentially sub-optimal, product line results. 

Table  5.6: Optimal single-product and product line solutions under each demand 
specification 

 
Homo- Discrete Normal
geneous Mixture Mixture 1 2 3 4 5 6 1 2 3 4

Π Profit (Millions)* $ $54.1 $58.3 $60.7
Market share* % 48.8% 57.8% 65.0% 25.1% 8.7% 8.7% 8.7% 6.9% 4.9% 27.4% 21.0% 18.6% 11.3%

z 1 Weight capacity lbs. 255 254 256 238 257 257 257 253 248 292 262 200 255
z 2 Aspect ratio - - - 0.996 1.047 1.002 1.045 1.041 1.039 1.039 1.062 1.051 0.980 1.156 0.921 0.986
z 3 Platform area in2 134 127 130 100 131 131 131 123 114 140 122 105 135
z 4 Tick mark gap in. 0.116 0.117 0.115 0.106 0.116 0.116 0.116 0.114 0.111 0.103 0.116 0.121 0.116
z 5 Number size in. 1.334 1.339 1.315 1.193 1.341 1.337 1.337 1.316 1.268 1.221 1.351 1.293 1.331
p Price $ $26.41 $24.21 $22.61 $23.96 $30.00 $30.00 $30.00 $30.00 $29.37 $22.89 $24.53 $23.84 $30.00

Single Product Solutions Product Line Solutions

$59.1

Normal Mixture

$72.4

Discrete Mixture

 

                                                 
9 The profit of the line generated under the discrete mixture model was evaluated for profitability post hoc using the 

normal mixture model , which has superior properties. 
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While it may be somewhat expected that more restricted representations of 

heterogeneity can lead to suboptimal product lines, it is common practice to presume that 

a homogeneous model is sufficient for the design of a single product. The results for this 

case study suggest that this assumption must be made with care. Table  5.6 lists the 

solutions when one performs optimization for a single product under the three demand 

model scenarios. In this case the more restrictive models do a fairly good job predicting 

the optimal product characteristics, although this need not always be true; however, the 

price that can be fetched for the product is significantly overestimated by the more 

restrictive models, resulting in a loss of 7% market share using the discrete mixture 

model and a loss of 14% market share using a simple homogeneous model, relative to the 

normal mixture model. These results suggest that the issue of how heterogeneity 

specification affects contingent optimization results is worthy of further study on its own. 

5.6 CONCLUSIONS 

Product-producing firms work to plan and design lines of products that best suit 

their market and profitability goals. Different functional entities within the firm can 

interpret this imperative idiosyncratically: suiting consumer needs for marketers, 

maximizing performance at minimum cost within technological constraints for engineers. 

Considered independently, these goals often lead to conflict, both in practice and with 

respect to optimization models in each discipline, and disjoint sequential “throw it over 

the wall” approaches to resolving the conflict can lead to suboptimal decision-making. 

In this chapter, the ATC methodology was extended to iteratively coordinate 

models from each discipline and arrive at joint optima for a marketplace-viable, 

technologically-feasible product line. The decomposition and coordination approach 

offered by ATC allows such joint solutions to be achieved while maintaining disciplinary 

modeling focus and relieving the need for a single modeler to become an expert in all 
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areas. For example, marketers need not explicitly enumerate the set of attainable product 

characteristic combinations or constrain survey design to these combinations, difficult 

goals when at least some product characteristics are defined on a continuous space. 

Likewise, engineering designers need not develop artificial representations to describe 

tradeoff preferences among competing performance objectives or deal directly with 

differences in preference points across the population of users. Instead, the methodology 

presented offers a rigorous definition of the interaction between the two modeling scopes, 

and modelers in each discipline can focus on issues relevant to their expertise. The 

iteration of these decision-models then acts to reduce the need for more costly human 

iteration. 

The ATC-based analysis presented here offers a number of concrete conclusions 

for the product line studied. More research is warranted to determine the extent to which 

these carry over to other types of products. Nevertheless, several ‘main points’ emerged 

with clarity:  

1. Consideration of engineering feasibility during marketing product planning can 

lead to significantly different designs with different characteristics than those 

obtained through a pure marketing analysis. ATC allows only feasible product 

lines by iteratively coordinating marketing product characteristic targets with 

actual product characteristics achieved by a feasible engineering design, and this 

coordination can significantly improve the profitability of the resulting product 

line.  

2. In product design optimization, the form of heterogeneity matters: The normal 

mixture model HB approach was far superior at representing the underlying 

preferences leading to the observed choices than the homogenous and discrete 

mixture representations, and use of a more restrictive model can lead to different 

solutions with significant reductions in profitability.  



 152 

3. Multiple products are more profitable and better able to satisfy preferences in a 

heterogeneous market than single products, unless fixed costs are prohibitive. 

Even if a firm is designing only a single product, when that product is optimized 

for a heterogeneous market it can differ from one optimized for a presumed-

homogeneous market calibrated on the same consumer preference data. 

4. The results do not advocate four different consumer products – there are clearly 

far more in the market – but four different product designs: Other elements (e.g., 

color, packaging) can be altered on the fly independently from the engineering 

design. This is an important observation to keep in mind when using the proposed 

methodology. 

A chief strength of the ATC formulation is its intrinsic modularity: Each 

component can be readily modified without having to mathematically re-tool the entire 

system. Incorporating other forms of heterogeneity, for example, will affect only the 

demand model, and changing the product topology model or including multiple product 

topologies is also straightforward in that one must adjust only the engineering design sub-

model. ATC can also accommodate more complex hierarchies to organize decision-

making in marketing or engineering, which is particularly useful for scaling to large 

problems such as automobile production, where numerous systems and subsystems 

interact. While relatively simple cost and profit models are used in the case study, with 

several important qualities specified exogenously, individual models can be altered with 

any number of well-known refinements. For example, Chapter 6 introduces detailed 

manufacturing planning models and coordinates them with cost and production volume 

targets set by marketing.  

A number of relevant constructs could serve to provide other useful extensions to 

the model presented here, and several of these are discussed below. First, the account 

provided here is ‘normative,’ in that certain economic, technological and perceptual 

forces observed in practice are not modeled directly. A number of authors have pointed 
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out forces that can affect the normative account of line optimization arising from conjoint 

analysis and various operations research-based search methods. Moorthy (1984), based 

on consumer self-selection and third-degree price discrimination, shows how various 

consumer segments might be profitably aggregated even in the absence of economies of 

scale. Kekre and Srinivasan (1990) suggest that, whereas manufacturing seeks to limit 

product line depth to ensure a smooth production flow, marketing seeks to satisfy as 

many consumer segments as practicable. Villas-Boas (1998) underscores the role of 

customer communication in optimal line design, showing that certain costs, in particular 

advertising, can lead to firms’ offering fewer product variants in their lines than they 

otherwise should. Using a related framework, Villas-Boas (2003) demonstrates that, 

because retailers, not manufacturers, control the channel and ultimate product targeting, 

manufacturers may need to increase line length to help appropriately segment the market. 

In our approach, as in that of nearly all prior research in the area, retailers play a limited 

direct role, and various communication costs are considered known and stable. 

Second, several other studies have incorporated elements that have been assigned 

a peripheral role here. Perhaps the most prominent of these is likely competitive reaction. 

A pioneering study in this regard is Kadiyali, Vilcassim and Chintagunta (1996), who 

adopted a “new empirical industrial organization” (NEIO) approach to determine optimal 

policies for competitive product line pricing. A related formulation is that of explicit 

competitive reaction models using game theory. For single brand firms, Choi and 

DeSarbo (1993) and Green and Krieger (1997) have illustrated how to derive competitive 

strategies using conjoint analysis via Nash equilibrium. Chapter 7 discusses a method for 

using game theory to predict the engineering design decisions of competing automotive 

firms with respect to measured customer preferences under several government 

regulation scenarios.  

Third, models of market expansion as a function of the product line’s depth or 

composition could enrich model predictions over the simple ‘outside good’ methodology 
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used here. Bayus and Putsis (1999), for example, outline strategic and cost-based 

consequences of various complex market factors on product line composition. Shugan 

and Desiraju (2001) consider the effects of perpetual new variants within and deletions 

from a product line, and how retailers should react in the many product classes where this 

is the norm. They find that it is often optimal to decrease prices on an entire line, for 

example, when costs fall disproportionately for higher-quality products. In this chapter, 

as is traditional in product line optimization models, product lines are taken to be stable 

across the planning horizon. 

Finally, consideration of how the structure and depth of a product line impacts the 

equity of its brands or the line itself could provide further insight (Randall, Ulrich and 

Reibstein 1998). Recent work in this area by Draganska and Jain (2004) examines 

product line length as arising from just this sort of endogenous system. Here, the conjoint 

data is used to describe the market “as is.” It would be worthwhile to extend the proposed 

modeling framework to allow for the likely market restructuring arising from just this 

sort of endogenous introduction. 

In closing, several maxims are relevant for both the marketing and engineering 

design/production communities. First, although engineers are keenly aware at every step 

of their work of real, inviolable constraints, marketers tend to work to find desirable 

product characteristic targets for exploring new markets. A tacit belief is that most, if not 

all, design constraints can be vanquished by ingenuity or sufficient capital. While this is 

sometimes true, often it is not. ATC encodes non-negotiable technological infeasibilities 

directly into its conceptual foundations. As such, marketers using their own models 

within an overarching ATC formulation can gain a “gut feel” for what will work, and 

what will not, in terms of actual, deliverable products, to supplement their intuitive 

understanding of the consumer marketplace. The flip side is that engineers can come to 

terms with ‘consumer space,’ every bit as real as the geometry and physics underlying 

their own models, and resolve tradeoffs among competing performance goals through 
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coordination with marketing. Second, while it may appear simple to specify which 

product characteristic combinations cannot co-exist, in practice it is often impractical: 

This ‘infeasible hull’ can snake through the product characteristic space in ways difficult 

to visualize or translate into meaningful consumer terms. ATC frees marketers from 

considering such issues when collecting consumer preferences; iterative coordination 

readily avoids infeasible product line configurations post hoc. Third, heterogeneity 

matters: it must be accounted for in sufficient generality. And finally, the question arises 

of whether ATC, this newcomer to the enterprise modeler’s toolbox, can be trusted 

alongside mainstays like conjoint analysis and discrete choice modeling. Although the 

best verdict is always that of posterity, ATC is proven, for a broad class of problems, to 

converge to joint optimality across its various subsystems. As such, it can literally 

guarantee better profitability – or sales, or consumer surplus, or indeed any quantity of 

managerial interest – than one could arrive at by optimizing the engineering design and 

marketing submodels independently. With its scalability, relatively low computational 

overhead, and ability to key into a wide variety of extant modeling techniques, ATC 

offers strong reasons for adoption as a cross-disciplinary platform for the design of 

complex products and product lines. 
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CHAPTER 6  
 

MANUFACTURING INVESTMENT AND ALLOCATION 
IN PRODUCT LINE DESIGN DECISION-MAKING 

In Chapter 4 a method was introduced for coordinating marketing and engineering 

design decisions for product development to achieve joint solutions. In Chapter 5 this 

method was extended to design product lines using a heterogeneous model of demand. 

However, in both chapters the modeling of product cost was quite simple. In many cases, 

tradeoffs exist between improving the manufacturability of a product to reduce costs and 

improving the design of the product to achieve desirable product characteristics. Studies 

in Design for Manufacturability (DFM) encourage designers to consider manufacturing 

issues when making decisions, but generally these methods do not quantify the tradeoff 

between the expected additional revenue and cost generated by making a design change 

desirable in the market but costly to manufacturing. In this chapter, the product line 

model is further extended to include machine investment decisions along with allocation 

of production to the purchased machines. The material in this chapter is based on a 

working paper by Michalek, Ceryan, and Papalambros (2005). 

6.1 METHODOLOGY 

The methodology for including manufacturing decisions in the ATC hierarchy is 

built on top of the model presented in Chapter 5, referencing Sriraman, Imfeld and 

Swisher (2002) for manufacturing model development. In this extension, the marketing 

planning subproblem is augmented to include the setting of overall cost targets and 

production volume targets for each design to be achieved in a fixed time period. 
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Production volume targets are achieved by each engineering design subproblem by 

allocating design of the product’s components to available machines, while ensuring that 

each component can only be made on machines capable of manufacturing the component, 

given the design. Life-cycle and dynamic manufacturing issues are not considered. 

Instead, it is assumed that a set of candidate machine types are available for purchase, 

and a single manufacturing investment subproblem is added to the ATC hierarchy to 

manage decisions of how many machines of each machine type will be purchased to 

match the cost targets set by marketing and simultaneously provide sufficient machine 

capacity for manufacturing the components designed in each engineering design 

subproblem. Because the production volume achievable for each product depends on the 

amount of machine time available for that product, linking variables are included to 

coordinate machine time requests and allocations between the engineering design 

subproblems and the manufacturing subproblem. A diagram of this process is provided in 

Figure  6.1, where linking variables are shown as connections between the two 

subproblems sharing those variables; while in actual implementation they are coordinated 

at the parent element, as described in Chapter 3.   

6.1.1 Marketing Planning Subproblem 

The marketing planning subproblem is formulated as in Chapter 5, using a 

heterogeneous mixture model of demand obtained through hierarchical Bayesian 

procedures using choice-based conjoint response data. However, in Chapter 5, decision 

variables of the marketing subproblem included only the price pj of each product and the 

target product characteristic vectors zM
j passed down to each engineering design 

subproblem. It was assumed that production volume Vj for each product was equal to 

demand q, and the details of how this production volume would be achieved were outside 

the scope of the model. Similarly, cost was modeled as an exogenously determined 
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investment cost cI paid per design to set up infrastructure for production plus a variable 

cost cV paid per product.  

 Marketing Product Planning Subproblem 
maximize profit, and 
minimize deviation from product characteristics, production volume, and cost attained by engineering 
with respect to price and targets for product characteristics, production volume, and cost 
subject to production volume target < demand 
where profit is revenue minus cost, revenue is price times production volume, and demand is a 

function of the price and target product characteristics 

Manufacturing Subproblem 
minimize deviation from cost 

targets and machine time 
requests 

with respect to machine time 
allotment and machine 
purchase decisions 

subject to total machine time 
allotment < total machine time 
available from machine 
purchase 

where cost is machine purchase 
cost plus machine time 
operating cost 

Design Subproblem 1
minimize deviation from target 

product characteristics, 
production volume, cost and 
machine time allotment 

with respect to design decisions, 
component volumes, and 
machine time requests 

subject to machine time requests 
sufficient to achieve 
component volume,  
component volumes sufficient 
to achieve product production 
volume, and engineering 
constraints and machine 
constraints are satisfied 

where product characteristics 
are functions of design 
decisions  

Design Subproblem J 
minimize deviation from target 

product characteristics, 
production volume, cost and 
machine time allotment 

with respect to design decisions, 
component volumes, and 
machine time requests 

subject to machine time requests 
sufficient to achieve 
component volume,  
component volumes sufficient 
to achieve product production 
volume, and engineering 
constraints and machine 
constraints are satisfied 

where product characteristics 
are functions of design 
decisions  

L  

COST 
target 

(linking variables coordinated by parent element) 

COST 
response 

PRODUCT CHARACTERISTICS, 
COST & PRODUCTION VOLUME

responses 

MACHINE 
TIME  

requests 
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allotment
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PRODUCT CHARACTERISTICS, 
COST & PRODUCTION VOLUME
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allotment 

 
Figure  6.1: Description of ATC coordination of marketing, engineering design, and 

manufacturing decisions 

In this chapter a more comprehensive model of manufacturing cost and capacity is 

required; therefore the marketing subproblem is altered so that the target production 

volume VM
j, for a fixed time period T, is set in the marketing subproblem to be achieved 

by each engineering design subproblem VE
j during that period. Likewise, target unit 

material cost cM
j is set in the marketing subproblem to be achieved by each engineering 

design subproblem cE
j, and a target for total investment and operating cost CM is set in the 

marketing subproblem to be achieved by the manufacturing subproblem CP. In this way 
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the details of the cost and capacity calculations are handled outside of the marketing 

subproblem, but they are coordinated with marketing targets for these values.  

