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ABSTRACT 
Marketing and engineering design decisions are 
typically treated as separate tasks both in the 
academic literature and in industrial practice, and 
their interdisciplinary interactions are not well-
defined. In this article, analytical target cascading 
(ATC), a hierarchical optimization methodology, is 
used to frame a formal optimization model that links 
marketing and engineering design decision-making 
models by defining and coordinating interactions 
between the two. For complex products, engineering 
constraints typically restrict the ability to achieve 
some desirable combinations of product 
characteristic targets, and the ATC process acts to 
guide marketing in setting achievable targets while 
designing feasible products that meet those targets. 
The model is demonstrated with a case study on the 
design of household scales. 

KEYWORDS 
Analytical target cascading, marketing, optimal 
product planning, design optimization, discrete 
choice models, logit, conjoint analysis  

1. INTRODUCTION 
Marketing and engineering contributions to product 
development are typically treated separately both in 
industry and in the academic literature. Research on 
product development decision-making in the 
marketing community has historically differed from 
research in the engineering design community in 

scope, perspective, product representation, and 
metrics of performance and success. An overview of 
these differences is provided in Table 1, excerpted 
from a comprehensive literature review of product 
development decision research by Krishnan and 
Ulrich (2001). Separating these disciplines helps in 
the organization and management of information but 
can also cause communication difficulties and 
disjoint decision-making resulting in inferior product 
decisions. Krishnan and Ulrich note this as a 
weakness, particularly for complex or technology-
driven products. However, the two communities do 

 Marketing Engineering Design 

Perspective 
on Product 

A product is a 
bundle of 
attributes 

A product is a complex 
assembly of interacting 

components 

Typical 
Performance 

Metrics 

“Fit with market”, 
market share, 

consumer utility, 
profit 

“Form and function”, 
technical performance, 

innovativeness, cost 

Dominant 
Representa-

tional 
Paradigm 

Customer utility 
as a function of 

product attributes 

Geometric models, 
parametric models of 
technical performance 

Example 
Decision 
Variables 

Product attribute 
levels, price 

Product size, shape, 
configuration, 

function, dimensions 

Critical 
Success 
Factors 

Product 
positioning and 

pricing, collecting 
and meeting 

customer needs 

Creative concept and 
configuration, 
performance 
optimization 

Table 1 Comparison of Marketing and Engineering 
Design Perspectives 
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have different foci and areas of expertise, and 
attempting to integrate them completely may be 
disadvantageous. This article offers a method to 
formally link decisions by the two communities 
while maintaining their disciplinary identity; the 
resulting model employs the formalism of Analytical 
Target Cascading (ATC) (Kim, 2001). An expanded 
version of this paper (Michalek et al., 2004) provides 
further depth from a marketing perspective and 
demonstrates that coordinating marketing and 
engineering decision models using ATC results in 
solutions superior to those obtained through disjoint 
decision-making. 

1.1. Marketing Product Planning Models 
Kaul and Rao (1995) provide an integrative review of 
product positioning and design models in the 
marketing literature. They differentiate between 
product positioning models, which involve decisions 
about abstract perceptual attributes, and product 
design models, which involve choosing optimal 
levels for a set of physical, measurable product 
characteristics. In this article we work only with 
measurable product characteristics; however, a 
comprehensive framework similar to the one 
proposed by Kaul and Rao could be used to include 
perceptual attributes, product positioning, and 
consumer heterogeneity. In this article, conjoint-
based “product design” models from the marketing 
literature will be referred to as product planning 
models. 

Optimal product planning in the marketing literature 
is typically posed as selection of optimal price and 
product characteristic levels that achieve maximum 
profit or market share. For complex products, where 
engineering constraints may prevent some 
combinations of product characteristic levels from 
being technically attainable, it is difficult to define 
explicitly which combinations of characteristics are 
feasible. For such products, planning decisions made 
without engineering input may yield inferior or 
infeasible solutions.  

