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Weighting coefficients are used in analytical target cascading (ATC) at each element of

Department of Mechanical Engineering, the hierarchy to express the relative importance of (a) matching targets passed from the
University of Michigan, parent element and (b) maintaining consistency of linking variables and consistency with
Ann Arbor, MI 48109-2125 designs achieved by subsystem child elements. Proper selection of weight values is crucial

when the top-level targets are unattainable, for example when “stretch” targets are used.

In this case, strict design consistency cannot be achieved with finite weights; however, it
is possible to achieve arbitrarily small inconsistencies. This article presents an iterative
method for finding weighting coefficients that achieve solutions within user-specified in-
consistency tolerances and demonstrates its effectiveness with several examples. The
method also led to reduced computational time in the demonstration examples.
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Introduction

Analytical target cascadinATC) is a model-based, hierarchi-
cal optimization methodology for systems design. ATC requires a
set of analysis or simulation models that predict respoifges

subject to kEC__ IR+ 1= R yll5=0

1

characteristicsof each system, subsystem, and component as a E HSKy'(Hl)jfyg}H;ng:O
function of the design variablgghe decisions[1]. The analysis ke Cjj

models are organized using design optimization models that are

the elements or building blocks of the hierarchy, as shown in Fig. gij(xi;)=<0, h;j(x;;)=0

1 with the standard index notation. The top level represents the

overall system, and each lower level represents a subsystem or where R:j:rij(yij)

component of its parent element. In the ATC process, top-level
system design targets are propagated down to lower subsystem

I Xi=[x. ,yl R R I
and component level targets that are then optimized to meet the 1] i+ Dk i Dk,
targets as closely as possible. The resulting responses are rebal-
anced at higher levels by iteratively adjusting targets and designs VjeE;,i=01,...N 2

to achieve consistency.
Following Michelena et alf2], and using the general notation,,herexi.

is the vector of local variables for elemenat leveli
. . s . v i 11,
gtrgoeciuggcélt;}/nil\s/hchalek and Papalambid, the original design yi; is the vector of linking variables for elemeptt leveli, y}fl

is the copy of the vector of linking variables at elemgnével i

minimizd\r(x)—THg cloordinate(‘j by thg parent element at leviet (), S; is the seleq-
X tion matrix indicating which terms of the parent coordinating link-
) ing variable vec’[oy}j‘1 are relevant to the linking variable vector
subject tog(x)<0, h(x)=0 (1) yj; atelemeni, R}; is the vector of responses at elempigveli,

71 . . .
whereT is the vector of targets, is the vector-valued responseRij is the vector of response targets for elemieat leveli that
function, x is the complete vector of design variablgsandh are &€ S€t by the parent element at levet-Q), rj; is the vector-
vectors of design constraint functions, gnité denotes the square valued response function of elemgnat leveli, g;; is the vector

of thel, norm. Equation(1) represents the entire large-scale sysQf inequality constraints at elemeptleveli, h;; is the vector of

tem, and it is solved all at oncerAO) (i.e., all variables and equality constraints at elemeptevel i, ,Ei IS _the set of elements
functions are evaluated together during sear@iven that the &t 1€veli. Cjj is the set of elemenj’s children numbered 1
system has an implied hierarchical structureNof 1 levels, as in throughc;; , and! designates the top-level element. Note tyiat

Fig. 1, the formulation(still solved AAO) can be equivalently drops out for elements that do not have linking variables, such as
represented by designating response variables and linking vé&fement, andR|; , ,, terms drop out for leaf elementslements
ables, creating copies of these variables at parent and child levéigt do not have childrgn

and adding constraints forcing the copies to be equal Following Michelena et al[2], the formulation in Eq.2) is
relaxed by allowing deviation between linking variable and re-
minimize| RS, — T||5 sponse variable copies to be within a tolerancand minimizing
Xij V(i j e. Additionally, vectors of weighting coefficients are introduced

for linking and response variables to specify the relative impor-
Contributed by the Design and Automation Committee for publication in thtance of matChmg each target at each level. This yleld“ aged
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Elaments | solution as that of the relaxed AAO formulation in E§). Under
these specific coordination strategies, managing the ATC hierar-
) chy can be viewed as solving a series of Hierarchical Overlapping
f=0 [=A Coordination(HOC) problems, which have been shown to have
nonascent, global convergence properfes7].

i ATC has been applied to automotive applicati¢fs-11], in-
& i=1 | j=B | ji=c | cluding the design of product familiggl], as well as to the
- design of building systemgl2]. Decomposing large-scale prob-
/ \ lems can be advantageous because it organizes and separates mod-
j=2 | j=D | j=E | | j=F j=G | els and information by focus or discipline, provides communica-

tion only where necessary, and facilitates concurrent design.
Moreover, ATC can solve some problems that are computationally
difficult or impossible to solve all at once. Occasionally, decom-
position can also result in improved computational efficiency be-
cause the formulation of each element typically has fewer degrees
of freedom and fewer constraints than the AAO formulation.