Finally, if the production volume VM
j of each product j is less than or equal to 

demand, the resulting profit is calculated as  

 

( )M M M
j j j

j

V p c C
⎛ ⎞

Π = − −⎜ ⎟
⎝ ⎠
∑ , (6.1)  

 

where pj is the price of product j. If production volume were to be greater than demand, 

profit would be calculated differently, but here a constraint is added to ensure that VM
j < 

qj. As before, it is still true that VM
j = qj at the solution, so it is not necessary to allow VM

j 

to deviate from qj. However, if VM
j = qj for intermediate iterations, this results in the 

marketing subproblem working to make product characteristics undesirable in order to 

match the lower production volumes achieved by engineering at intermediate iterations. 

This can increase computational time and also result in driving the marketing subproblem 

into an undesirable area of the design space where it may settle to a local minimum of 

lower global quality. Allowing VM
j < qj speeds up computation time by allowing each 

product to attract more than VE
j individuals, reducing the need for marketing to make the 

product unattractive in order to match small production volume responses at intermediate 

iterations and mitigating opportunity for the algorithm to fall into a local minimum far 

from the starting point.  

Finally, the marketing subproblem includes a coordinating liking variable TM
jm to 

coordinate machine time allocation between the manufacturing subproblem TP
jm and each 

engineering design subproblem TE
jm. More detail about this variable will be provided in 

later sections as the marketing subproblem serves only as a parent coordination element 

with respect to TP
jm and TE

jm, as described in detail in Chapter 3. 
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The objective function of the marketing subproblem is then to maximize profit 

and minimize deviation between targets and responses of the unit material cost cM
j, 

investment and operating cost CM, product characteristics zM
j, production volume VM

j, 

and machine time TM
jm variables for all products j and machines m. The full formulation 

of the marketing planning subproblem and its relationship with the other subproblems is 

shown in Figure  6.2, with vector norm weighting coefficients removed for clarity. 
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Figure  6.2: Mathematical description of ATC coordination of marketing, 
engineering design, and manufacturing decisions 
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6.1.2 Manufacturing Investment Subproblem 

It is assumed that a fixed number of machine types m = {1, 2, …, M} is available from 

which to choose, and the firm must decide how many machines of each machine type to 

purchase κm. The possibility of leasing equipment is not considered. The manufacturing 

subproblem is tasked with dividing up the purchased machine time among products in the 

line by setting decision variables TP
jm, indicating the amount of time on machine m that is 

allocated to product j. Only the allocation of machine time is considered here; Issues such 

as configuration (Spicer et al., 2002), sequencing (Kurnaz et al., 2005), line balancing 

(Son et al., 2000), and multiple facilities (Benjaafar et al., 2004) are not considered. If the 

parameter T represents the amount of machine time available per machine in a fixed 

period (i.e., the number of working hours over the period), then κmT is the total time 

available from κm machines. Therefore, TP
jm is constrained such that  

 
P
jm m

j

T Tκ≤∑ . (6.2)  

 

In practice, each κm must be a nonnegative integer (0, 1, 2, …) because it is not 

possible to pay for a fraction of a machine at a fraction of the cost to receive a fraction of 

the capacity. However, the formulation is designed so that this requirement can be 

relaxed, permitting purchase of fractional numbers of machines. The solution to this 

relaxed problem will provide an upper bound on the amount of profit achievable by the 

more realistic situation where κm is restricted to integers. One way to restrict κm to 

integers is to do so explicitly, resulting in a mixed integer nonlinear programming 

problem (MINLP). However, the ATC formulation presented in Chapter 3 currently is 

not proven to converge for discrete formulations, and further research is necessary to 

extend the applicability of ATC to these problems. Alternatively, it is possible to solve 

such a problem under the current ATC formulation using branch-and-bound; however, 
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the branching and bounding steps must be performed on the entire ATC hierarchy, not 

just the subproblem containing integer restrictions. To avoid the computational 

complexity of this strategy, it is possible to restrict the κm terms to integer values while 

working entirely in a continuous space. For a particular value of a, the following 

constraint 

 

( ) { }P 1 0 0,1, 2, ,jm m
j

T aT a a mκ
⎛ ⎞

− + − ≤ ∀ ∈ ∀⎜ ⎟
⎝ ⎠
∑ K  (6.3)  

 

ensures that when fewer than (a+1) machines are purchased (i.e., when κm < a+1), the 

total machine time allocated must not be greater than aT, the time provided by a 

machines. A set of these constraints for all a = {0, 1, 2, …} enforced together ensures 

that at least a machines must be purchased in order to use a machines worth of time for 

all values of a. In implementation, values of a need only be considered up to the 

maximum number of machines that may be purchased. While this set of constraints 

enables operation in a continuous domain and results in integer solutions for κm, it does 

not completely solve the problem. This set of constraints creates a “stair step” shaped 

feasible region, and because of the shape of the objective function, there are many cases 

where the shape of the feasible region creates several local minima: each at an integer 

value. Therefore, while the formulation allows operation in a continuous domain, solving 

for the optimum integer value of κm requires global search.  

The strategy used here is to solve the relaxed problem (without the constraints in 

Eq. (6.3)) to obtain an upper bound on the profit achievable by the more restrictive 

problem. Next, starting from the optimum of the relaxed problem, penalty functions 

representing Eq. (6.3) are added to the objective function with a penalty coefficient 

parameter that increases over time until the solution is forced out of the infeasible region. 

This procedure results in a local minimum that is nearby the solution to the relaxed 
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problem. The solution is not guaranteed to be the global solution; however, if it is within 

an acceptable deviation from the solution of the relaxed problem, it may be considered an 

acceptable and useful local solution. 

Additionally, the cost of purchasing κm machines of type m is given by κmcI
m, 

where cI
m is the investment cost per machine of type m. The cost to operate the machines 

of type m is equal to 

 
O P
m jm

j

c T∑ , (6.4)  

 

where cO
m is the cost per unit time to operate machine m (labor cost plus machine use 

cost). The total production cost CP is composed of investment and operating cost, so that 

 

P I O P
m m m jm

m j

C c c Tκ
⎛ ⎞

= +⎜ ⎟
⎝ ⎠

∑ ∑ . (6.5)  

 

Finally, the manufacturing subproblem objective is to minimize deviation from the cost 

targets CM passed from the marketing subproblem and minimize deviation from the 

machine time allocation linking variables TM
jm with values requested by each engineering 

design subproblem, and coordinated by the parent marketing subproblem. The full 

formulation of the manufacturing subproblem is provided in Figure  6.2.  

6.1.3 Engineering Design Subproblems 

Each engineering design subproblem is formulated similarly to those in Chapter 5, 

except that in addition to matching target product characteristics passed from marketing, 

each engineering design subproblem must attempt to match production volume targets, 

material cost targets, and machine allocation time linking variables. In addition, the 
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individual components l = {1, 2, …, L} that make up each product j are considered, since 

each component is manufactured separately, where the parameter ξl defines the number 

of units of component l contained in each product. Each component l must undergo 

several manufacturing operations n = {1, 2, …, Nl}; for example, a single component 

may require shearing, drawing, and bending operations. Production of the components l  

= {1, 2, …, L} that make up the product j must be allocated to machines m = {1, 2, …, 

M} in such a way that each component design meets the capability requirements of each 

machine on which it is made (Huang et al., 2003), and the total time requests made for 

each machine do not exceed the amount of time allocated. It is assumed that none of the 

designs in the product line share components. This is a limitation since it is common to 

design product families that share specific components among different product designs 

in a line to save costs (Kota et al., 2000; Thonemann and Margaret, 2000; Lee, 2001; 

Qureshi, 2001; Fellini, 2003); however, questions of commonality add significant 

complexity, and it is a reasonable first step to rule out this possibility. 

The component production allocation variable Vjlmn, represents the number of 

units of component l in design j on which operation n is performed by machine m. The 

production volume target VM
j passed from marketing is achieved by producing enough of 

each component in the product to assemble VM
j complete products. To do this, a decision 

variable VE
j is added to represent the total number of products of type j produced, and this 

value is constrained, so that the manufacturing operations performed for each component 

Vjlmn are sufficient to generate the parts for VE
j products.  

 
E ; , ,jlmn l j

m

V V j l nξ≥ ∀∑ . (6.6)  

 

Secondly, the total amount of time needed to execute manufacturing operations 

specified in Vjlmn must not exceed the amount of time Tjm allocated to product j on 
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machine type m. If rlmn(xj) is a function specifying the time per component to execute 

operation n on component l with machine m for a design with variables xj, this constraint 

can be represented as 

 

( ) E ; ,jlmn lmn j jm
l n

V r T j m≤ ∀∑∑ x . (6.7)  

 

Finally, the volume Vjlmn of operation n performed on component l of product j by 

machine m may be greater than zero only if machine m has the capability to execute 

operation n on component l of product j. If glmn(xj) is a vector of constraint functions that 

define the feasibility of executing operation n on component l with machine m as a 

function of the design xj of product j, then Vjlmn can be greater than zero only if glmn(xj) < 

0. If glmn(xj) > 0, then the machine constraints are not satisfied by the product component, 

so operation n of component l cannot be performed on machine m, and Vjlmn must be 

exactly zero. This restriction can be represented by the following constraint 

 

( ) ; , , ,jlmn lmn jV j l m n≤ ∀g x 0 . (6.8)  

 

Taken in conjunction with the condition that Vjlmn > 0, this constraint ensures the 

specified relationship, allowing designs xj to be altered to meet machine constraints and 

ensuring that components are not produced on machines if the design is not so altered. 

While this constraint can be implemented directly, it is advisable to implement it as a 

penalty function to avoid numerical problems with the near-colinearity of the gradients of 

Eq. (6.8) and the Vjlmn > 0 constraint for large values of glmn.  

The entire formulation for each engineering design subproblem, along with 

relationships to the other subproblems, are shown in Figure  6.2. 
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6.2 CASE STUDY 

To demonstrate the methodology described in the previous section, the dial-

readout case study is extended to develop manufacturing models and compare results 

from Chapter 5 with those achieved through coordination with manufacturing decisions. 

The software package DFMA: Design For Manufacture and Assembly, by Boothroyd 

Dewhurst (DFMA, 2004) was used to provide estimates of the manufacturing steps 

involved in producing the components of dial readout scales. For the case study, the 

scope was limited to the manufacture of five components: l = 1, the cover; l = 2, the base; 

l = 3, the (identical) long levers; l = 4, the (identical) short levers; and l = 5, the rack. 

There are two of each lever and one of each other component in each complete scale, so 

the number of components per product ξl = {1, 1, 2, 2, 1} for l = {1, 2, 3, 4, 5} 

respectively. Each of these components is produced with stamping machines. The cover 

and base require two operations (N1 = N2 = 2): a shearing operation (n = 1) followed by a 

bending operation (n = 2), each performed with a compound die. The levers and rack are 

each produced with a single shearing step in a progressive die (N3 = N4 = N5 = 1). 

Material cost cS
l was also estimated per part. For simplicity, the unit material cost was 

treated here as constant, rather than as a function of the component dimensions; however, 

inclusion of unit material cost as a function of design dimensions is straightforward if 

data is available. Because the unit material cost is treated as constant in the case study, it 

need not be passed back and forth as a target, so the material cost calculation is included 

directly in the marketing subproblem here to reduce computational load. Finally, the 

force required to perform each operation was estimated based on the machine suggestions 

made by the software, and the time to load and unload each part was estimated by the 

software. These data are summarized in Table  6.1. 
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Table  6.1: Component and operation data 

l Part:
Parts 
per 

product

Material 
Cost 

($/part)
n Machine 

Operation

Force 
Required 

(tons)
Process Strokes 

Per Part

Load / 
Unload 

Time Per 
Part (s)

1 Cover 1 $2.35 1 Shearing + Hole 100 Compound Die 3 8.35
2 Bending 100 Compound Die 3 8.80

2 Base 1 $1.93 1 Shearing + Hole 100 Compound Die 3 8.32
2 Bending 100 Compound Die 3 8.71

3 Long Lever 2 $0.28 1 Shearing 60 Progressive Die 1 NA
4 Short Lever 2 $0.16 1 Shearing 32 Progressive Die 1 NA
5 Rack 1 $0.07 1 Shearing 45 Progressive Die 1 NA  

Secondly, a set of nine available machine alternatives (M = 9) was compiled using 

the software, which provided information on machine dimensions, force capacity, speed, 

and operating costs. Machine purchase cost estimates were obtained through informal 

discussions with Minster Machine Company. These machine data are summarized in 

Table  6.2.  

Table  6.2: Machine characteristics 

m Machine
Bed 

Width 
(in)

Bed 
Length 

(in)

FORCE 
(tons)

Press 
Speed 

(strokes/
min)

Machine 
Rate 
($/hr)

Operator 
Rate 
($/hr)

Machine 
Cost

1 Minster P2H-160 33.5 63 180 40 $22.10 $25.00 $335,000
2 Minster P2H-100 26 48 112 60 $19.40 $25.00 $250,000
3 Minster OBI #4F 9 12 32 90 $16.30 $25.00 $75,000
4 Minster OBI #5F 12 16 45 85 $16.70 $25.00 $60,460
5 Minster OBI #6F 14 18 60 75 $17.40 $25.00 $90,000
6 Minster OBI #7F 14 19 75 70 $18.00 $25.00 $100,000
7 Minster E2-200 36 60 200 36 $22.80 $25.00 $200,000
8 Minster E2-300 42 96 300 36 $26.70 $25.00 $300,000
9 Minster E2-400 48 108 400 36 $30.60 $25.00 $400,000  

Given these data, the rate function rlmn can be calculated for each operation n on 

each machine m for each component l by dividing the number of strokes required per part 

by the machine press speed and adding the load / unload time. In general, rlmn may be a 

function of the design variables xj; however, for simplicity in this case study it is taken to 
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be constant with respect to xj. The time period of interest T is set to one year, 

encompassing 52 weeks, five days per week without holidays, and eight hours per day, 

for a total of 7,488,000 seconds of machine time per machine purchased. So, it is 

assumed that all machines are purchased in full at the beginning of the year for 

production during that year only. This is quite conservative, since most machines in 

industry are purchased with multiple years of production in mind; however, changing 

time periods or including machine leasing or resale options is straightforward. The 

machine constraints glmn are of two types: (1) ensure that the component is small enough 

to fit in the machine bed, and (2) ensure that the machine has sufficient force capacity to 

meet the component force requirements. Both of these conditions are enforced only for 

cases where Vjlmn > 0, as described previously. Specifically, the machine bed constraints 

applied to the cover, base, long lever, short lever, and rack respectively specify that  
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Secondly, the force capacity constraints specify that the machine force is greater than or 

equal to the component required force for each component, operation, and machine, using 

the relevant data from Table  6.1 and Table  6.2. Finally, the market potential s = 5 million, 

as in Chapter 5, and the value of the design parameters y are consistent with Chapter 5. 