1.2. Engineering Product Design Models 
The engineering design optimization literature 
focuses on methods for choosing values of design 
variables that maximize product performance 
objectives. Papalambros and Wilde (2000) provide 
an introduction to engineering design optimization 
modeling techniques, strategies and examples. When 
multiple conflicting optimization objectives exist, the 

solution is a Pareto set of optimal products, and the 
choice of a single product from that set requires 
explicit expression of preferences among objectives. 
Such preferences are notoriously difficult to define in 
practice. Some methods use interactive, iterative 
searches to elicit preferences, relying on intuition in 
navigating the Pareto surface and choosing an 
appropriate design (Diaz, 1987). Recent efforts in the 
design literature take the approach of resolving 
tradeoffs among technical objectives by proposing 
models of the producer’s financial objective 
(Hazelrigg, 1988; Li and Azarm, 2000; Gupta and 
Samuel, 2001; Wassenaar and Chen, 2001). Gu et al. 
(2002) build on this work using the collaborative 
optimization framework to coordinate decision 
models in the engineering and business disciplines. 
Here we propose a related methodology, but we 
coordinate product planning and engineering design 
models using the ATC methodology, which has 
proven convergence characteristics for arbitrarily 
large hierarchies (Michelena et al., 2002; Michalek 
and Papalambros, 2004), and we draw upon 
techniques from the marketing literature to develop 
explicit mathematical models of demand based on 
data.  

2. METHODOLOGY 
Using the ATC framework, discussed in detail 
below, the joint product development problem is 
decomposed formally into a product planning 
subproblem and an engineering design subproblem. 
The product planning subproblem involves choosing 
the desired target product characteristics and price 
that will maximize the producer’s expected profit, 
where profit depends on demand. The engineering 
design subproblem involves choosing a feasible 
design that will achieve the target product 
characteristics as closely as possible. Using the ATC 
process, the two subproblems are solved iteratively 
until a consistent optimal product design is achieved.  

2.1. Analytical Target Cascading 
Analytical target cascading is an optimization 
methodology for systems design that works by 
decomposing a complex system into a hierarchy of 
interrelated subsystems (Kim 2001). ATC requires a 
mathematical model for each subsystem that 
computes the subsystem response as a function of the 
decisions at that subsystem. The subsystem models 
are organized into elements of a hierarchy, as in the 
example shown in Figure 1, where the top level 
represents the overall system and each lower level 
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represents a subsystem of its parent element. 
Papalambros (2001) provides an overview of the 
ATC literature, and Michalek and Papalambros 
(2004) provide details of the generalized ATC 
formulation. 

In the ATC process, top-level system design targets 
are propagated down to subsystems, which are then 
optimized to match the targets as closely as possible. 
The resulting responses are then rebalanced at higher 
levels by iteratively adjusting targets and designs 
throughout the hierarchy to achieve consistency. 
Michelena et al. (2002) and Michalek and 
Papalambros (2004) proved under assumptions of 
convexity that by using certain classes of 
coordination strategies to coordinate elements in the 
ATC hierarchy, the ATC formulation will converge, 
within a user-specified tolerance, to the same 
solution as if all variables in the entire system were 
optimized simultaneously (or, “all-at-once”). Using 
ATC can be advantageous because it organizes and 
separates models and information by focus or 
discipline, providing communication only where 
necessary. Some problems that are computationally 
difficult or impossible to solve all-at-once can be 
solved using ATC, and in some cases ATC can result 
in improved computational efficiency because the 
formulation of each individual element typically has 
fewer degrees of freedom and fewer constraints than 
the all-at-once formulation. 

In the formulation and example presented in this 
article, there are only two elements: the marketing 
product planning subproblem M and the engineering 
design subproblem E, which is the child of M. 
However, for complex systems ATC allows the 
flexibility to model the engineering subproblem as a 
hierarchy of subsystems and components rather than 
with a single element. For examples of complex 
systems engineering design using ATC, see Kim et 
al. (2002), and Kim et al. (2003). 