N—1 N—1
A 0 2 R However, computational efficiency of ATC is not yet well under-
minimize |\R0|—T|\2+2) EE sij+2) ZE siyj
i R _y i=0 jeE 1=0 jeE

Fig. 1 Example of index notation for a hierarchically parti-
tioned design problem

_ stood, and empirical evidence shows that it can vary dramatically,
Xij Y(i+1)j i S depending on the choice of weighting coefficiefis].

] Several other systems have been proposed for multidisciplinary
subject to design optimization(lMDO) of complex systems. In particular,
SR e (R 1y RiFL 2<eR collaborative optimization(CO) [14], based on concepts intro-
<, (i DR+ Dk T+ D27 =i duced by Sobieskj15], contains a similar form of minimizing

deviations between targets and responses using the square of the

E IS, 1o(S, i (i) )“2< y I, norm. CO formulations so far have dealt only with bilevel
2 (i+1)j Yii+nj Y+ K28 problems, although multilevel extensions seem possible. More-
B over, it has been observed by Alexandrov and Leji§] and
gij(X;j)<0, hjj(x;;)=0 reemphasized by Kinfi17] that CO cannot, in general, produce
where KKT points because of constraint qual_lflcatlon fallur_es, whereas
R =1, (%) ATC has proven convergence properties. ATC is different from
R R MDO frameworks, such as multidisciplinary feasilfdDF) and
X; =[x§j 'y;j lRi(i+l)k1’ o ’Ri(i+l)kc‘i]T individual discipline feasibléIDF) [18], or the bilevel integrated

system synthesiéBLISS) approach19], where analysis models
VjeE ,i=01,...N 3) at a single Ie\_/el are integrated under a master problem introduced
as an authority to achieve the overall design goal. Furthermore,
wheresﬁ is the response deviation tolerance variable for elemeATC should not be confused with strategies for nonhierarchical
j leveli, &, is the linking deviation tolerance variable for elemensystems, such as concurrent subspace optimizé8&8Q [20],
j leveli, w;! is the response deviation weighting coefficient vectd? formulation choices for design optimization statements at indi-
for element] at level i, w), is the linking variable deviation vidual problem elements, such as simultaneous analysis and de-
o . L ) ; sign (SAND) or nested analysis and desiMAND) [21]. In con-
Welghtln_g coeffICIe_nt vector for elementat Ie_vgll,_and the trast, ATC represents a multilevel decision-making hierarchy for
symbol is used to |nd|Tcate term-by-tTerm multiplication on VeCtorts,omplex systems design consisting of an arbitrarily large hierar-
such thafa;a, . ..a,] °[b;b,...b,]'=[absab,...ab,]".

. . . chy of levels of analysis and design models representing systems,
Finally, the problem is decomposed into separate elentgpts su)t;systems and co)r/nponents. g P g sy

and monotonicity analysip4] is used to show that the-bound g g5hal convergence theory of ATI2] asserts that weight-
constraints of each element are active, allowing them to be solvmgg1 coefficients can be found such that consistency deviation
for e and moved into the objective function. The general notatioRms converge to zero. However, we will show that for problems
for asingle ATC element Pin the hierarchy is then with attainable targets, strictly consistent designs can be found
minimiZdIWﬁ°(jo—R§f1)||§+|\SjWiyp°(Sjy§,;l—y§j)||§ with any positive finite weighting coefficients, but for problems
' with unattainable targets, strict design consistency cannot be
achieved with finite weighting coefficients. Thus, the selection of
R i 12 proper weighting coefficients is necessary to achieve a solution
+k2(; WG + 1y (Rl + 1k~ R+ 1y ll2 within acceptable inconsistency tolerances. This result is particu-
=i larly relevant when intentionally using “stretch targets” or
. . “stretch goals,” terms used in management communities to de-
+ > H51<W¥i+1)j°(51<y'(i+1)j_ygiﬂk)ng scribe setting very high, usually unattainable, goals in order to
keCjj motivate employeef22].
In this paper the issue of consistency for unattainable targets is

;Ij 'yl(|+1)]

subject to . . discussed, and an iterative approach is proposed to find weighting
Gij(Xij)=<0, hy(x;;)=0 coefficients that achieve solutions with user-specified inconsis-
where tency tolerances. The method is then generalized and demon-
R:j =ri; (%), strated with several examples.
v — Ty i i i T
X =0x Vi Raeayg - ’R(”“kc‘,] “) Consistency for Unattainable Targets

The sequence of solving each optimization problem elegnt  In the ATC global convergence prod2], Michelena et al.
and passing its solution to the rest of the hierarchy is calledpaoved that when elements of the ATC hierardiigg. (4)] are
coordination strategy. Michelena et §2] proved that using cer- solved separately and iteratively using certain coordination strat-
tain classes of coordination strategies to manage elements of ¢lgges, the system will converge to the solution of the relaxed AAO
ATC formulation in Eq.(4), will result in convergence to the sameformulation, Eq.(3). They go further to assert “given that consis-
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& tency deviation approaches zero only as the weighting coefficients

for consistency approach infinity. So, in this case the vertical axis

IR%,—T| |~ — is tangent to the Pareto surface, and there are no finite error-
zeroing weights. This is important for applications where unattain-

e able targets are used purposefully or when the designer is uncer-
tain if targets can be achieved.