6.3 RESULTS 

The ATC hierarchy was solved using as a starting point the solution from Chapter 

5 with a value of zero for all machine purchases κm and time allocations (TM
jm, TD

jm, and 
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TP
jm). The solution was obtained in three stages: First the relaxed problem (omitting 

Eq. (6.3) and Eq. (6.8)) was solved repeatedly while sequentially decreasing the weighting 

coefficient for the profit term of the objective function from 100 to 10-10 by powers of 10, 

solving the entire ATC hierarchy for each weighting value in turn to reach the relaxed 

solution with acceptable inconsistency between subproblems. Next, the penalty functions 

representing the machine feasibility constraints in Eq. (6.8) were added to the objective 

function with penalty terms increasing from 10-10 to 100 by powers of 10, gradually 

forcing the solution out of infeasible regions to achieve the feasible solution. Finally, the 

penalty function forcing κ to integer values (Eq. (6.3)) was added to the objective function 

with a scaling parameter which was similarly increased from 10-10 to 100 in powers of 10, 

gradually forcing κ to integer values and achieving the final feasible integer solution. The 

final resulting solution is not necessarily the global optimum, but it is a local optimum 

near the solution to the relaxed problem. Table  6.3 shows a comparison of the revenue, 

cost, profit, and machine purchase variables at each stage. The revenue, cost, and profit 

of the stage 2 feasible solution are very close to the stage 1 relaxed solution, suggesting 

that the relaxed solution had few bad assignments of components to machines incapable 

of making them, and was very near-feasible in this case. The profit of the final integer 

solution is lower than the stage 2 feasible solution, as expected since the stage 2 solution 

is an upper bound on the final integer solution. However, the resulting profit of the final 

solution is within 0.4% of the relaxed solution; therefore, the result is at least of high 

quality, and likely a global solution. In the first two stages the κ variables are real-valued, 

while in the final solution they are integers. Although the final solution in this case 

appears to be simply a rounding of the relaxed solution for each value of κ, this 

relationship does not hold in general, and alternative values of the parameters in the case 

study yield some solutions where the final integer solution is not equal to a rounding of 

the relaxed solution. 
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Table  6.3: Comparison of relaxed solution with final solution 

STAGE 1 STAGE 2 STAGE 3
Relaxed Soln Feasible Soln Integer Soln

revenue $95,511,000 $95,511,000 $94,762,000
cost $28,124,000 $28,125,000 $27,626,000

profit $67,386,000 $67,387,000 $67,136,000
κ 1 0.00 0.00 0.00
κ 2 23.32 23.33 23.00
κ 3 0.18 0.15 0.00
κ 4 0.88 0.92 1.00
κ 5 0.78 0.78 1.00
κ 6 0.03 0.03 0.00
κ 7 0.05 0.04 0.00
κ 8 0.00 0.00 0.00
κ 9 0.00 0.00 0.00  

The products that result from this optimization are shown in Table  6.4, along with 

their predicted market shares, production volumes, and selling prices. As before, the total 

market share for the line is less than 100% because of the existence of an outside good. 

Differences in design variables between the results in Chapter 5 and Chapter 6 occur 

because, as explained earlier, the design space in this problem does not map one to one 

with the product characteristics space, and multiple product designs exist that yield 

identical product characteristics: The specific design found by the algorithm on any given 

iteration is a matter of chance, but the coordination ensures that at least one feasible 

design exists that can attain the target product characteristics. 

The variables associated with machine purchase and manufacturing allocation are 

provided in Table  6.5, where values near to zero are omitted for readability. In the table, 

the Vjlmn terms are shown in millions of units and the Tjm terms are shown in millions of 

seconds. In the final solution, the time available from purchased machines is allocated to 

the four products via the Tjm terms, and each product allocates its components to the most 

cost-effective available machines via the Vjlmn terms. To check this, observe that in the 

relaxed problem it so happens that the necessary total material, investment, and operating 
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cost associated with executing Vjlmn repetitions of operation n on component l of product j 

with machine m is a linear function of Vjlmn 

 

M I Olmn
j m m lmn jlmn

rc c c r V
T
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⎝ ⎠

. (6.10)  

 

Table  6.6 shows the unit cost of each component and operation on each machine, where 

each shaded cell represents a machine unable to produce a particular component for any 

design variable values (insufficient force). In this linear case, it is easy to identify the 

most efficient machines for each component and operation, and these values are shown in 

bold. Table  6.5 shows that ATC was able to find these machines for efficient allocation. 

Table  6.4: Product line design solution 

1 2 3 4
V M

j (mil) 1.23 1.01 0.91 0.57
Share 25% 20% 18% 12%

z1 292 258 200 258
z2 0.980 1.155 0.924 0.975
z3 140 123 106 140
z4 0.103 0.119 0.121 0.115
z5 1.22 1.37 1.30 1.33
p $24.13 $25.40 $24.57 $30.00
x1 11.78 0.125 9.351 9.846
x2 0.192 11.5 0.809 2.149
x3 3.364 5.981 5.745 3.778
x4 4.754 2.264 2.951 5.068
x5 0.125 0.186 0.125 0.135
x6 147.88 1.00 117.22 97.36
x7 0.50 0.50 0.50 0.50
x8 5.65 5.25 3.66 4.48
x9 0.353 0.766 0.478 0.345

x10 1.052 1.432 0.741 1.349
x11 1.696 1.776 1.696 1.878
x12 9.515 9.721 7.714 9.422
x13 11.71 11.92 9.914 11.68
x14 11.95 10.32 10.73 11.98

PRODUCT (j )
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Table  6.5: Product line manufacturing investment and allocation solution 

j l n 1 2 3 4 5 6 7 8 9
κ 0 23 0 1 1 0 0 0 0

1 0.00 5.68 0.00 0.25 0.20 0.00 0.00 0.00 0.00
2 0.00 4.66 0.00 0.20 0.16 0.00 0.00 0.00 0.00
3 0.00 4.22 0.00 0.18 0.15 0.00 0.00 0.00 0.00
4 0.00 2.67 0.00 0.11 0.09 0.00 0.00 0.00 0.00
1 1 1 0.00 1.23 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1 1 2 0.00 1.23 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1 2 1 0.00 1.23 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1 2 2 0.00 1.23 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1 3 1 0.00 0.04 0.00 0.00 2.41 0.00 0.00 0.00 0.00
1 4 1 0.00 0.08 0.00 2.32 0.05 0.00 0.00 0.00 0.00
1 5 1 0.00 0.01 0.00 1.21 0.00 0.00 0.00 0.00 0.00
2 1 1 0.00 1.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 1 2 0.00 1.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 2 1 0.00 1.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 2 2 0.00 1.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 3 1 0.00 0.04 0.00 0.00 1.97 0.00 0.00 0.00 0.00
2 4 1 0.00 0.08 0.00 1.92 0.01 0.00 0.00 0.00 0.00
2 5 1 0.00 0.01 0.00 0.98 0.02 0.00 0.00 0.00 0.00
3 1 1 0.00 0.91 0.00 0.00 0.00 0.00 0.00 0.00 0.00
3 1 2 0.00 0.91 0.00 0.00 0.00 0.00 0.00 0.00 0.00
3 2 1 0.00 0.91 0.00 0.00 0.00 0.00 0.00 0.00 0.00
3 2 2 0.00 0.91 0.00 0.00 0.00 0.00 0.00 0.00 0.00
3 3 1 0.00 0.05 0.00 0.00 1.78 0.00 0.00 0.00 0.00
3 4 1 0.00 0.08 0.00 1.69 0.05 0.00 0.00 0.00 0.00
3 5 1 0.00 0.01 0.00 0.90 0.00 0.00 0.00 0.00 0.00
4 1 1 0.00 0.57 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4 1 2 0.00 0.57 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4 2 1 0.00 0.57 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4 2 2 0.00 0.57 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4 3 1 0.00 0.04 0.00 0.00 1.11 0.00 0.00 0.00 0.00
4 4 1 0.00 0.08 0.00 1.03 0.04 0.00 0.00 0.00 0.00
4 5 1 0.00 0.01 0.00 0.56 0.00 0.00 0.00 0.00 0.00

MACHINE (m )

T jm
(million

sec.)

V jlmn
(million
units)

 

Table  6.6: Total cost per unit in the relaxed problem formulation 

l n 1 2 3 4 5 6 7 8 9
1 1 $3.093 $2.869 $2.572 $2.555 $2.606 $2.626 $2.884 $3.077 $3.269
1 2 $3.119 $2.890 $2.582 $2.564 $2.617 $2.638 $2.902 $3.101 $3.300
2 1 $2.671 $2.448 $2.152 $2.135 $2.185 $2.206 $2.463 $2.655 $2.847
2 2 $2.694 $2.465 $2.160 $2.142 $2.194 $2.215 $2.478 $2.676 $2.874
3 1 $0.367 $0.326 $0.294 $0.294 $0.299 $0.302 $0.347 $0.371 $0.395
4 1 $0.247 $0.206 $0.174 $0.174 $0.179 $0.182 $0.227 $0.251 $0.275
5 1 $0.157 $0.116 $0.084 $0.084 $0.089 $0.092 $0.137 $0.161 $0.185

MACHINE (m )
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As another check, the total Vjlmn for each component l in Table  6.5 should equal ξl 

times the production volume VM
j listed in Table  6.4. For example, operation 1 of 

component 1 in product 1 has a production volume of 1.23 million on machine 2 in Table 

 6.5 to meet the demand for 1.23 million units of product 1 requested by marketing in 

Table  6.4. The values that nominally deviate are due to inconsistencies between 

subproblems, as discussed in Chapter 3. One limitation of ATC is that when more 

variables are shared, more places are created for the effects of inconsistencies between 

subproblems to build, and it becomes more computationally intensive to resolve 

inconsistencies to tight tolerances. Finally, multiplying rlmn for each operation n and 

component l by the respective production volume Vjlmn values in Table  6.5 and summing 

for a particular product j and machine m yields the total machine time of machine m 

required by product j, which matches Tjm in Table  6.5. 

6.4 CONCLUSIONS 

The ATC methodology was applied to coordinate manufacturing investment 

decisions with marketing and product design decisions. Manufacturing decisions 

typically involve a number of inherently discrete decisions, such as how many machines 

of each type to purchase. Such discrete decisions introduce complexity. In this 

formulation, these discrete decisions were represented by relaxing the problem to a 

continuous space and imposing constraints to enforce solutions with discrete values; 

however, the formulation creates multiple local minima, and local search algorithms 

guarantee only local optimality of solutions. The strategy employed here is to solve the 

relaxed problem and then impose interior penalty functions to achieve a valid solution 

close to the relaxed solution. In the case study this strategy was successful, resulting in a 

final solution with a profitability within 0.4% of the relaxed solution; however, the 

application highlights the need for further research to extend the ATC methodology to 
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problems with discrete variables so that mixed-integer programming can be utilized and 

more complex problems involving manufacturing can be solved.  

The modularity of the ATC methodology allows additional considerations, such 

as the manufacturing subproblem introduced in this chapter, to be added to an existing 

hierarchy without starting from scratch. This modularity provides an opportunity for 

models in various disciplines to be built and used when available and when appropriate to 

the scope of questions of interest with minimal restructuring. 

Finally, there exist alternative ways to decompose the marketing, engineering 

design, and manufacturing subproblems in this example. The formulation presented was 

designed to allocate as much complexity as possible to the engineering design 

subproblems in order to improve scalability to many products: With the inclusion of 

many products, the marketing and manufacturing subproblems grow in dimensionality; 

however, each engineering design subproblem remains constant in size. Additionally, in 

this formulation, as shown in Figure  6.2, the relaxed manufacturing subproblem is linear 

in constraints and quadratic in the objective function, so scalability is well achieved by 

this formulation. Additionally, choice of decomposition was made to minimize the 

number of variables shared among subproblems, improving computational properties. 

However, a more systematic methodology for determining how to decompose systems 

with multiple products for best scalability would be helpful. 

This application of ATC has the potential to bridge gaps between design, 

manufacturing, and business perspectives of product development and production. The 

current model is static in the sense that market share is a deterministic function of the 

product characteristics and price, and demand does not vary over the time period in 

question. A number of potential extensions are possible such as modeling market 

dynamics by considering investment time (Georgiopoulos et al., 2002) and demand 

fluctuation (Asl and Ulsoy, 2002a,b), or by including considerations of product life cycle 

economic modeling (Birge et al., 1998), buyer-supplier relationships (Chick et al., 1997), 
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machine system configuration and adaptability (Maier-Speredelozzi and Hu, 2002; Zhong 

et al., 2000) and machine reconfiguration (Koren et al., 1999).  
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CHAPTER 7  
 

SOCIAL PREFERENCES: 
THE EFFECTS OF REGULATION POLICY IN A COMPETITIVE MARKET 

The preceding chapters have considered modeling of preferences and design 

decisions from the perspective of a profit-seeking firm. Profit-seeking firms operate 

within a competitive, regulated marketplace, and the interactions of players in the market 

lead to specific decisions. In the literature, the ubiquitous objective of design is to “meet 

needs” of the user/consumer; however, profit-seeking enterprises, particularly 

corporations, are only driven to meet needs insofar as doing so is financially profitable. 

If, as designers, we are truly concerned about the degree to which our decisions meet 

needs and the way in which our decisions resolve conflicting stakeholder preferences, we 

should not take it for granted that the market system will resolve these tradeoffs perfectly 

and naturally.  

In general, it is not simply profit for shareholders that drives designers: It is the 

desire to improve the world around us, and to the degree that markets accomplish this 

goal, we should use them as a tool. However, in theory and in practice, markets are not 

always aligned with public preferences (Chomsky, 1999). Regulation is used to constrain 

and direct markets to prevent great harm to society. From antitrust laws to environmental 

legislation to minimum wage, child labor, and safety laws, regulation is one corrective 

method used to ensure that a society organized around private property, private 

enterprise, and capital accumulation does not neglect social justice or self destruct. This 

is of utmost importance to design engineers interested in considering and modeling 

people’s preferences because individuals as individuals acting in their own perceived 
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short-term best interests have different preferences than those same individuals acting as 

part of a large, complex social system (Schumacher, 1973). The engineer’s responsibility, 

as reflected in the codes of professional organizations such as the National Society of 

Professional Engineers (NSPE, 2004) the American Society of Mechanical Engineers 

(ASME, 2004), and the Institute of Electrical and Electronics Engineers (IEEE, 2004), is 

to both their professions and to the public, who put trust in engineers to make decisions 

that require technical training and analysis with the interests of the public in mind. 

Therefore, in pursuit of methods for modeling and coordination of stakeholder 

preferences with engineering design decisions, examination of the public interest is 

required.  