2.2. The Marketing Product Planning 
Subproblem 

In the product planning subproblem, a simple model 
of profit Π is calculated as revenue minus cost, such 
that 

( )V Iq p c cΠ = − − , (1)  

where q is the quantity of the product produced and 
sold (product demand), p is the selling price, cV is the 
variable cost per product, and cI is the investment 
cost. This model is simplified, and it ignores such 
finance-related concerns as the time value of money, 
fixed costs, risk and uncertainty; however, this 
simple model will suffice to demonstrate broad 
trends and provide insight into the general forces at 
work. The price p is treated as a decision made by the 
firm, and for simplification in this article cV and cI are 
considered constant across all possible product 
designs. Product demand q depends on the price p 
and characteristics z of the product, and discrete 
choice analysis and conjoint analysis are used to 
model and predict q as a function of z and p. It is 
assumed in this article that the producer is a 
monopolist; however, game theory could be used to 
model oligopoly competition following Michalek, 
Skerlos and Papalambros (2003). 

Discrete Choice Analysis 
A set of statistical methods largely unfamiliar to 
engineering audiences has been developed, first in 
logistics and urban planning and then in economics, 
to predict choices made in uncertain environments 
(Louviere et al., 2000; Train, 2003). The chief 
theoretical edifice is that of random utility models. In 
such models, a decision-maker is presumed to derive 
utility from each alternative in a set of possible 
alternatives, to an extent partially predictable in 
terms of observed covariates. In marketing 
applications, these covariates are typically product 
(or household-specific) characteristics, whose values 
can be used to obtain an overall ‘attraction’ for each 
alternative, where attraction refers to the observable, 
deterministic component of utility. Because we 
cannot predict consumer utility perfectly, these 
attraction values are combined with stochastic error 
terms in order to determine choice probabilities for 
each alternative (and the probability that none of the 
alternatives is chosen, often called the “outside 
good”). 

Formally, there is a set  of product alternatives 
numbered 1 through J with attraction values {v1, v2, 

VEHICLE 

POWERTRAIN ELECTRONICS BODY CHASSIS 

ENGINE TRANSMISSION 

BLOCK CYLINDER HEAD CRANKSHAFT 

CLUTCH ... ... 

... ... 

... ...  
Figure 1 Example ATC hierarchy for a vehicle design 
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… vJ} and associated errors {ξ1, ξ2, … ξJ} plus an 
outside good, indexed as alternative 0, with error ξ0 
and attraction value v0 normalized to zero (v0 = 0). 
The probability Pj that we observe a choice of 
alternative j is the probability that alternative j has 
the highest utility: 

Pr ,j j j j jP v v jξ ξ′ ′ ′ = + ≥ + ∀ ∈  . (2)  

Computational efficiency depends critically on the 
distribution assumed for the ξ random error terms in 
Eq.(2). Errors can take several forms, and it generally 
requires extremely large samples for assumptions 
about distributional error to have any substantive 
impact; consequently, researchers often work with 
error specifications allowing the most tractability. 
For example, if errors are assumed to be normally 
distributed, then the form of Pj is called the 
multinomial probit model, which does not admit of 
closed-form expressions for choice probabilities in 
terms of underlying attractions. However, if ξ terms 
are assumed to be Type II extreme-value (or 
Gumbel) distributed (i.e., Pr[ξ < x] = exp[-exp(-x)]), 
then it can be shown that 

1

j

j

v

j v

j

eP
e ′

′∈

=
+ ∑



 (3)  

when the utility of the outside good v0 is normalized 
to zero (see Train 2003, Chapter 3 for proof). This 
form is called the multinomial logit model (MNL). 
The MNL model allows a convenient closed-form 
solution for choice probabilities Pj that is especially 
attractive in terms of optimization. Using Eq.(3), 
choice probabilities for any subset of products can be 
calculated easily. Even if all products are offered by 
a single entity (i.e., a monopolist), the presence of the 
outside good ensures that demand for a set of 
unattractive products will be low, with probability of 
not choosing a product given by: 