M, A simple example will demonstrate this situation. Let us exam-
erfor-zeroing X \ ine an unconstrained level-0 element with a single level-1 child.
weights ————H" The level-0 element is calleld and the level-1 element is called
k. There are no linking variables, and we consider only a single

top-level targefl. Following Eq.(4), the level-0 problemPRy) is

written as
y
= inimi 0 0 2 R 0 1 2
= - minimize| T—ro (Xg , R[>+ Wi (R—Ry)llz - (5)
slope: wi . OF W, {01 R
- Writing out the squared, norm in terms of vector elements by

IR R+, or using the angle bracket _symb(jl to de_note vector elements ir_1-
fFla Ik dexed withe, and dropping the functional dependency notation
for rq,, the objective functiorfy, at level-0 is
(¥ e — ¥ el

—(T_r )2 R 0 _ply 2
Fig. 2 Existence of error-zeroing weights proposed by Michel- fo=(T=ra) +§ (Wi o{Rik—R1i)) ©)

ena et al. [2]
The first-order necessary conditions for optimality of an uncon-
strained problem require that if(bocal) solution to Eq.(6) exists,

tency and feasibility are assumed for the original design targ?%inot::e ?;?dggé Ogt ttzzto%ﬁﬁt';’]isftugzt'zc’:row'th respect to the
problem, it is possible to find weighixtszfprl)k andwi;, 1y, such P 981k P

thate(; , 1y, andsf. ;. . .. converge to zer. .. This implies that  dfy T o 12 WRYZRS - RLY AR o

the ATC process, recursively applied to the problem hierarchy, ;R0 ol _(E,RoI< ~ 1k’ e\ Rk ™ Rk “—o"Rok
produces an optimum solution of the original design target prob- ! ! !

lem.” o

The concepts of feasibility and consistency deserve further dis- =2(rg—T) “RO

) e o . Tk

cussion here. Feasibility of the original design target problem
means that a design exists that satisfies all constraints. Feasibility (WR2(RY —RY)[1,0,...,07
of the ATC elements means a local design exists at each ATC +(WRHZ(RO, —RL),[0,1 q"
elementP;; that satisfies all of the constraints at that element. +2 /23 Rk k2L Sz - e e
Consistency of the ATC formulation further supposes a solution 82,0 + L .
exists such thaRy, 1= R 1y and Yy, 1y =Yiivy for all i, j H(Widn(Ry— Ryl 0,0, ...
eE;, keCjj, which implies thats"=0 and&¥=0 for all ele- dry
ments. Feasibility of the original design target formulation implies =2(rg—T) ﬁ?r + 2w owR o (RS, — R}, ) =0

that a design exists in the decomposed ATC formulation that is
feasible at all elements and consistent among elements. T—ry drg,

In this section it is demonstrated that despite existence of a ~(R%,—RL) :(—>T (7)
feasible, consistent design, the ATC formulation will not find this e e (<W?k>a)2 HRia

design with finite weighting coefficients unless the design meef$s |ast equation shows that the optimal design will not be
the top-level targets exactly. Specifically, if a feasible solution rictly consistent R?,#RL,) for positive, finite weights unless
the original problem exists that meets the top-level targets exac e top-level target is met exactly or the derivative of the response

hen any choi f itive, fini ightin fficients in th . : .
then any choice of positive, finite weighting coefficients in t ?unctlon with respect m‘;k happens to be zero at the optimum. If

ATC formulation will yield a consistent solution. If such a solu- level inabl 0 th he i h
tion does not exist, the ATC formulation will not yield a consistent®P-1€Vel targets are unattainabl@<rq)#0, then the inconsis-