One method for acting on public preferences is through legislation introduced and 

passed by elected representatives. While engineers traditionally have had relatively little 

involvement in the dialogue about such legislation, the resulting decisions affect 

engineering work directly. For example, recent environmental legislation, such as the 

European Union Directive on End-of-Life Vehicles and the Japanese Home Electric 

Appliances Recycling law, has had a major influence on product design from both an 

engineering and an economic perspective. By studying the interactions of markets and 

regulation with design decisions, engineers can improve their capability to predict 

consequences of their actions, and therefore can contribute meaningfully to the dialogue 

regarding legislation that directly affects the design process as well as the degree to 

which that process is aligned with the public interest. 

This chapter presents a methodology for studying the effects of automobile fuel 

efficiency and emission policies on the long-term design decisions of profit-seeking 

automobile producers competing in an oligopoly market. Mathematical models of 

engineering performance, consumer demand, and manufacturing costs are developed for 

a specific market segment, and game theory is utilized to simulate competition among 

firms to predict design choices of producers at market equilibrium. Several policy 
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scenarios are evaluated for the small car market, including corporate average fuel 

economy (CAFE) standards, carbon dioxide (CO2) emissions taxes, and diesel technology 

quotas. The ability to compare regulations and achieve realistic trends suggests that 

including engineering design and performance considerations in policy analysis can yield 

useful predictive insight into the impact of government regulations on industry, 

consumers, and the environment. The material in this chapter is based on publications by 

Michalek, Papalambros and Skerlos (2005). 

7.1 INTRODUCTION 

In automotive manufacturing, profitability depends upon a vehicle’s engineering 

performance and cost, as well as its appeal to consumers and the regulatory restrictions 

imposed by government. In this investigation, each of these points is considered and the 

impact of regulatory fuel-economy and emissions policies on the design decisions made 

by profit-seeking producers is evaluated. 

Automobile producers provide private goods (vehicles) for private profit 

(investors), but externalities (emissions) are generated with costs that are publicly shared. 

For example, costs associated with driving high-emission vehicles in the southern coast 

of California can generate pollution costs estimated at $10,000 or more per year (Dixon, 

Garber, and Vaina, 1996). Despite regulatory enforcement over the past three decades, 

vehicle emissions still significantly impact U.S. air quality, accounting for up to 95% of 

city CO emissions, 32% of NOx emissions, and 25% of volatile organic compound 

emissions (US EPA, 2001). These emissions create smog, increase atmospheric 

greenhouse gas concentrations, create human health risks, and damage agricultural, 

ecological, and urban infrastructure systems. Since the market in which goods are traded 

does not automatically provide individual incentives to reduce publicly shared 

environmental damage (the “tragedy of the commons”; Hardin, 1968), government 
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regulatory policies have been imposed on vehicles at both national and state levels to 

provide emission reduction incentives. Examples include the Clean Air Act (US EPA, 

1990), which regulates tailpipe emissions, corporate average fuel economy (CAFE) 

standards (US Congress, 1975), which require vehicle fleets to meet target average fuel 

efficiencies, and quotas for “cleaner” vehicles, such as California’s “zero emissions 

vehicle” (ZEV) regulation. While National Ambient Air Quality Standards established by 

the Clean Air Act still have not been achieved in many major U.S. cities, recent attempts 

to regulate further the vehicle design process toward producing “cleaner” vehicles have 

had only limited success. One example is California’s attempt to achieve 10% sales in 

ZEVs from its top seven automotive manufacturers by 2003 (Dixon, Garber and Vaina, 

1996). The ZEV technology quota policy has suffered from the high cost (average 

purchase cost of $35,000) and poor range (approximately 90 miles) of electric vehicles 

(Gardner, 1996), resulting in limited consumer appeal. The policy is now under review, 

with low polluting gasoline and highly fuel efficient gasoline-electric hybrids likely to 

comprise the bulk of the 10% quota (Associated Press, 2003). The example demonstrates 

the importance of simultaneously considering technology capabilities, costs, and 

consumer preferences when developing environmental policies. 

In this chapter, a quantitative methodology is developed for considering 

engineering design performance and constraints, producer objectives, consumer choice, 

and competition among producers in the analysis of environmental policy. This 

methodology permits specific policies to be analyzed in the context of their impacts on 

consumers, producers, and total air quality, leading to estimates of cost and effectiveness 

for different environmental policies under consideration.  
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7.2 BACKGROUND 

Policy research related to the automotive industry has focused primarily on the 

effects of changing CAFE standards. One such study by the National Academy of 

Sciences (2002) identified technologies that could be implemented in all vehicles today, 

including estimated cost and fuel savings associated with each technology. Specifically, 

the effects of incremental changes in CAFE standards on vehicle price, performance, 

demand, and product mix were evaluated. While external factors such as gasoline price 

were also included in the assessment, the report considered only the inclusion of new 

technologies in existing engines. Longer term options to change new vehicle design 

decisions were not considered. The same is true for a recent European Union report on 

the Auto-Oil II Programme, which targets reductions in automobile emissions (2000). In 

the report, future vehicle emissions levels were forecast as functions of fuel quality using 

atmospheric emissions and impact models. Although alternative emissions policies were 

evaluated for their economic efficiency in reducing emissions, the option for producers to 

change design decisions in response to policy was not considered.  

A different study by Greene and Hopson (2003) examined the impact of various 

regulatory strategies on average fuel economy using a mathematical programming model. 

Regulatory options included raising the CAFE standard, making a fuel-economy standard 

voluntary, and creating a weight-based metric. Although regulatory options were 

evaluated in the context of their impact on producers and consumers, the market positions 

of manufacturers were taken as constant, and few longer-term design changes were 

considered.  

While these previous models analyze important aspects of emissions policies, 

there are opportunities to extend their scope of consideration. Previous investigations 

assume each manufacturer will maintain its current product mix, making only 

incremental technology improvements to existing products (e.g., direct injection, variable 
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valve timing, etc). In contrast, this chapter provides an economic oligopoly analysis 

where each firm designs its product mix, changing design variables in response to 

regulations and competition. Previous studies also rely on assumptions about consumer 

willingness to pay for increased fuel economy rather than using attribute-based consumer 

choice models derived from past purchase data. This chapter uses an optimization 

framework to integrate quantitative models for each component, including emissions, 

engineering design, cost, consumer demand, and producer profit. The framework is 

modular and hence allows for the substitution of alternative models for any of the various 

models employed in this study. Moreover, the producers in this investigation are abstract; 

that is, the results obtained do not apply to a specific producer’s actions, but rather 

represent the general market trend created by government incentives. Therefore the 

model created here is able to evaluate trends of cost and effectiveness created by 

alternative policies that aim to reduce automobile emissions through improved fuel 

economy.  

The remainder of this chapter proceeds as follows. Section  7.3 describes the 

proposed policy analysis methodology, including the development of individual models 

for engineering performance, consumer demand, cost, producer profit, and regulation. 

The models are utilized to establish oligopoly market competition between firms, where 

policy impacts are analyzed at Nash equilibrium. The results of the investigation are 

summarized in Section  7.4.  

7.3 METHODOLOGY 

While it is possible to use ATC as before to coordinate this problem, ATC is 

abandoned here because of the relatively simple design variable and product 

characteristic space. For simplicity, a single optimization loop is used instead to optimize 

the decisions of a single profit-seeking firm, and the scope of focus is extended to include 



 191 

competition and regulation effects. Similarly, while it is possible to use a heterogeneous 

Bayesian model of demand, as in Chapter 5, a simple aggregate logit model from the 

literature is used here for simplicity. 
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Figure  7.1: Overview of the modeling framework 

The general modeling framework used to capture producer and consumer 

behavior in this study is shown in Figure  7.1, where individual analysis models are shown 

as black boxes. As before, producers are assumed to make product design and production 

decisions that maximize profit, and consumers are assumed to choose from the available 

alternatives those products that have maximum utility based on a model of their 
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preferences. New components include modeling the effects of competitor products, which 

compete for market share, and regulation policy, which can influence these decisions by 

imposing penalties and incentives toward the modification of producer and consumer 

behavior. This investigation considers several policy scenarios that have direct impact on 

producer behavior such as CAFE standards, carbon dioxide (CO2) emissions taxes, and 

diesel technology quotas. 

In this framework, each producer k decides on a set of designs to produce Jk 

including design decisions, prices, and production volumes for each design. Design 

topology τ and design variables x (such as engine size) determine product characteristics 

z (such as fuel economy), calculated using an engineering performance analysis model. 

Design variables, production volume V, and regulation penalties cR also determine 

producer cost c, calculated by the cost analysis model. The set of competitors’ designs {J 

– Jk} are viewed by producer k as static parameters, and consumers make purchasing 

choices among the set of producer and competitor products J based on product 

characteristics and prices p. Purchasing choices determine demand for each design q 

calculated by the demand model, and resulting profits Π are calculated in terms of p, q, 

and c. Resulting profit is used as the objective function for producer k’s optimization 

model, and the dotted line in Figure  7.1 represents the feedback loop for iterations of the 

optimization algorithm. The optimization model represents each producer’s attempt to 

maximize profit by making the best design, pricing, and production decisions. 

Government regulation can influence this process by imposing penalties on producers, 

thereby affecting production costs and design decisions. Note that this study is limited to 

government regulation directly affecting producers without impacting consumer behavior 

such as driving habits or preference structures. 

In the present model, all producers are profit driven, so production volume will 

equal product demand at an optimum. This assertion is valid for continuous demand 

functions with negative price elasticities since any producer who wishes to produce a 
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lower volume of a product (for example, because of capacity constraints or marginal cost 

curves) has no incentive to produce less volume than that for which there is demand. 

Instead, the producer can simply raise the price until demand is lowered to the desired 

production volume, so it is assumed that Vj = qj from this point forward.  

The objective of each producer is modeled as profit maximization (Π, revenue 

minus cost) subject to engineering constraints as follows, 
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Profit for each producer is calculated as a function of the producer decision 

variables by combining the engineering performance, consumer demand, cost, profit, and 

regulation models described in Sections 3.1–3.5. The size nk of the set Jk, is a variable in 

this formulation. For a fixed nk and fixed engine types τj for each vehicle, the model 

(Eq. (7.1)) is a smooth, continuous optimization formulation that can be solved with 

gradient-based methods. To take advantage of this property, separate optimization runs 

are formulated for each combinatorial set of nk ∈{1, 2, … , nmax} and τj ∀j∈Jk, and 

gradient-based methods are used to determine the optimal solution for each value of nk. 

The most profitable solution among these cases is then taken as the optimum solution.  

While this modeling framework is presented as a single loop of sequential 

computation solved all-at-once, it is possible to break the problem into smaller pieces 

using multistage approaches (Li and Azarm, 2000, 2002) or decomposition and 

coordination optimization methods such as collaborative optimization (CO) (Balling and 

Sobieszczanski-Sobieski, 1994) and analytical target cascading (ATC) (Kim, 2003), as in 

previous chapters. 
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7.3.1 Engineering Performance Model 

The engineering performance model takes design decisions xj as input and 

predicts performance characteristics zj that can be calculated for each design j. Several 

analysis models were explored for vehicle modeling, and ADVISOR (Markel et al., 

2002; Whitehead, 2001) was chosen because of its availability and appropriate level of 

detail for this study. ADVISOR contains models for conventional, electric, hybrid 

electric, compressed natural gas, and fuel cell vehicles. Experimentally-derived engine 

maps are used to estimate fuel economy and emissions characteristics across engine 

operating conditions. The vehicle is simulated through a driving cycle, and fuel economy, 

performance characteristics, and vehicle emissions are calculated for the cycle.  

In this study, vehicles are assumed to differ only by engine design, so the default 

small car vehicle parameters were used in all simulations (based on the 1994 Saturn 

SL1), and only engine variables were changed. ADVISOR offers a set of nine gasoline 

and eleven diesel engine types. Each engine type has a base size bτ, corresponding to the 

power output of a tested engine, which can be scaled to predict performance of larger or 

smaller engines. (ADVISOR allows scaling parameters between 0.75 and 1.50). The EPA 

Federal Test Procedure (FTP-75) driving cycle was used for all simulations. Two engine 

types, τ = {SI102, CI88}, were utilized in this study with two design variables: the engine 

scaling parameter x1 in the range [0.75, 1.50], and the final drive ratio x2 in the range [0.2, 

1.3]. The computed outputs (performance criteria) include the gas mileage (gasoline 

equivalent) z1 in miles per gallon (mpg) and the time to accelerate from 0 to 60 mph, z2, 

in seconds. The engine type τ = SI102 refers to a spark ignition (gasoline) engine with 

bSI102 = 102kW based on the 1991 Dodge Caravan 3.0L engine, while τ = CI88 refers to a 

compression ignition (diesel) engine with bCI88 = 90.5kW based on an Audi 2.5L engine. 

Other engine types were explored but turned out to be oversized or undersized for this 
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study. For a particular choice of engine type τ, ADVISOR acts as a function fτ mapping x 

to z: 

 
( )fτ=z x  (7.2)  

 

where z = [z1, z2]T, and x = [x1, x2]T. ADVISOR simulations were computed for evenly 

spaced points in a 13 by 19 point grid covering the ranges of x1 and x2 respectively for 

each engine type, and the responses were used to create a set of surface splines as 

surrogate models for ease of computation during optimization. Sample contour plots of 

the simulation results are shown in Figure  7.2. 
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Figure  7.2: ADVISOR simulation result contour plots 

7.3.2 Consumer Demand Model 

The consumer demand model is based on discrete choice analysis (DCA), which 

presumes users make purchasing decisions based on the utility value of each product 

option. Utility u is measured in terms of an observable deterministic component v, which 

is taken to be a function of product characteristics, and a stochastic error component ε. 
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The probability Pj of choosing a particular product j from the set ϑ is calculated as the 

probability that product j has a higher utility value than all alternatives.  

 
( )Pr ;j j j j jP v v jε ε′ ′ ′= + ≥ + ∀ ∈ J  (7.3)  

 

Various probabilistic choice models follow the DCA approach, including the logit 

model (McFadden, 1976) and the probit model (Currim, 1982). As before, assuming the 

double exponential distribution for the ε terms in Eq. (7.3), the probability Pj of choosing 

alternative j from set J is computed (Train, 2003) as 
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Each utility function vj depends on the characteristics zj and the price pj of design 

j. Given a functional form for vj(zj) based on observed data, regression coefficients are 

found such that the likelihood of generating the sample data with the model is 

maximized. For example, Boyd and Mellman (1980) fit a simple logit model to 

automotive sales data based on price, fuel economy, and acceleration (among other 

vehicle factors). After an analysis of several other vehicle choice models (Berkovec, 

1985; Brownstone et al., 2000; Goldberg, 1996; Manrai, 1995; Wojcik, 2000; Yee, 

1991), the Boyd and Mellman model was chosen for this study for the following reasons: 

• The model is based on product characteristics that can be related to engineering 

design, as opposed to consumer demographics. 

• The independent variables include the vehicle’s price, fuel economy, and 

acceleration, which match the characteristics predicted by the engineering 

performance model under consideration in this study. 
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• The model was fit to a large volume of annual market data and validated using 

data from a subsequent year. 