0
1

1 jv

j

P
e ′

′∈

=
+ ∑



. 
(4)  

It is assumed that v can be measured as a function of 
observable quantities such as price, product 
characteristics, consumer characteristics, etc. In this 
paper we consider only price and product 
characteristics. Any number of rules for mapping 
price p and product characteristic values z onto 
attraction values v are possible. In practice, product 
characteristics and price are discretized, and the 

mapping is assumed a linear function of discrete 
price and product characteristic levels. The attraction 
vj for product j is then written as 

1 1

kLK

j kl jkl
k l

v Zβ
= =

=∑∑ , (5)  

where Zjkl is a binary dummy variable such that Zjkl=1 
indicates alternative j possesses characteristic/price k 
at level l, and βkl is the “part-worth” coefficient of 
characteristic/price k at level l. In Z the elements of 
the product characteristic vector z are enumerated as 
k = {1, 2, ... K-1}, and price p included as the last 
term, k=K. Each product characteristic/price k is 
discretized into Lk levels, l = {1, 2, ... Lk}. One 
advantage of using discrete levels is that it does not 
presume linearity with respect to the continuous 
variables. For example, we cannot assume that a $5 
price increase has the same effect for a $10 product 
as it does for a $25 product. 

Given a set of observed choice data, values can be 
found for the β parameters such that the likelihood of 
the model predicting the observed data is maximized. 
A great deal of research in marketing is devoted to 
recovering model parameters through latent classes, 
finite mixtures or using Hierarchical Bayes methods 
(Andrews, Ainslie, and Currim, 2002); however, here 
we simply use the standard maximum likelihood 
formulation (Louviere et al., 2000). The log of the 
sample likelihood for a particular individual on a 
particular choice occasion n is: 

1 1

1 1

exp
ln

1 exp

k

k

LK

kl jkl
k l

nj LK
j

kl j kl
j k l

Z

Z

β

β

= =

∈
′

′∈ = =

  
  

  Φ
  
+  

   

∑∑
∑

∑ ∑∑







, (6)  

where Φnj=1 if the observed choice on choice 
occasion n is alternative j and Φnj=0 if j is not the 
observed choice. Here n is the set of alternatives 
available on choice occasion n. Eq.(6) is maximized 
with respect to the β terms after summing across all 
individuals and choice occasions. In this way, the 
part-worth coefficients βkl are obtained for each level 
l of each product characteristic/price k.  

In all random utility models, such as the logit used 
here, one must careful about model identification: for 
example, adding a constant term to all attraction 
values v shifts them upward to the same extent and 
does not change choice probabilities predicted by the 
logit model. Thus, in using Eq.(5), there are an 
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infinite number of solutions for optimal beta values 
that predict equivalent choice probabilities and 
therefore have identical likelihood values. Standard 
practice is to impose an identification constraint on 
the system of coefficients, which unambiguously 
chooses just one among all possible 'optimal' 
solutions. Such constraints typically set a linear 
combination of the coefficients to zero. For clarity, 
we select from the infinity of equivalent solutions the 
one solution where the mean beta value Σlβkl/Lk is the 
same for all k. By adding this constraint, the model 
has 1 + Σk(Lk – 1) degrees of freedom, and the 
solution is uniquely defined.   

The part-worths retrieved with maximum likelihood 
estimation correspond to discrete values of the 
product characteristics and price. For example, we 
may have a certain part-worth for a price of $10 and 
another for a price of $15. To optimize over 
continuous values of price (as well as characteristics 
simultaneously), it is necessary to estimate utility for 
intermediate values, such as $12. There are several 
possible methods allowing interpolation between 
these discrete part-worth values for each 
characteristic and price, ordinarily a type of spline 
function. We avoid linear splines due to their 
indifferentiability at knots (the estimated values) and 
instead use higher-order polynomial splines, either 
quadratic or cubic, depending on which provides a 
closer fit. Finally, the attraction can be written as a 
function of the continuous variable product 
characteristics values z and price p using a spline 
function Ψk of the part-worths βkl for each 
characteristic/price k. If price is represented as k=K, 
the attraction v is written as 