solution for any finite weighting coefficients. However, an ATGiency deviation error Ry, —Ry,) will be nonzero, except in the
solution can be found with arbitrarily small inconsistency deviasPecial case where the derivative of the response function is zero
tions if weights are chosen appropriately. at the optimum, which can happen mostly by coincidence. Thus,
Michelena et al[2] proposed a Pareto optimization analogy tén general, ng—Rik) approaches zero only as the termsx\tff(
illustrate the existence of error-zeroing weights, as shown in Figpproach infinity.
2. They observed that E¢4) contains a weighted sum of devia- At this point one is tempted to simply set large weights. How-
tion metric terms, and they visualized the solution as a Pareto s&er, apart from the ATC convergence requirement, the size of the
between terms in the objective function, showing how largaveights will also have a scaling effect on the nonlinear program-
weighting coefficients for parent-child deviation terms yieldng algorithm used to solve the element problem. Adverse scaling
points with lower consistency deviation between parent and chitdll increase computational time or altogether prevent solution of
at the expense of minimizing deviation from the top-level targethe element problem. Additionally, as will be shown later, in mul-
However, this figure could be misleading. Note that if a consigievel hierarchies the resulting deviations at any particular ele-
tent, feasible design exists that meets the top-level targets, theant depend on ratios of the weights at that element to weights at
the design would map to the origin in Fig. 2 and any other desighe parent element, and there are interactions between weights for
would be either dominated by or equivalent to it in this spacéinking variablesw? and for response variables®. So, simply
Therefore, in this case the Pareto surface degenerates to a sisglting all weighting coefficients to large values will not necessar-
point—the origin—which can be achieved with any positivély result in small inconsistency deviation values. The task then is
weighting coefficients. If such a design does not exist, then it wilb find appropriate weights such that the resulting inconsistency
be shown in Eqgs(7), (13), and(16) that, in general, the consis- deviation is acceptable. One way to approach this task is to use
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the results of Eq(7) to calculate estimates of the weighting term&KT first-order necessary conditions states that at(tbeal) so-
wq, required to achieve acceptable consistency em§gdor each lution the gradient of the Lagrangian with respect to each t8rm

of the response targeR®, . To do this, we set the left-hand sideof the response target vectBy;, ), for elementy is zero
of the equation to the desired inconsistemy, and solve for the

weights L 22 (W, RI-1) KIij)ay
— W @ r:: — . « _—
R - r0|_T é’ro| v2 07<Rl(i+1)7>5 ay i Y 4 1(?<Rl(i+l)’y>ﬂ
(Wi o= 0%, RS, )] . - -
o [ 1 |
o lk_ ) 1K o +2((W(i 1 1)) ) R +1),~ Rit 1,8

Thus, in this example the weighting update method for finding
appropriate weights to achieve consistency error toleraﬂ@s + ol 99;j AT ah -0 (12
would follow these steps: YoRisne T RG1)p

R ; R _ T
1. Set initial-guess weightsaywy,=[1,1,...,1"). Therefore, at the solution the deviation between response variable
2. Solve the ATC problem and calculate the top-level targ%tOpies at parent and child level is

deviation and the derivative of the response function at the
solution. ) .
3. If the deviation tolerance is not satisfied at the solution, ther{ R+ 1), R'(i++11)y>ﬂ
use Eq.(8) to find new weighting terms and return to step 2.
Hriid e
Generalization of the Weighting Update Method :ﬁ (((wﬁ)al)z(Rij‘l—rij)al%)
The goal of the weighting update method is to automatically (+1)y/ 87 = (rDyie
identify appropriate weighting coefficients that achieve designs 1 T 99 T ahy;
with acceptable deviation tolerance values for the response vari- - 20(WE 1) )2(Mij HR ) TN AR, ) )
ables at each elememt;; and for the linking variables at each (+1)y/8 (+10/8 (+10/8

parent coordinating elemerﬁ{iﬂ)j . The problem is first solved
using starting values for weighting coefficients. The solution to
that problem is used to calculate a linear approximation of tH¢ote that this equation holds for all elements except the top-level
weighting coefficients needed to achieve the desired tolerancg¢ment. To achieve desired response variable deviation tolerances
Weights are updated with this approximation, and the problemgthin oﬁﬂ)y for each element itR'(Hl)y, each weighting term
solved again. This process is repeated until the inconsistency g@ein Wgﬂ)y should be updated as

viation tolerance is achieved, namely, the final solution satisfies

the conditions

(13)

Q) s 1/2
. . R Y
IRj; 1*R}j|s05 (Wii+1)y)8 <0(F§+1)y);s
. i1
|Y§=ﬁgk_YE:11;k’|S0(yi+1)j Ay
’ . . P ij g
Vkk'eCj, jeE;, i=01,...N 9) where \Ifyﬁzz (((wﬁ)al)zmh 1_r”>“1¢9(_Rm)
. . . . *1 Y
To generalize the method presented in the previous section, we
examine one of the KKT first-order necessary conditions for op- 1/ IGij T ahy;
e . X e — =l +A! (14)
timality of constrained nonlinear problems, which involves the 2\ M 5<R'(i+1) g <9<R'(i+1) Vs
Lagrangian. From Ed4), the Lagrangiam.;; of element at level 7 7
iis