 

The utility equation developed by Boyd and Mellman10 is:  

 

1 2 3
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100 60
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 (7.5)  

 

where β1 = -2.86⋅10-4, β2 = -0.339, β3 = 0.375, pj is the price of vehicle j, z1j is the gas 

mileage of vehicle j, and z2j is the 0-60 mph acceleration time of vehicle j. Although 

several other variables were included (e.g., vehicle style, noise, and reliability), these 

variables were assumed constant across all vehicles for this study. Since logit choice 

predictions depend on the differences between utility values, factors that are constant 

across alternatives do not affect predictions of choice, and they can be ignored. Other 

factors, such as advertising, promotions, aesthetics, and brand image were also assumed 

equal across alternatives. While the Boyd and Mellman demand model is adequate for a 

preliminary analysis, it does introduce several sources of error: 

• The model was fit to purchase data from 1977-1978.  

• The model utilizes purchase data only; consumers who chose not to purchase 

vehicles were not studied. Thus, we can predict only which vehicles consumers 

will purchase, not whether they will purchase, and the size of the purchasing 

population is treated as fixed, independent of vehicle prices (i.e., there is no 

outside good).  

                                                 
10 The coefficients β1 and β2 were assumed here to be negative, even though they are listed as positive in the 
Boyd and Mellman article. In the text the authors describe the variables as having a negative relationship 
even though all coefficients are listed as positive in the regression summary.  
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• The model is an aggregate model, and therefore it does not account for different 

segments or consumer groups. 

• The use of the logit model carries with it a property called independence from 

irrelevant alternatives (IIA), which implies that as one product’s market share 

increases, the shares of all competitors are reduced in equal proportion (Train, 

2003). For example, a model with the IIA property might predict that BMW 

competes as equally with Mercedes as with Chevrolet. In reality, different 

vehicles attract different kinds of consumers, and competition is not equal. In this 

investigation, predictive limitations of the IIA property are mitigated since the 

model is applied only to the small car market (a relatively homogeneous market) 

rather than to the entire spectrum of vehicles. 

The demand model above was developed by Boyd and Mellman to study the 

effects of fuel economy standards on the market, and it should be sufficient to capture the 

trends important in a general analysis, even if the numbers vary for today’s consumers. 

For the purposes of this study, the assumption was made that the size of the car-buying 

population S is 1.57 million people. This figure is based on 11 million people that bought 

cars in 1977 (US Dept. of Transportation, 2001) and an assumption that the size of the 

small car market was about 1/7 of the total market11. The Boyd and Mellman model was 

then applied to the small car sub-market, with recognition that this could introduce 

additional error since the model was developed based on the entire car market. Using the 

logit model with a fixed market size S, the demand qj for product j is 
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11 Further research indicated that a better estimate of the size of the small car market may be 2/7 of the total 
market (US Dept. of Energy, 2001) 
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where vj is defined by Eq. (7.5). 

7.3.3 Cost Model 

Production cost is modeled as a function of the vehicle design, and all producers 

are assumed to have the same manufacturing cost structure. In practice, differences in 

equipment, assets, suppliers, and expertise exist between manufacturers. However, 

assuming consistent production cost structures across manufacturers is appropriate for 

oligopoly analysis, and it is useful to analyze trends even if individual numbers differ 

between firms. In this analysis, the total cost to manufacture a vehicle cP is decomposed 

into two components: the investment cost to set up the production line cI and variable 

cost per vehicle cV. The variable cost is comprised of the cost to manufacture the engine 

cE and the cost to manufacture the rest of the vehicle cB, so that cV = cB + cE. The cost to 

manufacture q units of a vehicle with topology τ and design variables x is then 

 
( ) ( ) ( )( )P I V I B E, , ,c c qc c q c cτ τ τ= + = + +x x x  (7.7)  

  

where it is assumed that cB = $7500 for all vehicles based on data for the Ford Taurus 

(Delucchi and Lipman, 2001), and cI = $550 million per vehicle design for all 

manufacturers based on an average of two figures for new production lines (Whitney, 

2001). The cost to manufacture an engine is modeled as a function of engine power, as 

determined by a regression analysis of data obtained from manufacturing, wholesale, and 

rebuilt engine costs (American Speed Enterprises, 2003; E Diesels, 2003; Ford Motors, 

2003; Hardy Diesels, 2003; National Engine, 2003; Rebuilt Auto Car Engines, 2003). 

Wholesale and rebuilt engine prices were assumed to be close to manufacturing prices, 

and these data fit the curve well. The resulting functions are, 
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where β4 = 670.51, β5 = 0.0063, β6 = 26.23 and β7 = 1642.8. These functions are plotted 

in Figure  7.3, and all designs considered in this study fall within the range of the data. As 

expected, the cost associated with manufacturing diesel engines is higher than for 

gasoline engines. It is possible that increased diesel production volumes would change 

this cost structure, but this possibility was not explored in this study. Although both cost 

regression models rely on maximum engine power as the only dependant variable, Figure 

 7.3 demonstrates that the regressions fit the data well and predict realistic cost trends.  
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Figure  7.3: Manufacturing cost for SI and CI engines 

The total cost to producer k is the sum of the production costs for each vehicle in 

k’s product line and the regulation cost cR, as described in Section 3.5. 
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7.3.4 Profit Model 

The profit model for each producer k is calculated simply as revenue minus cost: 
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where cR
k is the regulation cost for producer k (defined in Section 3.5). The model 

assumes that all transactions happen instantaneously without consideration of the time 

value of money, opportunity costs, or changes in production loads over time. Demand is 

predicted over the course of one year, with all costs and revenue occurring during that 

year. The inclusion of dynamic time considerations brings with it a plethora of 

uncertainties and issues that are difficult to model, and is therefore left for future 

consideration. Note that it is assumed that the investment cost cI is completely paid 

during this year. In practice, the investment cost associated with designing and building 

production lines and planning supply chains is spread over several years with only minor 

changes to the vehicles during those few years, implying that this model will tend to 

over-predict investment cost. 

7.3.5 Regulation Policy 

Four producer penalty policies were used to define cR: the no-regulation base case 

(cR = 0), CAFE standards, CO2 emission taxes, and diesel vehicle sales quotas. Each of 

these policies applies a penalty cost to the producer as a function of the fuel economy, 
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emission properties, or fuel type of the producer’s vehicles. The specific applications of 

the penalty policies are described below. 

 

Corporate Average Fuel Economy (CAFE) 

CAFE regulations establish minimum average fuel economy standards that each 

producer’s vehicle fleet must meet to avoid penalties. To define a CAFE policy, both the 

fuel economy standard and the penalty must be specified. In this study, only a single 

market segment is utilized, although CAFE regulations in the United States apply to all 

passenger vehicle markets in which the producer operates. (Multiple market segments are 

left for future consideration.) The current CAFE fuel economy standard for cars, zCAFE = 

27.5 mpg, was used here, and two different penalty charges were explored: the current 

standard, ρ = $55 per vehicle per mpg under the limit, and a hypothetical double-penalty 

scenario. Additional future credit for vehicle fleets with average fuel economies greater 

than the standard was not modeled. The total cost incurred by design j is therefore 

ρqj(zCAFE – z1j), where ρ is the penalty, qj is the number of vehicles of type j that are sold, 

zCAFE is the CAFE limit, and z1j is the fuel economy of vehicle j. The total regulation cost 

to producer k is then 

 

( )R
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CO2 Emission Tax 

A vehicle emission valuation study (Matthews and Lave, 2000) was used to 

estimate the economic cost to society associated with environmental damage due to the 

release of each ton of CO2. Using this valuation, a tax can be imposed on the 

manufacturer based on the estimated lifetime CO2 emissions of each vehicle sold due to 
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the burning of hydrocarbon fuel. Tax per vehicle sold can be calculated as υdατ/z1, where 

υ is the dollar valuation of a ton of CO2, d is the number of miles traveled in the vehicle’s 

lifetime, α τ is the number of tons of CO2 produced by combusting a gallon of fuel for 

engine type τ, and z1 is the fuel economy of the vehicle. The total regulation cost to the 

producer in this study is 
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where d = 150,000 miles, ατ is 9.94⋅10-3 tons CO2 per gallon for gasoline or 9.21⋅10-3 tons 

CO2 per gallon for diesel fuel (Bohac and Jacobs, 2002), and the value of υ was varied 

from $2/ton to $23/ton with a median estimation of $14/ton.  

Diesel Fuel Vehicle Sales Quotas 

As a regulation method, quotas can be used to force more costly alternative fuel 

vehicles into the market (Associated Press, 2003). In this case, a hypothetical policy is 

considered that introduces a large penalty cost for violation of a quota on percent diesel 

sales as a way to enforce adoption of a higher fuel efficiency vehicle alternative. Diesels 

were selected due to data availability, their competitive fuel efficiency and acceleration 

characteristics, and their similarity to gasoline engines in unobserved characteristics such 

as range and existence of supporting infrastructure, which allows application of the 

demand model without introducing large errors. It is left for future work to consider 

regulation of emissions such as NOx and particulate matter, which tend to be larger in 

diesel engines and which play a significant role in determining environmental tradeoffs 

between diesel and gasoline engines in practice. The regulation cost is modeled as 

 
( )( )( )( )R SI SI CImax 0, 1k k k kc q q qρ φ= − − +  (7.13)  
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where ρ is the penalty per gasoline vehicle over quota ($1000), φ is the minimum diesel 

percentage required by the quota (40%), qSI
k is the total number of spark ignition 

(gasoline) engines sold by producer k, and qCI
k is the total number of compression 

ignition (diesel) engines sold by producer k. 

7.3.6 Nash Equilibrium Solution Strategy 

In a free market, manufacturers have economic incentives to produce and sell 

products only if there is an opportunity to make profit within the competitive market.  To 

account for competition in the design of vehicles subject to government regulations, 

game theory was used to find the market (Nash) equilibrium among competing 

producers. In game theory, a set of actions is in Nash equilibrium if for each producer k = 

1, 2, ... , K, given the actions of its rivals, the producer cannot increase its own profit by 

choosing any action other than its equilibrium action (Tirole, 1988). In the absence of a 

cartel agreement or strategic dynamic actions, game theory predicts that the market will 

stay stable at this point. It is assumed that this market equilibrium point can provide a 

reasonable prediction of which designs manufacturers are driven to produce under 

various regulation scenarios. It should be noted however that the Nash equilibrium does 

not model preemptive competitive strategies by producers. Instead, it assumes that each 

producer will move to increase its profit while treating competitor decisions as constant. 

In order to search for the equilibrium point, an algorithm was employed in which 

each producer separately optimizes its own profit while holding all competitor producer 

decisions constant. Each producer’s optimization model is solved sequentially, and the 

process is iterated across producers, in turn optimizing and updating each producer’s 

decisions until all producers converge. Then, a parametric study on K is used to 
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determine the largest value of K that produces a Nash equilibrium with positive producer 

profits, and this point is taken to be the market equilibrium. 

Using the models developed in Sections  7.3.1 -  7.3.5, each producer k will 

individually attempt to maximize profit by solving the following optimization problem, 
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where s = (11/7)⋅106, β1 = -2.86⋅10-4, β2 = -0.339, β3 = 0.375, β4 = 670.51, β5 = 0.0063, β6 

= 26.23, β7 = 1642.8, bSI102 = 102kW, bCI88 = 90.5kW, cB = $7500, cI = $550⋅106, and cR
k 

is defined by Eq.  (7.11), Eq.  (7.12), Eq.  (7.13) or zero, depending on which regulation 

scenario is used. For each producer, competitor products are represented by the set {J – 

Jk}, and are considered fixed parameters that affect demand (Eq. (7.6)). The first two 

constraints represent limits on the ability to model variables outside these ranges rather 

than physical feasibility limits. If these constraints were active, it would represent an 

inability to model the optimum solution (Papalambros and Wilde, 2000). However these 

constraints were not active in any of the results, indicating that the optima discussed here 

are all interior optima and the solutions are valid. 
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Despite the computational savings gained by creating surrogate models of the 

engineering performance simulations (splines), the computational burden is still 

significant. For each producer, separate optimization runs must be computed to determine 

which combination of vehicles is best for the product line. This combinatorial set of 

optimization problems is computed for each producer, and each producer model is then 

iterated several times in the Nash equilibrium solution strategy. In order to reduce the 

computational burden, the number of deigns per producer was limited to a maximum of 

two (nmax = 2). It was shown that this assumption was reasonable because results of all 

runs indicate that each producer manufactures only one design, implying that there is a 

lack of incentive to produce multiple designs (except for the quota regulation case where 

each producer manufactures both an SI and a CI engine). 

7.4 RESULTS AND DISCUSSION 

The results of the investigation are summarized in Table  7.1, with a graphical 

summary of the resulting fuel economy and regulation cost per vehicle provided in Figure 

 7.4. For each regulation scenario, the table shows the maximum number of producers K 

that yields a positive-profit Nash equilibrium and the market share per producer design. 

The use of the aggregate demand model results in each producer making the same 

decisions at market equilibrium, so Table  7.1 summarizes the decision variables, product 

characteristics, costs, and profits for a typical producer in each scenario. The fact that all 

producers are driven to produce the same vehicle design facilitates comparison of the 

trends that result from each regulation scenario. Additionally, at equilibrium each 

producer manufactures only a single design rather than a product line (except in the quota 

case). This result could be changed by modeling cost savings due to economies of scope 

(Panzar and Willig, 1981), possible commonality among designs (Fellini, 2003), and the 

use of a heterogeneous model for demand, as in Chapter 5. From Table  7.1, it is also 
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evident that the model predicts equal profits for all regulation scenarios (except the quota 

case), and all incurred costs are passed to the consumer at equilibrium. This is because 

the demand model assumes a fixed car-buying population (there is no option not to buy) 

and does not consider the utility of outside goods.  
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Figure  7.4: Resulting vehicle gas mileage and regulation cost per vehicle under each 

policy 

It is important to take care when interpreting results of an optimization study that 

is based on a demand regression model. Even if the demand model succeeds in capturing 

important trends in consumer purchasing preferences according to measurable 

characteristics, the metrics do not capture purchasing criteria entirely, as the model 

ignores unmeasured and unobservable characteristics. For example, the model used in 
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this study predicts a preference for vehicles with faster acceleration; therefore, a vehicle 

that dramatically sacrifices unmeasured characteristics such as maximum speed for a 

slight improvement of acceleration time will be preferred according to the model. 

However, in practice a consumer would observe the unmeasured limitations during a road 

test, especially if the limitations are extreme. To check for this issue, each optimum 

vehicle design was tested to ensure the vehicle’s ability to follow the standard FTP 

driving cycle and achieve a speed of at least 110mph on a flat road. All vehicle designs in 

the study passed this test. 

