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Weighting coefficients are used in analytical target cascading (ATC) at each eleme
the hierarchy to express the relative importance of (a) matching targets passed fro
parent element and (b) maintaining consistency of linking variables and consistency
designs achieved by subsystem child elements. Proper selection of weight values is
when the top-level targets are unattainable, for example when ‘‘stretch’’ targets are u
In this case, strict design consistency cannot be achieved with finite weights; howe
is possible to achieve arbitrarily small inconsistencies. This article presents an itera
method for finding weighting coefficients that achieve solutions within user-specifie
consistency tolerances and demonstrates its effectiveness with several example
method also led to reduced computational time in the demonstration examples.
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Introduction
Analytical target cascading~ATC! is a model-based, hierarch

cal optimization methodology for systems design. ATC require
set of analysis or simulation models that predict responses~the
characteristics! of each system, subsystem, and component a
function of the design variables~the decisions! @1#. The analysis
models are organized using design optimization models that
the elements or building blocks of the hierarchy, as shown in F
1 with the standard index notation. The top level represents
overall system, and each lower level represents a subsyste
component of its parent element. In the ATC process, top-le
system design targets are propagated down to lower subsy
and component level targets that are then optimized to mee
targets as closely as possible. The resulting responses are r
anced at higher levels by iteratively adjusting targets and des
to achieve consistency.

Following Michelena et al.@2#, and using the general notatio
introduced by Michalek and Papalambros@3#, theoriginal design
target problemis

minimize
x

ir ~x!2Ti2
2

subject to g~x!<0, h~x!50 (1)

whereT is the vector of targets,r is the vector-valued respons
function,x is the complete vector of design variables,g andh are
vectors of design constraint functions, andi i2

2 denotes the squar
of the l 2 norm. Equation~1! represents the entire large-scale sy
tem, and it is solved all at once~AAO! ~i.e., all variables and
functions are evaluated together during search!. Given that the
system has an implied hierarchical structure ofN11 levels, as in
Fig. 1, the formulation~still solved AAO! can be equivalently
represented by designating response variables and linking
ables, creating copies of these variables at parent and child le
and adding constraints forcing the copies to be equal

minimize
x̄i j ,y( i 11) j

i

iR0l
0 2Ti2

2
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subject to (
kPCi j

iR( i 11)k
i 2R( i 11)k

i 11 i2
250

(
kPCi j

iSky( i 11) j
i 2y( i 11)k

( i 11) i2
250

gi j ~ x̄i j !<0, hi j ~ x̄i j !50

where Ri j
i 5r i j ~ x̄i j !

x̄i j 5@xi j
i ,yi j

i ,R( i 11)k1

i , . . . ,R( i 11)kci j

i #T

; j PEi ,i 50,1, . . . ,N (2)

wherexi j
i is the vector of local variables for elementj at level i ,

yi j
i is the vector of linking variables for elementj at level i , yi j

i 21

is the copy of the vector of linking variables at elementj level i
coordinated by the parent element at level (i 21), Sj is the selec-
tion matrix indicating which terms of the parent coordinating lin
ing variable vectoryi j

i 21 are relevant to the linking variable vecto
yi j

i at elementj , Ri j
i is the vector of responses at elementj level i ,

Ri j
i 21 is the vector of response targets for elementj at level i that

are set by the parent element at level (i 21), r i j is the vector-
valued response function of elementj at level i , gi j is the vector
of inequality constraints at elementj level i , hi j is the vector of
equality constraints at elementj level i , Ei is the set of elements
at level i , Ci j is the set of elementj ’s children numbered 1
throughci j , and l designates the top-level element. Note thatyi j

i

drops out for elements that do not have linking variables, such
elementl , andR( i 11)k

i terms drop out for leaf elements~elements
that do not have children!.

Following Michelena et al.@2#, the formulation in Eq.~2! is
relaxed by allowing deviation between linking variable and
sponse variable copies to be within a tolerance« and minimizing
«. Additionally, vectors of weighting coefficientsw are introduced
for linking and response variables to specify the relative imp
tance of matching each target at each level. This yields therelaxed
AAO formulation, which is set up to be, but has not yet bee
decomposed

he
d
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minimize
x̄i j ,y( i 11) j

i ,« i j
R ,« i j

y

iR0l
0 2Ti2

21(
i 50

N21

(
j PEi

« i j
R1(

i 50

N21

(
j PEi

« i j
y

subject to

(
kPCi j

iw( i 11)k
R +~R( i 11)k

i 2R( i 11)k
i 11 !i2

2<« i j
R

(
kPCi j

iSkw( i 11) j
y +~Sky( i 11) j

i 2y( i 11)k
( i 11) !i2

2<« i j
y

gi j ~ x̄i j !<0, hi j ~ x̄i j !50

where
Ri j

i 5r i j ~ x̄i j !,

x̄i j 5@xi j
i ,yi j

i ,R( i 11)k1

i , . . . ,R( i 11)kci j

i #T

; j PEi ,i 50,1, . . . ,N (3)

where« i j
R is the response deviation tolerance variable for elem

j level i , « i j
y is the linking deviation tolerance variable for eleme

j level i , wi j
R is the response deviation weighting coefficient vec

for element j at level i , wi j
y is the linking variable deviation

weighting coefficient vector for elementj at level i , and the+
symbol is used to indicate term-by-term multiplication of vecto
such that@a1a2 . . . an#T+@b1b2 . . . bn#T5@ab1ab2 . . . abn#T.