Note again that this equation holds for all levels except the top
Li; =||WiFf°(rij - R:Jfl)Hng||siwiypo(sjy:;1—y:j)||§ level, where the weighting coefficient vector is not updated. Top-
level response deviations reflect failure of the design to meet the
N 2 HWR- o(Ri- _Ri+l )”2 top-level targets_, rather ;han inconsis;encies in the design. The
<, (i+ RN+ 1k i+ 1)k 2 top-level weighting coefficient vector is set by the modeler to
express the relative importance of matching each top-level target;
i i+ 2. T T it is not updated. While all weighting coefficient vectors reflect the
ﬂ(;__ IS4 1y (SY(i+ 1~ YA EBOIZ+ s 85 AN relative importance of matching variable copies, the lower-level
. vectors are updated such that the final preference reflects that
(10)  which is needed to achieve user-defined inconsistency tolerances.

where u and \ are the vectors of Lagrange multipliers for the Additionally, at the solution, the gradient of the Lagrangian
inequality and equality constraints respectively. Expressing tMath respect to the linking variables of elemgnis zero
norms with vector terms indexed with the symhglwe have

R i~y 2 y i—1 oL =2 ((WR), )X —RY M
|—ij:;1 (Wi a (i = Rl Day) +;2 (SWI)a,(SYip KYig o Hret M oy
. . . - - IG;j
2 -1 T 1]
_y=j>“2)2+kzc 2;4 (WG + 190 g (Rl 1k~ R 100 ) +2((SWip) ) (Vi ~ SYip ) st M) ALY s
€ |J (24
y ] (i+1)y 2 PN LTI 15
+k20 24 ((SKW(i+1)j>a4<3<Y(i+1)j_y(i+1)k>a4) ij (;<y:j>ﬁ_ (15)
€ |J «,
T T .
+ Gy + N (11) Therefore, the deviation between linking variable teghin y:j

If a feasible solution to Eq(4) exists, then one property of theand the parent coordination copyy"h;l is
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<y;j_sjy:;;l>ﬁ £
1 HTij)ay iu
(Swh)e)* & ( Wi Ry e S5, -
. CRELY
T ij T 1 5
_ o +Al (16) 2
2(<51W?’p>ﬁ)2( Yoyis T AYipe }
Thls term represents deViation between “nklng variab|e Copies 1 E=D 1E=01 IE--.Ew.Igm |igg:|E" ] 1504 1E405

elementj and the parent coordination copy. Recall that linking

variables are shared by elements at the same level and coordin&igd3 Number of function evaluations required to find the so-

at the parent level. To achieve a desired deviation tolerance Hion as a function of the weighting term

tween elements at the same level, the weight for each gemmust

be set high enough so that the difference between copies at any

two child elements is less than or equal to the tolerance. The

updating calculation for the linking variable weighting coeffi- where Rgl=r0|(ng)=ng (19)

cients is then
Note that the relaxed AAO problem is used in the remainder of

vy o_ . Wis— Vg 2 this example, and the problem is not decomposed for ATC, since
(Wlp)g= maximum A Michelena et al[2] showed that these formulations yield equiva-
Vi eCl_iyp L lent solutions. At a KKT point, the gradient of the Lagrangian is
zero
R\ \2/pi-1 rij)ay
where ;= > | (W), )XR ™ =rij) 0 —ar Vi+uiVg1+u,Vg,=0
“ l 119(8] yij>'g 0 2,0 1
1( L TR, S ) 17) zﬁlk + zv\\:vz((RRllk_F;el‘l’()) + O1 g
= T M 1k~ M1k Mo 7=
2\"a(slyiyg (Sl g 1 ! 1 2 0 0
and where(:ﬁ_l)p is the set of children of parent elemgntthat w2
cgpt?m Lr:)klng variableg (i.e., ¥ drops out for children where ~ui=1, (giis active .-.ngszik
< Jylj>/3 ) ) . . .
In summary, the generalized weighting update method involves 202
iteratively solving the ATC formulation and updating the weight- o= s Rik (g, is active
ing coefficient vectors of each elemefwhich express relative 1+w
preferences for meeting each tasgai achieve a solution with w2 1
user-specified inconsistency deviation tolerances for each re- - Ri =1, R‘fk:m, RikfR‘fk:miO

sponse variabl®R and each linking variabl@¥. The method is

implemented with the following steps: 2

#0 (20)

S.EeE=

1. Set an acceptable inconsistency deviation tolerance for each 1+w?

response variable and each Iin_king variable and set initi?‘his shows thate is nonzero at the KKT point for any finite
weights(for example, set all weights t0).1 weight; howeverw can be found to achieve arbitrarily close to

2. Solve the ATC Problem zero. It is important to note that approaches zero as ap-

3. If the_ inconsistency deviation tol_erance IS not S.at'Sf'ed at Wgoaches infinityor zero, and the goal is to ensure that the incon-
solution, then update each term in each weighting coefficie i

tencies between the responses at each level are within an ac-

vector using Eqs(14) and(17) and return to step 2. ceptable tolerance, rather than focusing on the value. dfhe
inconsistency IRik— R?k) approaches zero only as approaches
Demonstration infinity.