Table  7.1: Nash equilibrium results for each regulation scenario 

  Regulation Type 
  No Reg. Low CO2 Med. CO2 High CO2 CAFE 2·CAFE Quota 

# Producers K 10 10 10 10 10 10 5 
Market share q/s 10.0% 10.0% 10.0% 10.0% 10.0% 10.0% 11.9%  8.1% 
Engine type M SI SI SI SI SI SI SI CI 
Engine size bMx1 127.9 127.7 114.3 110.3 113.3 88.4 127.9 98.0 

FD ratio x2 1.28 1.28 1.28 1.27 1.28 1.29 1.28 0.88 
Price p $12,886 $13,031 $13,719 $14,259 $13,058 $12,772 $13,372 $16,083 

Gas mileage z1 20.2 20.3 21.8 22.4 22.0 25.5 20.2 29.8 
Accel. time z2 7.46 7.46 7.93 8.10 7.97 9.29 7.46 7.84 

Investment cost cI $550 mil $550 mil $550 mil $550 mil $550 mil $550 mil $550 mil $550 mil 
Var. cost/vehicle cV $9,001 $8,999 $8,878 $8,844 $8,869 $8,670 $9,001 $11,713 
Reg. cost/vehicle cR/q $0 $147 $956 $1,530 $304 $217  $0 $0 

Profit Π $60.5 mil $60.5 mil $60.5 mil $60.5 mil $60.5 mil $60.5 mil $276 mil $6.5 mil 
  

7.4.1 Base Case 

As a comparative baseline, the no-regulation case was first analyzed (cR = 0). 

Without regulation, the model predicts ten producers in the small car market. Each 

producer manufactures a single vehicle with design variables, product characteristics, and 

costs shown in Table  7.1. 
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7.4.2 Corporate Average Fuel Economy (CAFE) 

Table  7.1 shows that the CAFE regulation results in increased fuel efficiency at a 

lower manufacturing cost relative to the base case; however, performance is sacrificed, 

and regulatory costs are incurred (see Figure  7.4). The “2•CAFE” case represents a 

hypothetical doubling of the penalty for CAFE violation, which resulted in improved fuel 

economy, reduced regulation costs, and reduced vehicle prices relative to CAFE. It was 

as if an occult hand had intervened to turn an increased penalty into cost reduction 

(Greenberg, 2004). In both cases, it is predicted that it is profitable for manufacturers to 

violate CAFE standards and take the penalty in order to increase market share. The model 

indicates that full compliance with CAFE is dangerous for producers because competitors 

can produce larger engines, which are in high demand, and capture market share. 

However, when CAFE penalties are increased, there is less danger of losing market share 

to a competitor who sells more powerful engines because all producers are subject to a 

more stringent penalty. Therefore all producers design smaller, cheaper engines with less 

risk. 

In practice, many producers do not currently accrue CAFE penalties and instead 

treat the CAFE standard as a constraint (Georgiopoulos et al., 2002). One reason for this 

is the non-modeled extra costs to the producer caused by violation, such as damage to the 

producer’s reputation (which could affect demand), public and government relations, as 

well as making future compliance more difficult. The results of this study suggest that 

these non-modeled aspects may provide significant incentives worthy of further 

consideration. 

7.4.3 CO2 Emissions Tax 

Comparing the CO2 emissions tax to the base case, several trends can be 

observed. As the tax increases, producers tend to design smaller, more fuel-efficient 
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engines while transferring the added regulation cost to the consumer through an increased 

vehicle price (Figure  7.4). A low valuation penalty ($2/ton) has little effect on fuel 

efficiency with the only significant effect being added regulation costs that are in turn 

passed on to consumers. The median valuation ($14/ton) has a larger impact, increasing 

fuel-efficiency by 3.3 mpg, while the high valuation ($22/ton) adds only slight 

improvement in fuel economy at a substantial regulation cost increase over the median 

case. These trends predict reasonable real-world scenarios, since regulation provides an 

incentive to produce smaller, more fuel-efficient engines. However, in practice such 

increases in vehicle costs could lower the demand and sales of vehicles relative to other 

modes of transportation or other market segments.  

7.4.4 Diesel Fuel Sales Quota 

In the quota policy, producers were forced to offer diesel engines as a minimum 

percentage of their vehicle fleet (φ = 40%). The results indicate that producers follow this 

regulation strictly to avoid expensive penalties, producing exactly the minimum required 

percentage of diesels in their product mix. Since each producer manufactures two vehicle 

designs, fewer producers result at the market equilibrium. 

7.5 CONCLUSIONS 

This chapter presented a methodology for analyzing the impact of fuel economy 

regulations on the design decisions made by automobile manufacturers. The approach 

integrates models for engineering design, production cost, consumer demand, producer 

profit, and producer competition toward predicting the impacts associated with different 

policies that aim to improve fuel economy. Several trends were observed in the policy 

scenarios examined in this study. One notable observation is that increased regulation 

penalties can result in cost savings for all parties (e.g., in CAFE scenarios): Without a 
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regulatory standard, producers cannot afford to make smaller, cheaper engines due to 

competition; however, when all producers are subject to the same regulation costs, then 

all producers are driven to produce smaller engines with less risk. On the other hand, 

increased regulation penalties can also lead to diminishing returns in fuel economy 

improvement with increased regulation penalties (e.g., CO2 taxation). The observed 

trends indicate that the cost-benefit characteristics of a given policy can be modeled in a 

realistic way, and that a holistic integration of costs, performance, consumer preference, 

and competition may be helpful for evaluating and selecting environmental policies, as 

well as for choosing regulatory parameter values.  

The study also shows that regulation is necessary to provide incentives for 

producers to design alternative fuel vehicles (e.g., diesels) that cost more to produce. 

While diesel engines have better fuel efficiency per unit power, gasoline engines are 

cheaper to manufacture and are therefore preferred by the market. Future investigations 

that combine engineering, marketing, and policy models with models of changing 

consumer preferences and driving habits could be used to predict trends for the diffusion 

of alternative fuel vehicles, possibly avoiding costly investment in products that are 

unlikely to achieve wide acceptance and help to focus resources and incentives toward 

solutions that are likely to make the most impact in reducing environmental damage. 

The demand model used in this study indicated that individual consumers prefer 

vehicle acceleration over fuel economy performance. However, as a society, the same 

individuals may place value on environmental protection, human health, and 

sustainability that is not captured in the market of individual decisions. For example, 

while increased CAFE penalties resulted in decreased costs to producers and consumers 

relative to other fuel economy policies, they also result in smaller, lower-performance 

vehicles, which are less preferred by individual consumers. Naturally, it will be necessary 

to balance social versus individual preferences. To quote from the National Academy of 

Sciences report (2002): “Selection of fuel economy targets will require uncertain and 
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difficult trade-offs among environmental benefits, vehicle safety, cost, oil import 

dependence, and consumer preferences. The committee believes that these trade-offs 

rightfully reside with elected officials.”  

This chapter has taken a step towards developing modeling tools to inform such 

policy tradeoff decisions. Overall the models presented here were successful in predicting 

realistic long-term trends resulting from several regulation scenarios. Therefore, the 

abstract oligopoly analysis was able to provide a useful analytical perspective on market 

incentives resulting from regulation, demonstrating that policy models that include 

engineering design decisions can be used to improve our general understanding of the 

interactions between government policy, industry, consumers, and the environment.  
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CHAPTER 8  
 

CONCLUSIONS 

8.1 SUMMARY 

This dissertation has proposed and demonstrated methods for measuring and 

modeling preferences and coordinating them with engineering design decision models to 

resolve tradeoffs and achieve joint solutions.  

First, the ATC methodology for coordinating decomposed hierarchies of complex 

systems was introduced in Chapter 3, where current convergence theory was reviewed. It 

was demonstrated that solving the ATC hierarchy will converge to an inconsistent 

solution whenever the top level targets are unattainable; however, it is possible to achieve 

a solution with arbitrarily small inconsistencies by selecting appropriate weighting 

coefficients. This is particularly important for the applications in the dissertation, since 

the top level objective does not include an attainable target. A weighting update 

methodology was introduced to find weighting coefficients necessary to achieve user-

specified acceptable tolerances for inconsistency. This method was shown to improve 

computational time in some cases, although further research is necessary to generalize 

these results. 

In Chapter 4, the ATC methodology was applied to coordinate marketing and 

engineering design models for product development, where the marketing subproblem is 

viewed as the top level system and the engineering design subproblem is viewed as the 

subsystem. In this setup marketing decision variables are price and target product 

characteristics, which are objective, measurable aspects of the product observable by the 
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user. Engineering design decision variables are design variables, which are detailed 

engineering quantities that define the design, but are not necessarily directly observable 

by the user. In this model, the marketing model statement is to maximize profit with 

respect to price and target product characteristics, where demand is estimated as a 

function of the price and target product characteristics using a logit model fit to choice 

data obtained through an efficient conjoint analysis experimental design survey. The 

resulting target product characteristics are passed to engineering design. The engineering 

design subproblem statement is to minimize deviation between the target product 

characteristics set by the marketing subproblem and those product characteristics 

achieved by the engineering design with respect to design variables and subject to 

engineering constraints, where the product characteristics are functions of the design 

variables. The resulting achieved product characteristics are passed back to marketing. 

This process is repeated until the two subproblems converge to a joint solution. It was 

shown with a case study that this joint solution is substantially better, with respect to the 

profit objective, than a sequential approach where each model is optimized separately 

without iteration. 

In Chapter 5, the ATC methodology was extended to the design of product lines 

by developing a more sophisticated hierarchical Bayesian mixture model to represent 

heterogeneity of preferences in the consumer population and fitting the model to choice-

based conjoint survey data. Specifically, the marketing subproblem was extended to 

simultaneously choose target product characteristics for all products in the line, 

conditional on demand for each product calculated as a function of the price and target 

product characteristics of all products using draws from the Bayesian model. Then one 

copy of the engineering design subproblem was made for each product in the line, and the 

marketing parent subproblem was coordinated with all of the engineering design 

subproblems iteratively until convergence to a joint solution. Unlike the simple aggregate 

demand model used in Chapter 4, the heterogeneous demand model produced a multi-
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modal profit surface, and a high quality local minimizer was found using multi-start with 

gradient-based algorithms. It was shown again that the joint solution produced by ATC 

coordination yields superior profit to the solution obtained through a sequential approach. 

Also, significantly different results were obtained when using different heterogeneity 

representations, even when designing a single product, suggesting a need to use the most 

general form of heterogeneity. The use of ATC to coordinate the separate, but related 

problems of designing multiple products in a line improves scalability of the problem by 

avoiding the high dimensionality and complexity of solving multiple product 

optimization problems simultaneously. 

In Chapter 6, this model was extended further to include manufacturing 

investment and allocation decisions by allowing marketing to set cost and production 

volume targets to be achieved by manufacturing and product design subproblems. Some 

of the inherently discrete decisions relevant to manufacturing were formalized into a 

continuous space. In the case study this methodology enabled a local solution close to the 

solution of the relaxed problem to be found; however, the local minima created by the 

transformation of discrete decisions and constraints into a continuous space require a 

global search algorithm to find a true global solution in general. This application 

highlights the need for further work to extend the ATC methodology to problems with 

discrete variables in order to resolve tradeoffs without the computational burden of 

performing branch and bound, or other such techniques, on the entire ATC hierarchy. 

While Chapters 4-6 focused on coordination within a single firm to achieve 

maximum profit, Chapter 7 expanded scope to consider the effects of multiple profit-

seeking firms competing in a regulated marketplace. Individuals as consumers have 

different preferences than individuals as members of society, and unregulated 

marketplaces in many cases tend to respond more to private consumer preferences than to 

public social preferences. While an individual profit-seeking firm may choose to concern 

itself primarily with modeling consumer preferences, producing positive social results 
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requires a balance between private and public interests. In particular, legislation of 

products affects and is affected by engineering design. By studying the interactions of 

markets and regulation with design decisions, engineers can improve their capability to 

predict consequences of their actions and therefore can contribute meaningfully to the 

dialogue regarding legislation that directly affects the design process as well as the 

degree to which that process is aligned with the public interest. Specifically, Chapter 7 

abandons the ATC coordination because of the problem simplicity, using instead a single 

all-at-once optimization loop to represent decisions of an individual producer, and game 

theory is utilized to simulate competition among firms to predict design choices made at 

market equilibrium. A case study of vehicle design, regulated by fuel economy and 

emissions standards, is investigated, and the characteristics of the market equilibrium are 

compared under several alternative policy scenarios. Results show that while increasing 

penalties can lead to increased cost for some policies, it can also lead to decreased costs 

for other policies as a result of competitive interactions. Overall, the case study 

demonstrates a step toward developing models to inform policy tradeoff decisions. 

While it is possible to integrate preference models and engineering decision 

models into a single optimization loop, as in Chapter 7, there are several advantages to 

the decomposition and coordination approach taken in the rest of the dissertation. First, 

ATC allows joint solutions to be achieved while maintaining disciplinary modeling focus, 

providing structure for organizing the different aspects affecting product development, 

rigorously defining interactions among these aspects, and relieving the need for a single 

modeler to become an expert in all areas. Second, ATC provides advantages for 

scalability. With large problems that contain many variables, the decision space of a 

problem solved all at once, in one large optimization loop, can have high dimensionality 

and be highly nonlinear and constrained. These issues can amplify practical issues 

associated with solving the problem, including scaling and numerical issues. ATC 

decouples the problem where possible, producing individual subproblems, each with 
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relatively low dimensionality and nonlinearity, and with fewer constraints. This means 

that the individual subproblems are typically easier to solve, and some problems that 

cannot be solved otherwise can be solved through decomposition. While other 

decomposition methods exist, ATC is the only method with proven convergence 

properties capable of coordinating an arbitrarily large hierarchy of systems and 

subsystems. Third, ATC has been shown to improve computational time in some 

situations. This is not a universal claim, since many problems have been solved more 

quickly all at once; however, given the competitive computational efficiency and the 

opportunity to utilize distributed computational resources simultaneously, ATC proves to 

be a useful tool for many problems. In particular, product line design problems benefit 

from the separation of the highly decoupled design of individual products in the line. 

Finally, the modularity of the ATC hierarchy facilitates model changes and extensions 

easily, as demonstrated by the two extensions explored in this dissertation. Additional 

subproblems can be added, and existing subproblems can be altered in such a way that 

the only changes affecting a particular discipline are well-defined by the targets and 

linking variables shared with that discipline, facilitating concurrent design and modeling 

improvements. 

8.2 SUMMARY OF CONTRIBUTIONS 

Several distinct steps were taken toward the coordination of preference models 

with engineering design decision models.  

1. The ATC convergence proof was clarified for cases with unattainable targets, and 

a weighting update routine was proposed for reducing resulting system 

inconsistency to a user-defined tolerance. 

2. A methodology was proposed to apply ATC to coordinate marketing models of 

demand and profit with engineering design models of product feasibility and 
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performance to achieve joint solutions that are demonstrably superior to solutions 

arrived at independently. To marketing, the methodology offers the ability to 

indirectly accommodate technical constraints and ensure realizable solutions; and 

to engineering, the methodology offers a means to resolve technical objectives 

through coordination with downstream objectives. 

3. An extension to the methodology was proposed to design lines of products via 

utilization of preference models that account for heterogeneity in the population 

and coordination of this model with a set of product design models. This 

methodology offers a new approach to product line design, accommodating 

variables with continuous domains, addressing non-monotonic product 

characteristics with ideal points that vary in the population, and enabling joint 

design of multiple products while mitigating problems associated with search of 

large, highly constrained design spaces by taking advantage of the coupling 

structures in the problem. 

4. A second extension to the methodology was proposed to coordinate 

manufacturing investment and allocation decisions with design and marketing 

decisions. This model accounts for tradeoffs between cost reductions that may be 

obtained by compromising design of the product line to conform to the 

capabilities of existing or inexpensive equipment vs. the loss in revenue 

associated with failing to deliver the most desirable product. 