Finally, the problem is decomposed into separate elementsPi j ,
and monotonicity analysis@4# is used to show that the«-bound
constraints of each element are active, allowing them to be so
for « and moved into the objective function. The general notat
for a single ATC element Pi j in the hierarchy is then

minimize
x̄i j ,y( i 11) j

i

iwi j
R+~Ri j

i 2Ri j
i 21!i2

21iSjwip
y +~Sjyip

i 212yi j
i !i2

2

1 (
kPCi j

iw( i 11)k
R +~R( i 11)k

i 2R( i 11)k
i 11 !i2

2

1 (
kPCi j

iSkw( i 11) j
y +~Sky( i 11) j

i 2y( i 11)k
( i 11) !i2

2

subject to
gi j ~ x̄i j !<0, hi j ~ x̄i j !50

where
Ri j

i 5r i j ~ x̄i j !,

x̄i j 5@xi j
i ,yi j

i ,R( i 11)k1

i , . . . ,R( i 11)kci j

i #T (4)

The sequence of solving each optimization problem elementPi j
and passing its solution to the rest of the hierarchy is calle
coordination strategy. Michelena et al.@2# proved that using cer-
tain classes of coordination strategies to manage elements o
ATC formulation in Eq.~4!, will result in convergence to the sam

Fig. 1 Example of index notation for a hierarchically parti-
tioned design problem
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solution as that of the relaxed AAO formulation in Eq.~3!. Under
these specific coordination strategies, managing the ATC hie
chy can be viewed as solving a series of Hierarchical Overlapp
Coordination~HOC! problems, which have been shown to ha
nonascent, global convergence properties@5–7#.

ATC has been applied to automotive applications@8–11#, in-
cluding the design of product families@11#, as well as to the
design of building systems@12#. Decomposing large-scale prob
lems can be advantageous because it organizes and separates
els and information by focus or discipline, provides communic
tion only where necessary, and facilitates concurrent des
Moreover, ATC can solve some problems that are computation
difficult or impossible to solve all at once. Occasionally, deco
position can also result in improved computational efficiency
cause the formulation of each element typically has fewer deg
of freedom and fewer constraints than the AAO formulatio
However, computational efficiency of ATC is not yet well unde
stood, and empirical evidence shows that it can vary dramatic
depending on the choice of weighting coefficients@13#.

Several other systems have been proposed for multidisciplin
design optimization~MDO! of complex systems. In particular
collaborative optimization~CO! @14#, based on concepts intro
duced by Sobieski@15#, contains a similar form of minimizing
deviations between targets and responses using the square o
l 2 norm. CO formulations so far have dealt only with bilev
problems, although multilevel extensions seem possible. Mo
over, it has been observed by Alexandrov and Lewis@16# and
reemphasized by Kim@17# that CO cannot, in general, produc
KKT points because of constraint qualification failures, where
ATC has proven convergence properties. ATC is different fro
MDO frameworks, such as multidisciplinary feasible~MDF! and
individual discipline feasible~IDF! @18#, or the bilevel integrated
system synthesis~BLISS! approach@19#, where analysis models
at a single level are integrated under a master problem introdu
as an authority to achieve the overall design goal. Furtherm
ATC should not be confused with strategies for nonhierarch
systems, such as concurrent subspace optimization~CSSO! @20#,
or formulation choices for design optimization statements at in
vidual problem elements, such as simultaneous analysis and
sign ~SAND! or nested analysis and design~NAND! @21#. In con-
trast, ATC represents a multilevel decision-making hierarchy
complex systems design consisting of an arbitrarily large hie
chy of levels of analysis and design models representing syste
subsystems, and components.

The global convergence theory of ATC@2# asserts that weight-
ing coefficients can be found such that consistency devia
terms converge to zero. However, we will show that for proble
with attainable targets, strictly consistent designs can be fo
with any positive finite weighting coefficients, but for problem
with unattainable targets, strict design consistency cannot
achieved with finite weighting coefficients. Thus, the selection
proper weighting coefficients is necessary to achieve a solu
within acceptable inconsistency tolerances. This result is part
larly relevant when intentionally using ‘‘stretch targets’’ o
‘‘stretch goals,’’ terms used in management communities to
scribe setting very high, usually unattainable, goals in order
motivate employees@22#.

In this paper the issue of consistency for unattainable targe
discussed, and an iterative approach is proposed to find weigh
coefficients that achieve solutions with user-specified incon
tency tolerances. The method is then generalized and dem
strated with several examples.