( ) ( ) ( )
1

1
,

K

j k j Kk
k

v p p
−

=

= Ψ = Ψ +Ψ∑z z , (7)  

where the angle bracket notation <zj>k denotes the kth 
element of the vector zj. The model specification is 
completed by invoking a known market potential s so 
that demand qj is related to choice probabilities as 

1

j

j

v

j j v

j

eq sP s
e ′

′∈

= =
+ ∑



. (8)  

Market potentials can be given exogenously at the 
outset or estimated through a variety of techniques 
based on historical data or test markets (Lilien, 
Kotler and Moorthy, 1992). 

Conjoint Analysis 

Maximum likelihood estimation can be used to fit 
beta parameters to any set of observed choice data; 
however, collinearities in the characteristics and price 
of the choice sets can make accurate parameter 
estimation difficult and can cause problems 
generalizing to new choice sets (Louviere et al., 
2000). Conjoint analysis (CA) has been widely used 
to develop efficient, orthogonal and balanced survey 
designs (experimental designs) to determine which 
product characteristics are important to consumers, 
and appropriate levels for each characteristic. There 
is vast literature on conjoint analysis and appropriate 
experimental designs, and we direct the reader to any 
of the classic or recent articles, notably Louviere’s 
(1988) expository article and Kuhfeld’s (2003) 
exhaustive account.  

Conjoint studies present subjects with a series of 
products or product descriptions, which they 
evaluate. Products can be presented in various ways, 
but characteristic levels are always made clear, either 
in list form, pictorially, or both. Subjects can indicate 
their preferences among products by ranking (i.e., 
putting in an ordered list), rating (for example, on a 
1-10 scale) or choosing their favorite from a set. 
Each method has certain advantages; however, 
choice-based conjoint is considered most natural, 
since this is what real consumers do. Consequently, 
we follow that approach here, offering successive 
sets of products and asking which is most preferred 
in each, or whether none is acceptable (the “no 
choice” option). To avoid the combinatorial 
explosion required if all possible pairings of attribute 
values are used, an efficient design is generated. 
Efficient designs specially tailored to conjoint studies 
are supported in a number of software packages, such 
as Sawtooth, SPSS and SAS. In our case study 
(discussed later), with six attributes of 5 levels each, 
there are 56 = 15,625 possible products, yet a highly 
efficient conjoint design requires only 50 choice sets 
of size 3. 

2.3. The Engineering Design 
Subproblem 

In the engineering subproblem, design characteristics 
z are calculated as a function of the design variables 
x using the response function r(x), where x is 
constrained to feasible values by constraint functions 
g(x) and h(x). General procedures for defining design 
variables x, response functions r(x), and constraint 
functions g(x), and h(x) to define a product design 
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space are well established in the design optimization 
literature (Papalambros and Wilde, 2000); however, 
modeling specifics are entirely product dependent. 
The objective function of the engineering 
subproblem is to minimize deviation between the 
product characteristics achieved by the design zE and 
the targets set by marketing zM. Using ATC notation 
introduced in Michalek and Papalambros (2004), this 
objective function is written as 

( ) 2

2M E−w z z , (9)  

where || ||22 denotes the square of the l2 norm, w is a 
weighting coefficient vector, and ○ indicates term-
by-term multiplication. For complex products, 
engineering constraints typically restrict the ability to 
meet some combinations of product characteristic 
targets, and the ATC process acts to guide marketing 
in setting achievable targets while designing feasible 
products that meet those targets. 