5. Finally, a method was introduced to study the effects of policy for balancing 

public and private preferences on the resulting design decisions of profit-seeking 

firms in a competitive marketplace. For policymakers, the method provides a tool 

to predict effects and inform policy decisions; for engineering designers, the 

method provides a larger context for the effects of their decisions and gives them 

tools with which to participate in the ongoing dialogue about policy that directly 

affects their work. 
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8.3 OPEN QUESTIONS 

A number of open questions were highlighted throughout the dissertation for 

future work. In Chapter 3, global convergence properties of ATC were explored and 

expanded upon; however, local convergence properties have yet to be well-defined with 

respect to decomposed systems, and much work remains to study these properties for 

ATC to determine general properties of computational efficiency. Also, as highlighted in 

Chapter 6, there exists a need to extend ATC theory for application to problems with 

discrete and categorical variables. Further examination is also needed to study the 

properties of ATC using non-gradient-based methods when solving each of the 

subproblems. Finally, the effects of using ATC on search of a space with multiple local 

minima deserve further study. In particular, the weighting update method allows quick 

movement with large inconsistencies for small weighting coefficients and slower, more 

precise movement for large weighting coefficients. With problems that are solved first 

with small weighting coefficients, the solution will move toward the optimum of the 

relaxed parent problem, even moving into regions of the space highly unachievable by 

subsystems. Depending upon the shape of the problem and the sequence of weighting 

coefficients used, the search procedure will have an effect on which local minima are 

located. Understanding this effect more precisely could lead to more directed research 

about when to use the method and how to generate good starting points. 

In Chapter 4 the ATC methodology was applied successfully to coordinate 

engineering and marketing models and obtain joint solutions. While results of 

coordination are demonstrably better than solving the two problems independently, they 

do not resolve, and may in fact amplify, any problems with model validation. For 

example, while validation techniques for engineering performance models are 

commonplace, the optimization of an engineering model with respect to several specific 

product characteristics, while inevitably ignoring others, can lead to a solution strong in 
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the modeled characteristics at the expense of unmodeled characteristics. Validation of a 

design achieved through model optimization must consider a holistic evaluation of the 

design to ensure that unmodeled characteristics are not drastically compromised at the 

solution. Also, the marketing demand models used in this dissertation are based on 

reported preference data. One method of validation for these models is to test predictions 

against a holdout sample, assessing the degree to which a model fit to a specific set of 

data will extrapolate to other choice situations. However, this test still provides only a 

measurement of stated choice, which can often differ dramatically from observed choices 

in the marketplace. Furthermore, and importantly, preference is not the same as demand 

since demand depends critically on other factors such as availability, distribution, 

familiarity, word of mouth, advertising, and store or shelf location. ATC offers a 

framework that could accommodate models of additional factors such as these for 

coordination; however, they were not modeled here. Due to these unmodeled factors, 

model predictions will differ from observed market behavior. Instead, the models predict 

the trends of demand, all else being equal. When all else is not equal, actual demand 

differs, and validation becomes very challenging. However limiting these issues may be, 

they do not result from the preference coordination introduced in the dissertation. In fact, 

the ATC preference coordination serves only to reduce the decision space of the 

marketing subproblem, as if projecting engineering constraints into the product 

characteristic space. So, applying preference coordination adds no new validation issues 

to a marketing optimization formulation; rather, it restricts the space to realizable options, 

which may, in fact, remove some otherwise unrealistic areas of the space and improve the 

model for validation relative to a pure marketing optimization problem. 

Secondly is the problem of model bounds. The conjoint task covers a set of levels 

for each product characteristic. If the optimization were to yield a point outside of the 

bounds tested with conjoint, it would indicate a limitation of the model to predict 

preference in that region. In Chapter 4 the optimal solution is an interior solution, and 
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model boundedness is not a problem. In Chapter 5, however, using the heterogeneous 

demand model, a few of the results, in particular price of the expensive product, were 

boundary solutions. This is expected since the ranges of levels in the conjoint task were 

based on products existing in a competitive market, and the optimization represented a 

monopolist case with a simple outside good. It is expected that monopolist prices will be 

higher than those resulting in a competitive marketplace. However, the other boundary 

characteristics suggest that the model contains individuals who prefer items outside the 

range observed in the market. This is an entirely plausible situation, since the market does 

not perfectly capture preferences, and since the survey respondents are not perfectly 

representative of the population; however, the solution lies outside the range of the 

model, and conclusions are difficult to make. It is important, therefore, when intending to 

use a model for optimization to study conjoint levels outside the range observed in the 

market in order to measure existing ambivalence or disdain for characteristics outside of 

that range and ensure interior solutions. Pretesting the conjoint task could facilitate 

choice of appropriate levels; however, more research on how best to select these levels is 

warranted. 

The degree to which these models are sensitive to assumptions deserves further 

study as well, such as the assumption that utility is linear in part-worths and interaction 

terms are negligible. Chapter 5 demonstrated that assumptions about the shape of 

preference heterogeneity can strongly affect optimal line solutions. Other assumptions, 

such as externalities set as fixed parameters, may have more predictable effects. In 

particular, it would be worth further study to examine the effect of the model form 

defining the distribution of preferences over the population on the shape of the resulting 

demand surface. If some assumptions about this distribution lead to convenient properties 

for the demand surface, such as unimodality, then these assumptions should be used in 

cases where they are likely to hold. Furthermore, the demand surface in the marketing 

subproblem itself contains a significant amount of symmetry for multi-product cases. 
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Exploring methods to exploit this symmetry would improve the computational efficiency, 

and therefore the scalability of the method for large product lines. 

As mentioned in Chapter 2, the perception of product characteristics is not 

explicitly modeled here. Modeling of the perception process, particularly when 

perception is heterogeneous across the population, could add realism and improve 

predictability of the models here. 

In Chapters 5, 6, and 7, it was assumed that all products are designed and built 

from scratch with no shared components or other savings due to commonality. The 

addition of modeled cost savings due to commonality and resulting issues with product 

differentiation would extend the relevance of the product line studies. ATC preference 

coordination may provide a useful framework for studying product commonality, in 

particular for quantifying the tradeoff between cost savings resulting from part-sharing 

and the reduced demand resulting from a perceived lack of differentiation or from the 

inability to meet individual product targets under part-sharing constraints. 

Further development of models to account for competition is also needed. Chapter 

7 uses game theory to predict competitor decisions at market equilibrium, but market 

dynamics are ignored (the market is never truly at equilibrium), and common anticipatory 

competitive strategies are not considered. The alternative of modeling competitor 

products as fixed is also unrealistic, particularly for large design moves, which are likely 

to elicit competitive responses. Deeper examination of issues related to market 

competition would improve relevance to applied industrial problems. 

Finally, the effects of policy modeled in Chapter 7 could be extended to examine 

alternative fuel vehicles and study the effects of CAFE standards for full product lines, 

where high fuel economy in one vehicle segment enables lower fuel economy in another. 

Automotive companies exert significant effort to comply with CAFE standards in 

strategic ways, and they could benefit from better modeling tools. As well, legislative 

bodies could benefit from tools better able to anticipate possible market responses to 
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legislation such as the automaker push to sell SUVs to consumers as a way to take 

advantage of differential car and truck CAFE standards. Additionally, the ability to model 

effects of policy directly on consumer behavior, for example, the effects policy 

alternatives such as an increased gasoline tax on consumer purchase choices, driving 

behaviors, and the differential impact on lower-income individuals, would further assist 

policy analysis and decision-making. 

In summary, this dissertation has taken steps toward development of tools for 

modeling the various preferences of product design stakeholders and coordinating these 

models with engineering design decision-making. It is the hope that these models, and 

others like them, will help design engineers and managers to understand better the 

relationship between their decisions and the networks of interests and preferences upon 

which they have impact so that wiser, more informed decision-making can be realized. 
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APPENDIX 
 

DISCRETE CHOICE MODELS 

This appendix serves to provide a detailed introduction to discrete choice models 

for readers new to the domain to supplement the material in the chapters. 

Utility 

Utility is a ubiquitous concept in economics as an abstract measurement of the 

degree of goal-attainment or want-satisfaction provided by a product or service relative to 

alternatives. We cannot measure directly how much utility a person may gain from a 

product; however, we can make inferences about utility based on the person’s behavior, if 

we presume that people act rationally. In computer science, a rational agent is defined as 

one that acts to attain its goals. Likewise, in economics we assume that a rational person 

acts to increase her utility. 

All else being equal, if a rational consumer is given a choice between product A, 

with utility uA = 1, and product B, with utility uB = 2, she will choose product B because it 

provides more utility. In general, given a set of alternatives j = {1, 2, ..., J}, a rational 

person will choose the alternative that provides the highest utility, so that alternative j is 

chosen if uj > {uj’}∀j’≠j. This model does not take into account the degree to which the 

utility of one product exceeds the utility of another. For instance, if uA = 1 then product B 

will be chosen if uB > 1, regardless of whether uB = 1.0001 or uB = 1000. In reality, 

uncertainty in utility estimates would lead one to be more confident in predicting choice 

B if uB = 1000 and less confident if uB = 1.0001 

Random Utility Discrete Choice Models 

In general, we cannot measure utility (predict choices) exactly because, for 

example, we may not be able to observe or measure every characteristic of the individual, 
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product, or choice situation that affects choice behavior; however, if we can observe 

some information about the individual, the product, or the choice situation, we can use 

that information to help predict choice. So, in random utility models we presume that the 

utility uij provided to individual i by product j is composed of a deterministic component 

vij, which can be calculated based on observed characteristics, and a stochastic error 

component εij, which is unobserved, so that 
  

ij ij iju v ε= + . (A.1) 

 

Later we will discuss how to estimate the observable component of utility vij for 

individual i and product j using data, but for now we take it as given. Because we never 

observe the error component εij, we do not have enough information to predict a specific 

individual’s choice on a specific choice occasion, but, as in regression, we can make 

predictions about the patterns of choices over many individuals and many choice 

occasions. The probability Pij of individual i choosing product j from a set of products is 
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 (A.2)

Distributions for the ε Error Terms 

The ε error terms are unobserved random variables that are described by a 

probability distribution. In general, this may be a joint distribution of all the error terms, 

so we use the vector εi = [εi1 εi2 ... εin]T, which aggregates the error terms for all products, 

and describe its probability distribution by the cumulative distribution function (CDF) 

Fε(ε) and its corresponding probability density function (PDF) fε(ε). 

Let us examine a simple case where the choice set is composed of only two 

products, j and j’, and we can generalize later. In this case 
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For a given value of εij this is Fε(εij, vij–vij’+εij): the CDF of the joint random variable 

distribution evaluated at the point (εij, vij–vij’+εij), i.e., the probability that the random 

variable εij’ is less than the value (vij–vij’+εij), given εij. However, εij is a not deterministic 

fixed value, but instead is itself described by a probability density function fε(εij). 

Therefore, the probability can be calculated by integrating over all values of εij 
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In general, for a set of products 
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The Probit Model 

Most commonly in statistics, unobserved random error terms are taken to be 

normally distributed (e.g., least squares regression, etc). The central limit theorem 

provides a theoretical justification for this choice in the absence of other information 

about distributional forms. If fε(ε) is assumed to be a multivariate joint normal 

distribution with mean zero and covariance matrix Λ, this is called the probit model. The 
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probit model allows for quite a general model; however, it does not yield a closed form 

solution, and it requires multidimensional integration. 
 

Some econometricians have alternatively used a restricted form of the probit 

model where error terms are taken to be independently and identically distributed: i.e., 

the covariance matrix Λ is assumed to be diagonal. In this case, Pij reduces to a single 

dimensional integral: 
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This simplified form is desirable; however, the assumption of independence of the error 

terms is a restriction that leads to specific implications, which will be discussed later. 

The Logit Model 

To simplify matters more, econometricians often use an alternative assumption 

for the distribution of the error terms: Instead of normal, error terms are assumed to be 

independently and identically distributed (iid) following the double exponential (Gumbel 

Type II extreme value) distribution:  
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This assumption yields the logit model. Unlike the normal distribution, there is no 

theoretical reason to believe that the double exponential is a good assumption for the 

error terms; however, under this assumption Pij reduces to a simple, explicit, usable form, 
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and studies have shown that results obtained under this logit assumption are nearly 

indistinguishable from those produced by the probit model, except when large amounts of 

data are available. So, the logit assumption is a useful “engineering approximation.” The 

standard normal and double exponential PDFs are shown below: 
 

 
 

Plugging the double exponential distribution in for fε, we have 
 

( ) ( )exp expij ij ij ij ij

ij

v v
ij ij

j j

P e e e dε ε ε

ε

ε′

∞
− − − +

′≠=−∞

= −∏∫   (A.8)

 

since vij – vij = 0, the exponential term can be brought inside the product, so that the 

expression is rewritten as 
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We can solve this integral with a change of variables. Let t = exp(-εij). Then dt = -exp(-

εij)dεij and dεij = -dt/t. For the integration limits: as εij approaches infinity, t approaches 

zero, and as εij approaches negative infinity, t approaches infinity. Rewriting the integral 

in terms of t: 
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The iid double exponential error term assumption has led to a very simple formula for 

choice probabilities with appropriate properties: choice probabilities range from zero to 

one and sum to one over all alternatives in the choice set. 

Independence of Irrelevant Alternatives 

It is important to be aware that assuming independence of the error terms (in both 

the logit and the restricted probit models) gives rise to a property called independence 

from irrelevant alternatives, or IIA. We know that if a new alternative product is added to 

the choice set, some individuals who would otherwise have chosen a product in the initial 

choice set will instead choose the new product. The IIA property means the ratio of 

choice probabilities between any two alternatives is unaffected by the presence of a third 

alternative, and any new alternative introduced to a choice set will take its choice share 

proportionally from all other alternatives in the choice set. For the logit model, this is 

easy to show: 
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The IIA property is also known as the “red bus, blue bus problem” because of a famous 

illustration of this property: Let’s say commuters have the two options {car, blue bus} 

available to them and gain equal utility from each (vCAR = vBLUEBUS), therefore choosing 

each with probability 0.5. If a new product is added to the choice set that is very similar 

to one of the existing products {car, blue bus, red bus} with equal utility, the IIA property 

implies that the new product will draw choice proportionally from all other alternatives, 

so that PCAR = PBLUEBUS = PREDBUS = 0.333. In reality we would expect the red bus to 

draw far more commuters from the blue bus than from car travel since the two busses are 

very similar. Choice probabilities will likely be closer to PCAR = 0.5, PBLUEBUS = PREDBUS 

= 0.25. The IIA property also would imply, for instance, that the ratio of votes for 

Democratic and Republican candidates is unaffected by the presence of a third party 

candidate. Thus there are limitations to the applicability of models that possess the IIA 

property; however, a number of extensions exist to mitigate or eliminate this problem, 

and in many practical applications the IIA property is not problematic. For the remainder 

of this appendix the simple logit model will be used; however, more advanced models are 

explored in Chapter 5. 