Consistency for Unattainable Targets
In the ATC global convergence proof@2#, Michelena et al.

proved that when elements of the ATC hierarchy@Eq. ~4!# are
solved separately and iteratively using certain coordination st
egies, the system will converge to the solution of the relaxed A
formulation, Eq.~3!. They go further to assert ‘‘given that consis
MARCH 2005, Vol. 127 Õ 207
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tency and feasibility are assumed for the original design ta
problem, it is possible to find weightsw( i 11)k

R and w( i 11)k
y such

that« ( i 11)k
R and« ( i 11)k

y . . . converge to zero . . . This implies that
the ATC process, recursively applied to the problem hierarc
produces an optimum solution of the original design target pr
lem.’’

The concepts of feasibility and consistency deserve further
cussion here. Feasibility of the original design target probl
means that a design exists that satisfies all constraints. Feasi
of the ATC elements means a local design exists at each A
elementPi j that satisfies all of the constraints at that eleme
Consistency of the ATC formulation further supposes a solut
exists such thatR( i 11)k

i 5R( i 11)k
i 11 andy( i 11)k

i 5y( i 11)k
i 11 for all i , j

PEi , kPCi j , which implies that«R50 and«y50 for all ele-
ments. Feasibility of the original design target formulation impl
that a design exists in the decomposed ATC formulation tha
feasible at all elements and consistent among elements.

In this section it is demonstrated that despite existence o
feasible, consistent design, the ATC formulation will not find th
design with finite weighting coefficients unless the design me
the top-level targets exactly. Specifically, if a feasible solution
the original problem exists that meets the top-level targets exa
then any choice of positive, finite weighting coefficients in t
ATC formulation will yield a consistent solution. If such a solu
tion does not exist, the ATC formulation will not yield a consiste
solution for any finite weighting coefficients. However, an AT
solution can be found with arbitrarily small inconsistency dev
tions if weights are chosen appropriately.

Michelena et al.@2# proposed a Pareto optimization analogy
illustrate the existence of error-zeroing weights, as shown in
2. They observed that Eq.~4! contains a weighted sum of devia
tion metric terms, and they visualized the solution as a Pareto
between terms in the objective function, showing how larg
weighting coefficients for parent-child deviation terms yie
points with lower consistency deviation between parent and c
at the expense of minimizing deviation from the top-level targ
However, this figure could be misleading. Note that if a cons
tent, feasible design exists that meets the top-level targets,
the design would map to the origin in Fig. 2 and any other des
would be either dominated by or equivalent to it in this spa
Therefore, in this case the Pareto surface degenerates to a s
point—the origin—which can be achieved with any positi
weighting coefficients. If such a design does not exist, then it w
be shown in Eqs.~7!, ~13!, and ~16! that, in general, the consis

Fig. 2 Existence of error-zeroing weights proposed by Michel-
ena et al. †2‡
208 Õ Vol. 127, MARCH 2005
get

hy,
b-

is-
m
ility
TC
nt.
ion

es
t is

f a
is
ets
to
tly,
e
-
nt
C
a-

to
ig.
-
set
er
ld
ild

et.
is-
then
ign
e.
ingle
e
ill

-

tency deviation approaches zero only as the weighting coeffici
for consistency approach infinity. So, in this case the vertical a
is tangent to the Pareto surface, and there are no finite e
zeroing weights. This is important for applications where unatta
able targets are used purposefully or when the designer is un
tain if targets can be achieved.

A simple example will demonstrate this situation. Let us exa
ine an unconstrained level-0 element with a single level-1 ch
The level-0 element is calledl , and the level-1 element is calle
k. There are no linking variables, and we consider only a sin
top-level targetT. Following Eq.~4!, the level-0 problem (P0l) is
written as

minimize
$x0l

0 ,R1k
0 %

iT2r 0l~x0l
0 ,R1k

0 !i2
21iw1k

R +~R1k
0 2R1k

1 !i2
2 (5)

Writing out the squaredl 2 norm in terms of vector elements b
using the angle bracket symbol^& to denote vector elements in
dexed witha, and dropping the functional dependency notati
for r 0l , the objective functionf 0l at level-0 is

f 0l5~T2r 0l !
21(

a
~^w1k

R &a^R1k
0 2R1k

1 &a!2 (6)

The first-order necessary conditions for optimality of an unco
strained problem require that if a~local! solution to Eq.~6! exists,
then the gradient of the objective function with respect to
response targetsR1k

0 at that point must be zero

] f 0l

]R1k
0 52~r 0l2T!

]r 0l

]R1k
0 12(

a
^w1k

R &a
2^R1k

0 2R1k
1 &a

]^R1k
0 &a

]R1k
0

52~r 0l2T!
]r 0l

]R1k
0

12S ^w1k
R &1

2^R1k
0 2R1k

1 &1@1,0, . . . ,0#T

1^w1k
R &2

2^R1k
0 2R1k

1 &2@0,1, . . . ,0#T

1 . . .
1^w1k

R &n
2^R1k

0 2R1k
1 &n@0,0, . . . ,1#T

D
52~r 0l2T!