_ In addition, to demonstrate the need to avoid setting arbitrarily
iarge weights, this problem was implementedviaTLAB ® 6.5.0
using the fmincon function with the feasible starting point
o , [RIR} £]"=[255]" and the following parameters: TolCon
minimize|z, 5 =TolFun=TolX=10"1°. The algorithm and parameters are
= specified here because the algorithm behavior depends on the pa-
subject toz;>1 (18) rameters and starting point; however, this example serves to show
the basic trends. Figure 3 shows the number of function evalua-
The solution to this problem is,=1. In the relaxed formulation tions needed to converge to a solution for each valua.oThe
of this problem, copies af; are made at level-0 elemehaind at figure shows an upward trend, emphasizing the need to avoid
level-1 elementk, using theR notation to designate responsedarge weighting terms when possible.
(there are no local variables or linking variablesand the Figure 4 shows the resulting inconsistency deviati(R;} (
weighted deviation between the copies is constrained less than qgd) at the optimum for each value of. The graph shows a
equal tos. The positive, finite weight is used as the weighting rend of reduced error as the weighting term is increased, although
term. The relaxed AAO problertbefore decompositionis then  ha error never reaches zero.
In general, it is difficult to set appropriate weights simply by
guessing. The weighting update method is applied to this example

To illustrate the topic of strict consistency for unattainable tal
gets, a simple example is used where the tafgat in this case
is unattainable

minimize|RY,J|5+ &

0 1
RakcRaco to show how appropriate weights are found. In this example, the
subject to g;=||w(R}—Ry)[5—e<0 response functiony, is a linear function oR?, so the derivative
1 of the response function is a constantX), therefore, the use of
92=1-Ry =<0, the weighting update method to find appropriate weights yields
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weight leg) Table 1 Results of the two-level and three-level geometric pro-

. FIﬂ. E+HID %“ 1 Ex12 E.--.'.'- 1 h-—.'-' :'_—._":, graming examples
£ al Two-Level Three-Level
i
= 1EM . . . .
4 Default W:;%I;Lng Default W:l;%k;ttzng
é N weights method weights method
= 1EdE
. " Wy 1 27.72 1 109.70
o 53 ws| 1 14.61 1 99.34
Fig. 4 Inconsistency between responses at the optimum as a ﬁé’ S wii 1 16.64 1 103.59
function of the weighting term 'é’S 25 W . . 1 85.96
o~ ‘
whop -- -- 1 98.05
ro—T) dr| Y2 Rg 12 . b4 -- -- 1.47 0.01
w= 7 R0l =g (21) w8 2 -- -- 1.26 0.01
IR} 0 28
28  z 0.69 0.01 0.78 0.01
The update procedure was implemented for this example with § 2 '@ 2 . . 0.80 0.01
inconsistency tolerance goal 6102, and a starting weight of x 3 5 ' )
w=1. The proper weight needed to achieve this inconsisteng = Zs 0.65 0.01 L.05 0.01
tolerancew=9.95, was found after three weighting update itera Z1y 0.96 0.01 - - --

tions and a total of 89 function evaluations.

Geometric Programing Example linking variable between elemerBsandC, variables,, z5, and

The geometric programing example, proposed by Kih) is  z;, are local variables of elemeAt variableszg, z4, andz;, are
used here as a multilevel example with linking variables to dentecal variables of elemerB, and variableg,,, z,5, andz,, are
onstrate the weighting update method. The original design tardetal variables of elemer@. The constraintg;, 9>, 93, 94, Js,

problem is and gg are associated with elements A, B, B, C, andC,
T St respectively. Kim[ 1] provides a picture of this decomposition for
minimizef=z7+2z; reference.
21,25, .y Z14 . . . _ R
The problem was first solved with default weights=w{:
subject to g, =25 ?+25—22<0 =w),=[1]. At the solution, resulting inconsistency deviations

are 0.688, 0.649, and 0.961 foy, zg, andz,,, respectively, all of

2,2 2 4
92=25%26 "~ 27<0 which are larger than the acceptable tolerance value of.10s-

93:z§+z§—z§1§0 ing the weighting update method, the weights are updated with
Egs.(14) and(17), and the new problem is solved. This process of
94=25°+ 22— 22,<0 updating and solving is repeated four times before converging.