Functional Forms for the Observable Component of Utility v 

The preceding discussion presumes that the observable component of utility vij is 

known for each individual i and each product j. We said vij is observable in that it is a 

function of the observable characteristics of the product, the individual, and the purchase 

situation. For now, we will limit our discussion so that vj depends only on the 

characteristics of the product, i.e., all individuals have the same observable component of 

utility, individual differences are described only by the random error term, and the index i 

is dropped. The term product characteristics is used specifically to describe objective, 

measurable aspects of the product that are observed by and relevant to the consumer 
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during the choice process. For example, fuel economy of a vehicle may be considered a 

product characteristic, but “sportyness” is not a characteristic because it is perceived 

subjectively, and transmission ratio is probably not a characteristic since it is generally 

not observed directly by customers (except for special cases), but rather by engineering 

designers. The value of the product characteristics of product j are written as the real-

valued vector zj, and vj is a function of zj as well as the product’s price pj, which, by 

convention, is not included in zj. 

Just as in regression, we do not know, in general, the functional form relating zj 

and pj to vj; however, if we have experience with choice models and experience in the 

problem domain, we may be able to posit reasonable functional relationships that produce 

good predictions. For example, researchers Boyd and Mellman (1977) proposed a 

functional relationship for vehicles including price pj, gas mileage zj1, and performance 

measured as time to accelerate from 0-60 mph zj2, among other characteristics. Their 

model proposed that  
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where β0, β1, and β2 are coefficients. If we could observe vj directly, then we could collect 

data for various values of pj and zj and perform an ordinary regression to find the best 

values for the β coefficients; however, vj is not observed: Only choice is observed. Given 

past data on choices among vehicles with various values for pj and zj, it is possible to find 

values for the β coefficients that result in choice predictions that best match the observed 

choice data, as we would do in simple regression, using a technique called maximum 

likelihood.  
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Maximum Likelihood 

In this case, we have 1) assumed the distribution of the error terms (double 

exponential for logit), and 2) assumed the functional form of vj with respect to observed 

characteristics. Now we want to find the best model parameters (β coefficients) to match 

observed data, given the model form. To do this we search for the coefficients that 

maximize the likelihood that the choice model (with coefficients β) would generate the 

data we observed: i.e., the model predicts choices probabilistically, and we want to 

maximize the likelihood that choices predicted by the model would be exactly those 

observed. On a specific choice occasion, the probability of the model predicting the same 

choice as the one observed for individual i is  
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ij

j
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where Φij = 1 if individual i chooses product j, and Φij = 0 otherwise. If this process is 

repeated for many individuals, the total number of individuals choosing product j is given 

by ΣiΦij, and the probability of the model generating the observed choices is 
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We are searching for the values of β that maximize this quantity. To simplify calculations 

and avoid numerical difficulties, it is common practice to maximize the log of the 

likelihood, which has the same maximum, rather than maximizing the likelihood directly. 

This is called the log-likelihood, often written LL. The maximum (log) likelihood β terms 

are therefore: 
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where Pij is given by the logit model. 

Example 

Let’s suppose our choice set consists of four vehicles with prices and 

characteristics shown below 
 

 A B C D 
pj ($1000s) 15 15 20 20 
zj1 (mpg) 25 35 25 35 
zj2 (sec) 6 8 8 6 

 

Suppose we ask 100 people which vehicle each would choose, and we find that 25 choose 

product A, 30 choose product B, 5 choose product C, and 40 choose product D. Using the 

logit model for choice probabilities Pj and the Boyd and Mellman model as the form of 

the utility function vj we would solve for the β terms as:  
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To find the maximum by hand, we can take the gradient of the function, set it equal to 

zero, and solve the resulting system of equations. Alternatively, we can use an 

optimization algorithm such as Excel Solver to find the values for the β terms that 

maximize the log likelihood. Using either technique, the solution is β0 = -0.132, β1 = -

99.0, β2 = 22.8. We see that β0 is negative, indicating that increasing price will decrease 

utility, β1 is negative, indicating that increasing fuel economy (decreasing 1/zj1) will 

increase utility, and β2 is positive, indicating that increasing 0-60 time (decreasing 1/zj2) 

will decrease utility. Note that five individuals chose product C, even though it is more 
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expensive, has worse fuel economy, and worse performance. While this goes against the 

utility trends in a deterministic utility model, random utility choice models, such as the 

logit model, allow for unobserved characteristics that may affect the decisions of 

individuals while still capturing the overall trends. 

Using these newly obtained beta values, and the corresponding model of choice, 

we can now make predictions about new products or changes to existing products. 

Suppose we wanted to lower the price of product C to attract more buyers. How much 

would we have to lower the price to double market share (attract 10 out of 100 buyers 

instead of 5)? To make this prediction, we would simply solve 
 

( )
( )

0 C 1 C1 2 C2
C

0 1 1 2 2

exp
0.10

exp j j j
j

p z z
P

p z z
β β β

β β β′ ′ ′
′

+ +
= =

+ +∑
.  (A.18)

 

for pC using the beta values and characteristic values from above. In this case the answer 

is $14,300. So, vehicle C, with the least desirable characteristics, would have to drop its 

price below the prices of competitors in order to capture 10% of the market. 

Functional Forms for the Observable Component of Utility v 

In the previous example we used an assumed functional form for v established by experts. 

In general, how does one know what functional form to use, and what kind of functional 

form for v should be assumed when there is no prior knowledge about the relationship 

between p, v, and z? In general we may not have good intuition about what functional 

forms to assume for a particular product and set of product characteristics. One method is 

to simply try different functional forms and see which one results in the highest 

likelihood value. However, this can be dangerous in the absence of information about the 

problem because more general forms (say, assuming a quadratic rather than linear 

relationship) will always yield higher likelihood than more restrictive forms; however, 
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one must be wary of overfitting the data. So, in general, this might be a reasonable 

technique for testing whether the price relationship is linear or log; however, it is not a 

good idea to blindly test arbitrary functional form assumptions and pick the highest 

likelihood result. 

Discretization of the Product Characteristics z and Price p 

A more general technique is to divide the relevant range of each product 

characteristic in z and price p into discrete levels, capture the preference coefficients β at 

those discrete levels, and then interpolate for intermediate values. This allows the model 

to capture a wide variety of shapes with respect to the real-valued product characteristics 

z and price p. For example, the graph below shows a hypothetical case where the 

underlying relationship between v and a single product characteristic z is s-shaped. If we 

discretize z and obtain preference estimates at the discrete levels (shown as circles), we 

can interpolate the s-shaped curve. However, if we assume that v is a linear, quadratic, or 

log function of z, then we obtain a more restrictive estimate that does not capture all of 

the detail.  

 

v  as a function of z
Spline
Linear / Quadratic
Log
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This technique of discretizing and interpolating may not be feasible using data 

from the market, since we may not be able to describe existing market products in terms 

of a small number of discrete levels of each characteristic. However, if we are collecting 

choice data using a designed survey, it is feasible and often desirable. 

First, we divide each product characteristic z into discrete levels that span the 

relevant domain of characteristic values. If the product characteristics are indexed by ζ, 

we divide each characteristic zζ into levels indexed by ω = {1, 2, 3, ..., Ωζ}. For example, 

characteristic ζ = 1 is fuel economy, and if fuel economy z1 ranges between say 10 mpg 

and 40 mpg, we might set levels at 10, 20, 30, and 40 mph, so that Ω1 = 4, and ω = {1, 2, 

3, 4} refers to {10mpg, 20mpg, 30mpg, 40mpg} respectively. 

Each product in the choice set must be coded with respect to these characteristic 

levels using dummy variables. Here we notate the dummy variables as δjζω, where δjζω = 1 

if product characteristic ζ of product j is at level ω, and δjζω = 0 otherwise. We also 

include price in this set, with price indexed as ζ = 0. Thus, any product j with product 

characteristics and price at the discrete levels can be coded as a set of 1’s and 0’s in δjζω 

∀ζ,ω. Assuming that preferences are linear in the discretized set (a main-effects model), 

we have 
 

j jv ζω ζω
ζ ω

β δ= ∑∑ ,  (A.20)

 

where the coefficients βζω are called part-worths because they describe the component of 

utility derived from characteristic ζ being at level ω. There may be cases where linearity 

of the characteristics cannot be assumed because of interaction effects, i.e., the shape of 

preferences for one characteristic may depend on the value of another characteristic. 

However, these are left as as advanced cases that are not addressed here. 

Using the logit model, the probability of an individual choosing product j is then:  
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and the log likelihood that a model with part-worth coefficients βζω will reproduce the 

observed data Φij, where Φij = 1 if individual i chooses product j, and Φij = 0 otherwise, is 
 

lnij j
j i

LL P= Φ∑∑   (A.22)

 

as derived before. Given a set of observed choice data Φij we can find the coefficients βζω 

that maximize the log likelihood.  

Example 

In the vehicle example, we had 
 

 A B C D 
pj ($1000s) 15 15 20 20 
zj1 (mpg) 25 35 25 35 
zj2 (sec) 6 8 8 6 

 

where levels are defined as 
 

ζ symbol level ω=1 level ω=2 
0 p $15,000 $20,000 
1 z1 25 35 
2 z2 6 8 
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The corresponding dummy variables δjζω for these products are 
 

  j=A j=B j=C j=D 
ζ=0 ω=1 1 1 0 0 
ζ=0 ω=2 0 0 1 1 
ζ=1 ω=1 1 0 1 0 
ζ=1 ω=2 0 1 0 1 
ζ=2 ω=1 1 0 0 1 
ζ=2 ω=2 0 1 1 0 

 

As before, given this choice set suppose that 25 respondents choose product A, 30 choose 

product B, 5 choose product C, and 40 choose product D. If the log likelihood is 

maximized using Excel Solver, the resulting βζω part-worths are: 
 
 

βζω ζ=0 ζ=1 ζ=2 
ω=1 0.3304 -0.56544 0.47428 
ω=2 -0.3304 0.56544 -0.47428 

 

Actually, there are infinitely many sets of part worth coefficients that predict 

equivalent choice probabilities, and the results shown above are just one such set. This is 

because our model for v has extra degrees of freedom: i.e., there are more variables than 

equations in the system of equations. Any of the sets of betas that yield equivalent choice 

probabilities and log likelihood values are equivalent with respect to the choice model, 

and any can be used. If we wish to restrict the model to a single answer (this is called 

model identification), we can code the beta coefficients in terms of fewer variables (1 + 

Σζ (Ωζ-1) variables are needed), or, equivalently, we can add extra constraints to restrict 

the solution to a particular set of beta values from the infinite set of equivalent values for 

easier interpretation. The solution shown above is the particular beta solution maximizing 

LL where the average β value of each characteristic ζ across all of its levels ω is zero. 
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The resulting beta values are plotted below for each characteristic and price. Each 

ζ is divided into only two levels, so we can use linear interpolation to estimate β values 

for intermediate levels, for example, a price of $18,000. 
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By including only two levels per ζ, the resulting interpolation shown in the graphs 

is linear with respect to the real-valued characteristics, and we have essentially assumed a 

linear relationship. The final interpolated relationship for intermediate values of v, using 

linear interpolation, is 
 

1 2ˆ 0.132 0.113 0.474j j j jv p z z= − + −   (A.23)

 

We see that the slope of the part worth for price (0.3304 – (-0.3304))/($20-$15) = 

0.132 is the same value we obtained previously when we had assumed a linear functional 

form of p. The slopes of z1 and z2 are different because here we have only two levels, 

which implies a linear relationship, whereas the functional form assumed previously was 

inversely proportional to each. So, using only two levels for each ζ is not recommended 

unless the modeler is relatively certain that the relationship is nearly linear, or that a 

linear representation will suffice. Use of more than two levels allows more general spline 

interpolation, and can represent more complex relationships. 

Interpolation of Part-Worth Coefficients Using Splines 

In general, a spline can be fit through the part worth values βζω of all levels ω in 

each ζ to interpolate intermediate values of ζ. It is possible to use many types of splines to 
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interpolate the points; however, to facilitate optimization over the real-valued product 

characteristic values, it is desirable to interpolate using a spline function that is smooth 

and continuous over the domain. In particular, we will focus on natural cubic splines: a 

set of (Ωζ–1) cubic polynomials, each of which has a domain between two adjacent levels 

ω (one between ω = 1 and ω = 2, another between ω = 2 and ω = 3, etc), that: 

• Match the value βζω at each of the two domain endpoints ω, 

• Match the first and second derivatives of the adjacent cubic polynomial at each 

domain endpoint 

• Have second derivatives of zero at the extreme bounds of the spline: ω = 1 and ω 

= Ωζ. 

An illustration is shown below with Ωζ = 4 four levels for hypothetical characteristic z: 

1 2 3 4z

3 2
1 1 1 1a z b z c z d+ + +

3 2
2 2 2 2a z b z c z d+ + +

3 2
3 3 3 3a z b z c z d+ + +

 

It is possible to calculate the coefficients of the (Ωζ – 1) cubic polynomials in a 

spline for characteristic ζ given βζω by solving a system of equations representing the 

three conditions; however, this detail is avoided here. Instead, software packages such as 

Excel or Matlab can be used to automatically calculate cubic splines given values for βζω. 

The cubic spline function for characteristic (or price) ζ that passes through the levels ω of 

βζω will be notated as Ψζ. The interpolated observable component of utility then involves 

the resulting spline function evaluated at the intermediate, real-valued product 

characteristics and price: 
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( ) ( )0
0

ˆ j j jv p zζ ζ
ζ >

= Ψ + Ψ∑   (A.24)

 

This interpolated value of v can then be used in the logit model to predict the choice 

probabilities of new products with intermediate product characteristic and price values. 

Example 

Suppose that we had included more levels in our earlier example 

 
ζ symbol level 

ω=1 
level 
ω=2 

level ω=3

0 p $15,000 $20,000 $25,000 
1 z1 25 35 45 
2 z2 6 8 10 

 

and the three separate choice sets below were provided to survey respondents, and their 

choices were recorded for each choice set.  

 
Choice 
set  A B C None
 pj ($1000s) 15 20 25 - 
1 zj1 (mpg) 25 35 45 - 
 zj2 (sec) 6 10 6 - 
 pj ($1000s) 15 20 25 - 
2 zj1 (mpg) 35 45 25 - 
 zj2 (sec) 8 6 10 - 
 pj ($1000s) 15 20 25 - 
3 zj1 (mpg) 45 25 35 - 
 zj2 (sec) 10 8 6 - 
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Suppose 100 people were given this survey and the number of people choosing each 

option in each set is given by: 

 
Choice 
set A B C None Total
1 45 5 45 5 100 
2 40 55 0 5 100 
3 30 25 30 15 100 

 

Given these data, the partworths (centered around zero for each characteristic, as before) 

can be calculated as 

 

 
ζ symbol level 

ω=1 
level 
ω=2 

level ω=3

0 p 0.64 -0.03 -0.61 
1 z1 -0.67 -0.07 0.74 
2 z2 0.74 0.57 -1.32 

 

with the no-choice option utility value of -1.829. Interpolating a spline through the levels 

of price and each characteristic would enable estimate of the part worth of an 

intermediate level, and predictions of choice probabilities could be calculated with the 

logit model, as before. 

 These basic models are applied in Chapters 4-7 in the development of models to 

predict choice as a function of the prices and characteristics of available product 

alternatives. Given such a predictive model, the prices and characteristics of the 

alternatives are varied using optimization algorithms to find values that yield the most 

desirable predictions. 