]r 0l

]R1k
0 12w1k

R +w1k
R +~R1k

0 2R1k
1 !50

[^R1k
0 2R1k

1 &a5S T2r 0l

~^w1k
R &a!2D ]r 0l

]^R1k
0 &a

(7)

This last equation shows that the optimal design will not
strictly consistent (R1k

0 ÞR1k
1 ) for positive, finite weights unless

the top-level target is met exactly or the derivative of the respo
function with respect toR1k

0 happens to be zero at the optimum.
top-level targets are unattainable (T2r 0l)Þ0, then the inconsis-
tency deviation error (R1k

0 2R1k
1 ) will be nonzero, except in the

special case where the derivative of the response function is
at the optimum, which can happen mostly by coincidence. Th
in general, (R1k

0 2R1k
1 ) approaches zero only as the terms ofw1k

R

approach infinity.
At this point one is tempted to simply set large weights. Ho

ever, apart from the ATC convergence requirement, the size of
weights will also have a scaling effect on the nonlinear progra
ing algorithm used to solve the element problem. Adverse sca
will increase computational time or altogether prevent solution
the element problem. Additionally, as will be shown later, in mu
tilevel hierarchies the resulting deviations at any particular e
ment depend on ratios of the weights at that element to weigh
the parent element, and there are interactions between weight
linking variableswy and for response variableswR. So, simply
setting all weighting coefficients to large values will not necess
ily result in small inconsistency deviation values. The task then
to find appropriate weights such that the resulting inconsiste
deviation is acceptable. One way to approach this task is to
Transactions of the ASME
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the results of Eq.~7! to calculate estimates of the weighting term
w1k

R required to achieve acceptable consistency errorsu 1k
R for each

of the response targetsR1k
0 . To do this, we set the left-hand sid

of the equation to the desired inconsistencyu 1k
R and solve for the

weights

^w1k
R &a5US r 0l2T

^u 1k
R &a

D ]r 0l

]^R1k
0 &a

U1/2

(8)

Thus, in this example the weighting update method for find
appropriate weights to achieve consistency error tolerancesu 1k

R

would follow these steps:

1. Set initial-guess weights~sayw1k
R 5@1,1, . . . ,1#T).

2. Solve the ATC problem and calculate the top-level tar
deviation and the derivative of the response function at
solution.

3. If the deviation tolerance is not satisfied at the solution, th
use Eq.~8! to find new weighting terms and return to step

Generalization of the Weighting Update Method
The goal of the weighting update method is to automatica

identify appropriate weighting coefficients that achieve desi
with acceptable deviation tolerance values for the response
ables at each elementu i j

R and for the linking variables at eac
parent coordinating elementu ( i 11) j

y . The problem is first solved
using starting values for weighting coefficients. The solution
that problem is used to calculate a linear approximation of
weighting coefficients needed to achieve the desired toleran
Weights are updated with this approximation, and the problem
solved again. This process is repeated until the inconsistency
viation tolerance is achieved, namely, the final solution satis
the conditions

uRi j
i 212Ri j

i u<u i j
R

uy( i 11)k
( i 11) 2y( i 11)k8

( i 11) u<u ( i 11) j
y

;k,k8PCi j , j PEi , i 50,1, . . . ,N (9)

To generalize the method presented in the previous section
examine one of the KKT first-order necessary conditions for
timality of constrained nonlinear problems, which involves t
Lagrangian. From Eq.~4!, the LagrangianLi j of elementj at level
i is

Li j 5iwi j
R+~r i j 2Ri j

i 21!i2
21iSjwip

y +~Sjyip
i 212yi j

i !i2
2

1 (
kPCi j

iw( i 11)k
R +~R( i 11)k

i 2R( i 11)k
i 11 !i2

2

1 (
kPCi j

iSkw( i 11) j
y +~Sky( i 11) j

i 2y( i 11)k
( i 11) !i2

21mi j
T gi j 1li j

T hi j

(10)

where m and l are the vectors of Lagrange multipliers for th
inequality and equality constraints respectively. Expressing
norms with vector terms indexed with the symbola, we have

Li j 5(
a1

~^wi j
R&a1

^r i j 2Ri j
i 21&a1

!21(
a2

~^Sjwi j
y &a2

^Sjyip
i 21

2yi j
i &a2

!21 (
kPCi j

(
a3

~^w( i 11)k
R &a3

^R( i 11)k
i 2R( i 11)k

i 11 &a3
!2

1 (
kPCi j

(
a4

~^Skw( i 11) j
y &a4

^Sky( i 11) j
i 2y( i 11)k

( i 11) &a4
!2

1mi j
T gi j 1li j

T hi j (11)

If a feasible solution to Eq.~4! exists, then one property of th
Journal of Mechanical Design
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KKT first-order necessary conditions states that at the~local! so-
lution the gradient of the Lagrangian with respect to each termb
of the response target vectorR( i 11)g

i for elementg is zero

]Li j

]^R( i 11)g
i &b

52(
a1

F ~^wi j
R&a1

!2^r i j 2Ri j
i 21&a1

]^r i j &a1

]^R( i 11)g
i &b

G
12~^w( i 11)g

R &b!2^R( i 11)g
i 2R( i 11)g

i 11 &b

1mi j
T

]gi j

]^R( i 11)g
i &b

1li j
T

]hi j

]^R( i 11)g
i &b

50 (12)

Therefore, at the solution the deviation between response vari
copies at parent and child level is