The final weights, wis=14.534, wi-=16.561, and wj,
=27.572, yield inconsistencies of 10for z3, z5, andzy;. The
weighting update method successfully found the weighting coef-
ficients that yield a solution with the desired inconsistency toler-

_ 2, -2 2
O5=21;+ 215 —275<0

_ 2,2 2
O6= 2111 Z1,— 234<0

hy=22—23—-2,2-22=0 ance. These results are summarized in Table 1.
hz:zg_zg_zg_zgzo _ Three-Le_veI Decomposition. In the three-leve_l deco_mposi-
. ) y tion, following Tzevelekos et al.13], the problem is partitioned
hy=2z5—25—24“— 27,5 +27,=0 into five elements: one level-0 elemeftwith two level-1 chil-
dren,B and C, and two level-2 element) and E, which are
hy=25—23,— 22, 224+ 23,=0 i i o i
47 %6 S11 f127 4137 “14 children ofB andC, respectively. In the formulationzg is treated

(22) as a linking variable between elemefdsandC, z;; is set as a

parameter with knownoptimal) value 1.30, the equality con-
The original problem will be decomposed first as a two-level ATGtraints of the original problerh,, h,, h;, andh, are used to
hierarchy with three elements, as proposed by Kify and sec- calculatez, , z,, z;, andz, as response functions of elemeBts
ond, as a three-level ATC hierarchy with five elements, as pr@, D, andE, respectively. The response function of elem&ris
posed by Tzevelekos eta[13]. The feasible starting point f=(z2+22), with the top level target set to zero. The variabje
z = [5,5,2.76,0.25,1.26,4.64,1.39,0.67,0.76,1.70,2.26,1.41,2.7d 4 |ocal variable of elemerR, variablez, is a local variable of
2.66]" is used for all trials, and the acceptable inconsistency tadlementC, variableszg, zg, andz, are local variables of element
erance value of 10? is used for all response variables and linkin>, and variables,,, z;5, andz,, are local variables of element
variables. E. The constraintg, 0, g3, d4, Js, andgg are associated with
elementsB, C, D, D, E, andE, respectively.

Two-Level Decomposition. In the two-level decomposition, h bl f ved with defaul . R
following Kim [1], the problem is partitioned into three elements: TRe problem was first solved with default weight§,=wg

one level-0 elementd, with two level-1 childrenB andC. The :_W1C:W§D:W§E:[1]' At the solution, resulting inconsisten-
equality constraints of the original problem, h,, hy, andh, ciesare 1.47,1.26, 0.78, 0.80, and 1.0540rz;, z3, 5, andzs,

are solved forz,, z,, z5, andzg, respectively, and used as re-espectively, all of which are larger than the acceptable tolerance
sponse functions of elements A, B, andC, respectively. The value of 10°2. Using the weighting update method, the weights
objective function of each element is then to minimize deviatioare updated with Eqs(14) and (17), and the new problem is
between targets and responses at that element, as (#)Eghere  solved. This process of updating and solving is repeated five times
the top-level targets are both zero. The variahlgis treated as a before converging. The final weightw{A:109.70,W?B:99.34,

21,2y, ...,214.=0
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Table 2 Optimal solution to original, two-level ATC, and three- Table 3 Speed of convergence statistics for the geometric
level ATC formulations programming problem

Original 2-Level ATC 3-Level ATC Num
Number of Function Wei ’
Evaluations cight
Updates
p
Default | WUM | Default | WUM —
1
AAO | Weights | (107) | Weights | (107) Original Problem 25,173 -
- - 2 Level ATC A:241 B: 110
z 2.84 2.25 2.83 0.75 2.82 Default Weights C: 115 _
| 3.09 204 307 | 064  3.07 21 I;fgvgtliﬁggpdate A: Is,cqogzszlz; 8,639 P
z | 236 | 153 235 | 158 235 2 Level ATC 31,777 B: 15316 —
Z4 0.76 0.76 0.76 0.90 0.76 Required Weights C: 16,297
zs | 087 1.00 087 | 070 087 3 Level foTegghts RIS BLE ..
z | 281 121 279 | 176 280 3 Level ATC 4: 45,092 B: 34,087 p
Z7 0.94 1.30 0.94 0.64 0.93 Weighting Update C: 35,449 D:984 E:905
zg 0.97 0.93 0.97 0.97 0.97
Zg 0.87 1.07 0.87 0.86 0.86
Z10 0.79 0.93 0.80 0.80 0.80 Weig_htinlg coefficients have Pt}h_e effect olf tight trust rﬁgions_, t[1)|r_e-
* s + + venting large moves at each iteration. In contrast, the weighting

“u 1.30 0.94 1.30 1.30 1.30 update method first solves the problem with small weighting co-
zip | 0.84 0.84 0.84 0.84 0.84 efficients, allowing the algorithm to move quickly in the design
Z13 1.77 1.27 1.76 1.76 1.76 space and converge to a point close to the final solution. The
214 1.55 0.96 1.54 1.55 1.55 weights are then update@ncreaseyl and the new problem is

solved starting at the solution to the problem with the previous
weighting coefficients. In this way, the weighting update method
first moves quickly to the proximity of the solution, then tightens
wR.=103.59,WR, = 85.96, andv. = 98.05, yield inconsistencies tolerances and closes in precisely on the final solution. Results