2.4. Complete ATC Formulation 
Figure 2 shows the complete ATC formulation of the 
product development problem for a single-product-
producing monopolist. There is only one product in 
the formulation, so the index j is dropped for 
simplicity. In the product planning subproblem, price 
p and product characteristic targets zM are chosen to 
maximize profit Π, where Π is calculated as revenue 
minus cost as in Eq.(1), and demand q is calculated 
using the logit model in Eq.(7)-(8), subject to the 
constraint that the targets zM cannot deviate from the 
characteristics achieved by the engineering design zE 
by more than ε, and ε is minimized. In the 
engineering design subproblem, design variables x 
are chosen to minimize the deviation between 
characteristics achieved by the design zE and targets 
set by marketing zM subject to engineering 
constraints g(x) and h(x). These two subproblems are 
solved iteratively, each using standard nonlinear 
programming techniques (Papalambros and Wilde, 
2000) to solve each subproblem until the system 
converges. The weighting update method (Michalek 
and Papalambros, 2004) is used to find weighting 
coefficient values w that produce a solution 
satisfying user-specified tolerances for inconsistency 
between marketing and engineering for each term in 
z. This method is important for producing consistent 
solutions in cases where the top level subproblem 
does not have an attainable target: In this case profit 
is maximized rather than setting an attainable profit 
target. 

3. CASE STUDY 
The demonstration case study involves dial-readout 
household scales. This particular durable consumer 
product was chosen because scales have high 
penetration, are not highly differentiated, are 
inexpensive, and have clearly identifiable 
components and consumer benefits. The complete 
model including survey data is available at 
http://ode.engin.umich.edu. 

3.1. Marketing Product Planning 
Subproblem 

 Five product characteristics were adopted because of 
their design relevance and the ability to define 
metrics to measure them. These factors, shown in 
Table 2, are also advertised or visible in online scale 
e-commerce. Other factors, such as brand name and 
warranty, were not included in the study in order to 
focus on factors affected by the design of the 
product. Factors that are difficult to measure or 
difficult for consumers to assess before use, such as 
“easy to clean,” were ignored. 

 

Figure 2 ATC Formulation of the Product Planning and 
Engineering Design Product Development 
Problem 

Marketing Product Planning Subproblem 
maximize εΠ −  

with respect to , ,M p εz  

subject to ( ) 2

2M E ε− ≤w z z  

where ( )V Iq p c cΠ = − −  

 
1

v

v

eq s
e

=
+

 

 ( ),Mv p= Ψ z  

Engineering Design Subproblem 

minimize ( ) 2

2M E−w z z  

with respect to x  

subject to ( ) ≤g x 0  

 ( ) =h x 0  

where ( )E =z r x  

Ez  Mz  
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An efficient choice-based conjoint analysis survey 
was used to collect data on consumer preferences. 
The survey was implemented online to simulate 
aspects of online purchase decision-making. The 
survey can be found at http://ode.engin.umich.edu, 
and a screen capture is provided in Figure 3. The 
survey includes fifty questions, each of which asks 
the respondent to choose among three scales or select 
the “no choice” option. The scales are described by 
numerical values, a drawing, and a close-up of the 
dial. The survey includes some scales with physically 
infeasible characteristic combinations because 
responses to these questions serve to infer trade-offs 
in consumer preferences. Five levels were chosen for 
each product characteristic in the conjoint analysis as 
shown in Table 2. The levels were chosen to span the 
range of values of products in the market, based on a 
sample of 32 different scales sold on the internet, to 
ensure realism and to capture anticipated trade-offs.  

Data were collected from 184 respondents, who were 
solicited from online newsgroups and from 
engineering and business students at the University 
of Michigan. Respondent data from the survey was 
used to estimate the model’s β parameters using 
Eq.(6) summed over all respondents and all survey 
questions with a modified Newton-Raphson search 
algorithm (Greene, 2003). The resulting β values are 
provided in Table 2. Six cubic splines Ψk were fit to 
these β values (one for each characteristic and one for 

price), and the logit model was used to calculate 
demand q for the monopolist using Eq.(7)-(8). 