^R( i 11)g
i 2R( i 11)g

i 11 &b

5
1

~^w( i 11)g
R &b!2 (

a1

S ~^wi j
R&a1

!2^Ri j
i 212r i j &a1

]^r i j &a1

]^R( i 11)g
i &b

D
2

1

2~^w( i 11)g
R &b!2 S mi j

T
]gi j

]^R( i 11)g
i &b

1li j
T

]hi j

]^R( i 11)g
i &b

D
(13)

Note that this equation holds for all elements except the top-le
element. To achieve desired response variable deviation tolera
within u ( i 11)g

R for each element inR( i 11)g
i , each weighting term

b in w( i 11)g
R should be updated as

^w( i 11)g
R &b5U Cgb

^u ( i 11)g
R &b

U1/2

where Cgb5(
a1

S ~^wi j
R&a1

!2^Ri j
i 212r i j &a1

]^r i j &a1

]^R( i 11)g
i &b

D
2

1

2 S mi j
T

]gi j

]^R( i 11)g
i &b

1li j
T

]hi j

]^R( i 11)g
i &b

D (14)

Note again that this equation holds for all levels except the
level, where the weighting coefficient vector is not updated. T
level response deviations reflect failure of the design to meet
top-level targets, rather than inconsistencies in the design.
top-level weighting coefficient vector is set by the modeler
express the relative importance of matching each top-level tar
it is not updated. While all weighting coefficient vectors reflect t
relative importance of matching variable copies, the lower-le
vectors are updated such that the final preference reflects
which is needed to achieve user-defined inconsistency toleran

Additionally, at the solution, the gradient of the Lagrangi
with respect to the linking variables of elementj is zero

]Li j

]^yi j
i &b

52(
a1

~^wi j
R&a1

!2^r i j 2Ri j
i 21&a1

]^r i j &a1

]^yi j
i &b

12~^Sjwip
y &b!2^yi j

i 2Sjyip
i 21&b1mi j

T
]gi j

]^yi j
i &b

1li j
T

]hi j

]^yi j
i &b

50 (15)

Therefore, the deviation between linking variable termb in yi j
i

and the parent coordination copy inyip
i 21 is
MARCH 2005, Vol. 127 Õ 209
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^yi j
i 2Sjyip

i 21&b

5
1

~^Sjwip
y &b!2 (

a1

S ~^wi j
R&a1

!2^Ri j
i 212r i j &a1

]^r i j &a1

]^yi j
i &b

D
2

1

2~^Sjwip
y &b!2 S mi j

T
]gi j

]^yi j
i &b

1li j
T

]hi j

]^yi j
i &b

D (16)

This term represents deviation between linking variable copie
element j and the parent coordination copy. Recall that linki
variables are shared by elements at the same level and coordi
at the parent level. To achieve a desired deviation tolerance
tween elements at the same level, the weight for each termb must
be set high enough so that the difference between copies at
two child elements is less than or equal to the tolerance.
updating calculation for the linking variable weighting coef
cients is then

^wip
y &b5 maximum

; j , j 8PC( i 21)p
b

UC j b2C j 8b

^uip
y &b

U1/2

where C j b5(
a1

S ~^wi j
R&a1

!2^Ri j
i 212r i j &a1

]^r i j &a1

]^Sj
Tyi j

i &b
D

2
1

2 S mi j
T

]gi j

]^Sj
Tyi j

i &b
1li j

T
]hi j

]^Sj
Tyi j

i &b
D (17)

and whereC( i 21)p
b is the set of children of parent elementp that

contain linking variableb ~i.e., C drops out for children where
^Sj

Tyi j
i &b50).

In summary, the generalized weighting update method invol
iteratively solving the ATC formulation and updating the weigh
ing coefficient vectors of each element~which express relative
preferences for meeting each target! to achieve a solution with
user-specified inconsistency deviation tolerances for each
sponse variableu R and each linking variableu y. The method is
implemented with the following steps:

1. Set an acceptable inconsistency deviation tolerance for
response variable and each linking variable and set in
weights~for example, set all weights to 1!.

2. Solve the ATC Problem
3. If the inconsistency deviation tolerance is not satisfied at

solution, then update each term in each weighting coeffic
vector using Eqs.~14! and ~17! and return to step 2.

Demonstration
To illustrate the topic of strict consistency for unattainable t

gets, a simple example is used where the target~zero in this case!
is unattainable

minimize
z1

iz1i2
2

subject to z1>1 (18)

The solution to this problem isz151. In the relaxed formulation
of this problem, copies ofz1 are made at level-0 elementl and at
level-1 elementk, using theR notation to designate respons
~there are no local variables or linking variables!, and the
weighted deviation between the copies is constrained less tha
equal to«. The positive, finite weightw is used as the weighting
term. The relaxed AAO problem~before decomposition! is then

minimize
R1k

0 ,R1k
1 ,«

iR0k
0 i2

21«

subject to g15iw~R1k
0 2R1k

1 !i2
22«<0

g2512R1k
1 <0,
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where R0l
0 5r 0l~R1k

0 !5R1k
0 (19)

Note that the relaxed AAO problem is used in the remainder
this example, and the problem is not decomposed for ATC, si
Michelena et al.@2# showed that these formulations yield equiv
lent solutions. At a KKT point, the gradient of the Lagrangian
zero

¹ f 1m1¹g11m2¹g250

F 2R1k
0

0
1

G1m1F w2~R1k
0 2R1k

1 !