-2 dz. Th ohting undate methodvary based on the_ problem, acceptable inconsistency tolt_arance,
of 10"“for z,, z;, 23, z5, andz. The weighting upc d and the starting point; however, this example shows that using the
successfully found weights that yield a solution with the desir

; ' ! . ighting update method can sometimes be substantially more
inconsistency tolerance. These results are summarized in Tabl@ i Siant than even best-case-scenario guessing

Accuracy. It is important to stress that inconsistencies in re- Further study on local convergence properties of ATC and the
sponse and linking variables affect the entire solution, not only thegighting update method is needed before these results can be
copied variables themselves. Table 2 summarizes the solutiong@meralized. Note that in contrast with notions of asymptotic local
the original, two-level ATC, and three-level ATC formulationsconvergence developed for AAO algorithresg., standard non-

For the two-level and three-level formulations, results are shovinear programing local convergence concepts have not been rig-
for default weightgall weights=1) and for the weighting update orously defined for any system optimization method relying on
method within consistency tolerances of £Gfor all variables. In decomposition, including ATC.

the table, th& indicates that the variable has nonzero inconsis- Table 3 also shows that the ATC decomposition can be solved
tency at the solution, and the value of the variable copy at théth fewer function evaluations per element than the original
parent level is reported. The T indicates that the variable w&®O formulation. It is difficult to compare these cases directly
treated as a static parameter. Notice that solutions using the Because the objective function of each element is different from
fault weights are far from the solution to the original problemthe objective function of the AAO formulation. However, gener-
whereas solutions using the weighting update method are closedly, each decomposed element will take less computational time
all variables. Smaller inconsistency tolerances result in solutiopgr function evaluation than the AAO formulation, and decompo-
closer to the solution of the original problem. sition allows additional possibilities of parallel computing. These

results are encouraging because they show that in some situations

Local Convergence. One purpose of using the weighting up-ne decomposed formulation can be solved in less time than the
date method is to avoid setting weights arbitrarily high to avoid o formulation.

costly iterations; however, the weighting update method requires
additional update iterations to converge on the desired weights, s0 .
it is worthwhile to examine and compare the convergence e rzonclusions
ciency. The two-level geometric programing problem was solved This article showed that it is important to set weights appropri-
using the required weights directly as starting weights, thwely to achieve inconsistency deviations within an acceptable tol-
achieving the desired tolerance without any weighting update #rance when top-level targets are unattainable. Setting appropriate
erations. This represents the best possible case that could benetights is nontrivial, particularly for multilevel hierarchies where
tained by guessing weights. Still, in this case the algorithm rereights at various levels influence each other in complex ways.
quired almost twice as many function evaluations per element $@tting weights too small can result in solutions far from the so-
converge as did the weighting update method. These results rtgon of the original problem, and setting weights too large can
summarized in Table 3. Note that tivaTLAB function fmincon result in excessive computational cost and numerical problems.
based on SQP, was used in all cases. The weighting update method can automatically find weighting
It took longer to converge when starting with the desiredoefficients required for generating a solution with user-specified
weights because the starting point is not close to the solutidnconsistency tolerances. This method can help ATC users to
Large weighting coefficients act to slow progress of the algorithachieve acceptable solutions without the burden of trial-and-error
by restricting the deviation between parent and child elementssaarching for appropriate weighting coefficients, which can be
each ATC iteration. Conceptually, this can be thought of as antractable for multilevel problems. Despite the added computa-
effect similar to that of a trust-region algorithm, where highion involved in iteratively updating the weights, the total compu-
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tational cost can sometimes be lower than solving the probl

directly with the desired weights or solving the problem AAO. )

Future work is needed to define and understand local convergence , —

properties of coordination strategies for hierarchical partitioned
systems and bring more rigor to solution efficiency definitions for _R

weighting coefficient vector for the deviation of link-
ing variables coordinated at elemgnlevel i

index for terms in a vector

index for a specific term in a vector

d d optimizati tratedi €j; = tolerance variable for consistency of targets set at
ecomposed optimization strategies. elementj level i and the responses ¢& children
eiyj tolerance variable for consistency of linking variables
Acknowledgments coordinated at elemertleveli for child elements at
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of elementj

= vector of Lagrange multipliers for inequality con-
straints at elemernit level i

= vector of Lagrange multipliers for equality constraints
at element leveli

preciated. This article is dedicated to the work and memory of Dr. @i = vector of user specified tolerances for inconsistency
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deviation between response variables of elenjeait
level i and targets set bj/s parent

y . o . .
Nomenclature 001 = vector of user spec[fleq tolera}nces for inconsistency
deviation between linking variables at levet 1 that
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