2w2~R1k
1 2R1k

0 !

21
G1m2F 0

21
0

G5F 0
0
0
G

[m151, ~g1is active! [R1k
0 5

w2

11w2 R1k
1

[m25S 2w2

11w2DR1k
1 ~g2 is active!

[R1k
1 51, R1k

0 5
w2

11w2 , R1k
1 2R1k

0 5
1

11w2 Þ0

[«5S w

11w2D 2

Þ0 (20)

This shows that« is nonzero at the KKT point for any finite
weight; however,w can be found to achieve« arbitrarily close to
zero. It is important to note that« approaches zero asw ap-
proaches infinityor zero, and the goal is to ensure that the inco
sistencies between the responses at each level are within a
ceptable tolerance, rather than focusing on the value of«. The
inconsistency (R1k

1 2R1k
0 ) approaches zero only asw approaches

infinity.
In addition, to demonstrate the need to avoid setting arbitra

large weights, this problem was implemented inMATLAB ® 6.5.0
using the fmincon function with the feasible starting poin
@R1

0 R1
1 «#T5@2 5 5#T and the following parameters: TolCo

5TolFun5TolX510210. The algorithm and parameters a
specified here because the algorithm behavior depends on th
rameters and starting point; however, this example serves to s
the basic trends. Figure 3 shows the number of function eva
tions needed to converge to a solution for each value ofw. The
figure shows an upward trend, emphasizing the need to a
large weighting terms when possible.

Figure 4 shows the resulting inconsistency deviation (R1
1

2R1
0) at the optimum for each value ofw. The graph shows a

trend of reduced error as the weighting term is increased, altho
the error never reaches zero.

In general, it is difficult to set appropriate weights simply b
guessing. The weighting update method is applied to this exam
to show how appropriate weights are found. In this example,
response functionr 0l is a linear function ofR1

0 , so the derivative
of the response function is a constant (51), therefore, the use o
the weighting update method to find appropriate weights yield

Fig. 3 Number of function evaluations required to find the so-
lution as a function of the weighting term
Transactions of the ASME
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(21)

The update procedure was implemented for this example with
inconsistency tolerance goal ofu51022, and a starting weight of
w51. The proper weight needed to achieve this inconsiste
tolerance,w59.95, was found after three weighting update ite
tions and a total of 89 function evaluations.

Geometric Programing Example
The geometric programing example, proposed by Kim@1#, is

used here as a multilevel example with linking variables to de
onstrate the weighting update method. The original design ta
problem is

minimize
z1 ,z2 , . . . ,z14

f 5z1
21z2

2

subject to g15z3
221z4

22z5
2<0

g25z5
21z6

222z7
2<0

g35z8
21z9

22z11
2 <0

g45z8
221z10

2 2z11
2 <0

g55z11
2 1z12

222z13
2 <0

g65z11
2 1z12

2 2z14
2 <0

h15z1
22z3

22z4
222z5

250

h25z2
22z5

22z6
22z7

250

h35z3
22z8

22z9
222z10

221z11
2 50

h45z6
22z11

2 2z12
2 2z13

2 1z14
2 50

z1 ,z2 , . . . ,z14>0 (22)

The original problem will be decomposed first as a two-level AT
hierarchy with three elements, as proposed by Kim@1#, and sec-
ond, as a three-level ATC hierarchy with five elements, as p
posed by Tzevelekos et al.@13#. The feasible starting poin
z 5 @5,5,2.76,0.25,1.26,4.64,1.39,0.67,0.76,1.70,2.26,1.41,2
2.66]T is used for all trials, and the acceptable inconsistency
erance value of 1022 is used for all response variables and linkin
variables.

Two-Level Decomposition. In the two-level decomposition
following Kim @1#, the problem is partitioned into three elemen
one level-0 element,A, with two level-1 children,B andC. The
equality constraints of the original problemh1 , h2 , h3 , and h4
are solved forz1 , z2 , z3 , and z6 , respectively, and used as re
sponse functions of elementsA, A, B, andC, respectively. The
objective function of each element is then to minimize deviat
between targets and responses at that element, as in Eq.~4!, where
the top-level targets are both zero. The variablez11 is treated as a

Fig. 4 Inconsistency between responses at the optimum as a
function of the weighting term
Journal of Mechanical Design
an

cy
a-

m-
rget

C

ro-

.71,
ol-
g

s:

-

on

linking variable between elementsB andC, variablesz4 , z5 , and
z7 , are local variables of elementA, variablesz8 , z9 , andz10 are
local variables of elementB, and variablesz12, z13, andz14 are
local variables of elementC. The constraintsg1 , g2 , g3 , g4 , g5 ,
and g6 are associated with elementsA, A, B, B, C, and C,
respectively. Kim@1# provides a picture of this decomposition fo
reference.

The problem was first solved with default weightsw1B
R 5w1C

R

5w1A
y 5@1#. At the solution, resulting inconsistency deviation

are 0.688, 0.649, and 0.961 forz3 , z6 , andz11, respectively, all of
which are larger than the acceptable tolerance value of 1022. Us-
ing the weighting update method, the weights are updated w
Eqs.~14! and~17!, and the new problem is solved. This process
updating and solving is repeated four times before converg
The final weights, w1B

R 514.534, w1C
R 516.561, and w1A

y

527.572, yield inconsistencies of 1022 for z3 , z6 , andz11. The
weighting update method successfully found the weighting co
ficients that yield a solution with the desired inconsistency tol
ance. These results are summarized in Table 1.

Three-Level Decomposition. In the three-level decomposi
tion, following Tzevelekos et al.@13#, the problem is partitioned
into five elements: one level-0 elementA with two level-1 chil-
dren, B and C, and two level-2 elements,D and E, which are
children ofB andC, respectively. In the formulation,z5 is treated
as a linking variable between elementsB and C, z11 is set as a
parameter with known~optimal! value 1.30, the equality con
straints of the original problemh1 , h2 , h3 , and h4 are used to
calculatez1 , z2 , z3 , andz4 as response functions of elementsB,
C, D, andE, respectively. The response function of elementA is
f 5(z1

21z2
2), with the top level target set to zero. The variablez4

is a local variable of elementB, variablez7 is a local variable of
elementC, variablesz8 , z9 , andz10 are local variables of elemen
D, and variablesz12, z13, andz14 are local variables of elemen
E. The constraintsg1 , g2 , g3 , g4 , g5 , andg6 are associated with
elementsB, C, D, D, E, andE, respectively.

The problem was first solved with default weightsw1A
y 5w1B

R

5w1C
R 5w2D

R 5w2E
R 5@1#. At the solution, resulting inconsisten

cies are 1.47, 1.26, 0.78, 0.80, and 1.05 forz1 , z2 , z3 , z5 , andz6 ,
respectively, all of which are larger than the acceptable tolera
value of 1022. Using the weighting update method, the weigh
are updated with Eqs.~14! and ~17!, and the new problem is
solved. This process of updating and solving is repeated five ti
before converging. The final weights,w1A

y 5109.70,w1B
R 599.34,

Table 1 Results of the two-level and three-level geometric pro-
graming examples
MARCH 2005, Vol. 127 Õ 211
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Table 2 Optimal solution to original, two-level ATC, and three-
level ATC formulations

Table 3 Speed of convergence statistics for the geometric
programming problem
w1C
R 5103.59,w2D

R 585.96, andw2E
R 598.05, yield inconsistencie

of 1022 for z1 , z2 , z3 , z5 , andz6 . The weighting update metho
successfully found weights that yield a solution with the desi
inconsistency tolerance. These results are summarized in Tab

Accuracy. It is important to stress that inconsistencies in
sponse and linking variables affect the entire solution, not only
copied variables themselves. Table 2 summarizes the solution
the original, two-level ATC, and three-level ATC formulation
For the two-level and three-level formulations, results are sho
for default weights~all weights51) and for the weighting update
method within consistency tolerances of 1022 for all variables. In
the table, the* indicates that the variable has nonzero incons
tency at the solution, and the value of the variable copy at
parent level is reported. The † indicates that the variable
treated as a static parameter. Notice that solutions using the
fault weights are far from the solution to the original proble
whereas solutions using the weighting update method are clos
all variables. Smaller inconsistency tolerances result in soluti
closer to the solution of the original problem.

Local Convergence. One purpose of using the weighting up
date method is to avoid setting weights arbitrarily high to av
costly iterations; however, the weighting update method requ
additional update iterations to converge on the desired weights
it is worthwhile to examine and compare the convergence e
ciency. The two-level geometric programing problem was solv
using the required weights directly as starting weights, th
achieving the desired tolerance without any weighting update
erations. This represents the best possible case that could b
tained by guessing weights. Still, in this case the algorithm
quired almost twice as many function evaluations per elemen
converge as did the weighting update method. These results
summarized in Table 3. Note that theMATLAB function fmincon,
based on SQP, was used in all cases.

It took longer to converge when starting with the desir
weights because the starting point is not close to the solut
Large weighting coefficients act to slow progress of the algorit
by restricting the deviation between parent and child element
each ATC iteration. Conceptually, this can be thought of as
effect similar to that of a trust-region algorithm, where hig
212 Õ Vol. 127, MARCH 2005
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weighting coefficients have the effect of tight trust regions, p
venting large moves at each iteration. In contrast, the weigh
update method first solves the problem with small weighting
efficients, allowing the algorithm to move quickly in the desig
space and converge to a point close to the final solution.
weights are then updated~increased!, and the new problem is
solved starting at the solution to the problem with the previo
weighting coefficients. In this way, the weighting update meth
first moves quickly to the proximity of the solution, then tighte
tolerances and closes in precisely on the final solution. Res
vary based on the problem, acceptable inconsistency tolera
and the starting point; however, this example shows that using
weighting update method can sometimes be substantially m
efficient than even best-case-scenario guessing.

Further study on local convergence properties of ATC and
weighting update method is needed before these results ca
generalized. Note that in contrast with notions of asymptotic lo
convergence developed for AAO algorithms~e.g., standard non-
linear programing!, local convergence concepts have not been r
orously defined for any system optimization method relying
decomposition, including ATC.

Table 3 also shows that the ATC decomposition can be sol
with fewer function evaluations per element than the origin
AAO formulation. It is difficult to compare these cases direc
because the objective function of each element is different fr
the objective function of the AAO formulation. However, gene
ally, each decomposed element will take less computational t
per function evaluation than the AAO formulation, and decomp
sition allows additional possibilities of parallel computing. The
results are encouraging because they show that in some situa
the decomposed formulation can be solved in less time than
AAO formulation.

Conclusions
This article showed that it is important to set weights approp

ately to achieve inconsistency deviations within an acceptable
erance when top-level targets are unattainable. Setting approp
weights is nontrivial, particularly for multilevel hierarchies whe
weights at various levels influence each other in complex wa
Setting weights too small can result in solutions far from the
lution of the original problem, and setting weights too large c
result in excessive computational cost and numerical proble
The weighting update method can automatically find weight
coefficients required for generating a solution with user-speci
inconsistency tolerances. This method can help ATC users
achieve acceptable solutions without the burden of trial-and-e
searching for appropriate weighting coefficients, which can
intractable for multilevel problems. Despite the added compu
tion involved in iteratively updating the weights, the total comp
Transactions of the ASME
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tational cost can sometimes be lower than solving the prob
directly with the desired weights or solving the problem AAO
Future work is needed to define and understand local converg
properties of coordination strategies for hierarchical partition
systems and bring more rigor to solution efficiency definitions
decomposed optimization strategies.

Acknowledgments
The authors gratefully acknowledge Dr. Hyung Min~Harrison!

Kim and Dr. Michael Kokkolaras for providing access to the
work and for their feedback. This work was sponsored in part
the Antilium Project supported by the Rackham Graduate Sch
the NSF Reconfigurable Manufacturing Systems Engineering
search Center, and the Automotive Research Center at the Un
sity of Michigan. The support of these sponsors is gratefully
preciated. This article is dedicated to the work and memory of
Nestor F. Michelena.

Nomenclature

i•i 5 vector norm
^•&a 5 vector elementa ~wherea indexes the vector ele-

ments, ranging from 1 to the length of the vector!
+ 5 element-by-element vector multiplication, for ex-

ample@a1 ,a2#T+@b1 ,b2#T5@a1b1 ,a2b2#T anda+b
5diag(abT)

ci j 5 number of elements that are children of elementj at
level i

Ci j 5 set of elements that are children of elementj at level
i

Ei 5 set of elements at leveli of the hierarchy
f i j 5 objective function for elementj at level i
gi j 5 vector function of inequality constraints for elementj

at level i in negative null form
hi j 5 vector function of equality constraints for elementj

at level i in null form
i 5 ATC hierarchy level index~starts at level 0!
j 5 ATC element index
k 5 ATC element index, used to designate children of

elementj
l 5 ATC element index designating the top level eleme

Li j 5 the Lagrangian for the formulation of elementj at
level i

p 5 ATC element index, used to designate the parent o
elementj

Pi j 5 problem formulation of elementj at level i
r i j 5 vector function that calculates responses for eleme

j at level i
Ri j

i 5 vector of response variable copies at leveli for ele-
ment j

Ri j
i 21 5 the (i 21)th level parent-copy of the vector of re-

sponses that function as targets for elementj at level
i

Sj 5 binary selection matrix for elementj specifying
which terms in the parent coordination vector are
relevant to elementj

T 5 vector of top level targets (5R0l
21)

x̄i j
i 5 aggregation vector for all input variables to the re-

sponse function of elementj at level i
xi j

i 5 vector of local decision variables for elementj at
level i

yi j
i 5 vector of linking variables for elementj at level i

y( i 11) j
i 5 vector of coordinating variables for the linking vari-

ables in the children of elementj at level i . This
vector includes one copy of each linking variable
from all of elementj ’s children

wi j
R 5 weighting coefficient vector for the deviation of re-

sponses between elementj at level i and its parent
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w( i 11) j
y 5 weighting coefficient vector for the deviation of link-

ing variables coordinated at elementj level i
a 5 index for terms in a vector
b 5 index for a specific term in a vector

« i j
R 5 tolerance variable for consistency of targets set at

elementj level i and the responses ofj ’s children
« i j

y 5 tolerance variable for consistency of linking variable
coordinated at elementj level i for child elements at
the (i 11)th level

g 5 ATC element index, used to designate a specific ch
of elementj

mi j 5 vector of Lagrange multipliers for inequality con-
straints at elementj level i

li j 5 vector of Lagrange multipliers for equality constrain
at elementj level i

u i j
R 5 vector of user specified tolerances for inconsistency

deviation between response variables of elementj at
level i and targets set byj ’s parent

u ( i 11) j
y 5 vector of user specified tolerances for inconsistency

deviation between linking variables at leveli 11 that
are coordinated at parent elementj at level i
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