Based on discussions with a scale manufacturer, a 
variable cost cV of $3 per unit and an investment cost 
cI of $1 million was assumed for this example. The 
market size s was assumed to be five million people, 
the approximate yearly market for dial scales in the 
United States. 

 
Figure 3 Screen shot of the online scale conjoint survey 

Weight Capacity (z1) Interval Mark Gap (z4)
200 lbs. -0.534 2/32 in. -0.366 
250 lbs. 0.129 3/32 in. -0.164 
300 lbs. 0.228 4/32 in. 0.215 
350 lbs. 0.104 5/32 in. 0.194 
400 lbs. 0.052 6/32 in. 0.100 

Platform Aspect Ratio (z2) Size of Number (z5) 
0.75 -0.058 0.75 in. -0.744 
0.88 0.253 1.00 in. -0.198 
1.00 0.278 1.25 in. 0.235 
1.14 -0.025 1.50 in. 0.291 
1.33 -0.467 1.75 in. 0.396 
Platform Area (z3) Price (p) 

100 in.2 0.015 $10 0.719 
110 in.2 -0.098 $15 0.482 
120 in.2 0.049 $20 0.054 
130 in.2 0.047 $25 -0.368 
140 in.2 -0.033 $30 -0.908 

Table 2 Logit coefficient part-worth β values 
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3.2. Engineering Design Subproblem 
The engineering design model was developed 
through reverse engineering: three scales were 
disassembled, and the components and functionality 
were studied, as shown in Figure 4. We chose to 
restrict our focus to rectangular dial-readout scales to 
keep the demonstration simple; however, the model 
could be expanded to include digital scales. 

The model of the dial-readout scale is based on the 
topology of scales found in the market: levers A 
provide mechanical advantage and transfer the force 
of the user’s weight from the cover B onto a coil 
spring C which is displaced proportionally to the 
applied force. Another lever D is used to transfer the 
vertical motion of the spring to the horizontal motion 
of a gear rack E. The pinion gear F translates linear 
motion of the rack to rotational motion of the dial G. 
This basic topology is common among the products 
observed, but dimensions vary, and the ratio of dial-
turn per applied force depends on the dimensions of 
the levers, the rack and pinion, and the spring 
properties. This design topology was parameterized 
and modeled using fourteen design variables, eight 
constraints to maintain feasible geometric and 
mechanical relationships among the variables, and 
five response functions that calculate product 
characteristics as functions of the design variables. 
Figure 5 shows the design variables used for the 
scale. Other dimensions were considered fixed 
parameters, and the dial number size and tick mark 
gap were calculated based on scale dimensions. The 
response and constraint functions were derived using 

geometric and mechanical relationships. We omit 
these derivations here for brevity and focus; 
however, the entire engineering model is provided in 
the Appendix. 

3.3. Results 
The engineering design and marketing subproblems 
were solved iteratively until convergence using a 
standard nonlinear optimization algorithm based on 
the Generalized Reduced Gradient method 
(Papalambros and Wilde, 2000) to solve each 
subproblem. At the solution, shown in Table 3, the 
optimal scale design is bounded by active 
engineering constraints that ensure the dial, spring 
plate, and levers are small enough to fit inside the 
scale. Detailed variable descriptions are provided in 
the appendix and shown in Figure 5. None of the 
variable bounds was active at the solution, and the 
optimal scale characteristics are within the range of 
scales found in the online market. This design 
represents the joint optimal solution obtained through 
coordinated communication between marketing and 
engineering models, and the expanded version of this 
paper (Michalek et al., 2004) demonstrates that it is 
superior to the solution obtained by considering 
disjoint marketing and engineering decision models 
sequentially. 
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Figure 4 Disassembled dial readout scale 
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Figure 5 Design variables for the scale 

Mkt. Variables Engineering Design Variables 
p $26.41 x1 0.71 in. x8 5.00 in. 
z1 254 lbs. x2 11.10 in. x9 0.31 in. 
z2 0.997 x3 0.72 in. x10 0.52 in. 
z3 134 in2 x4 4.46 in. x11 1.59 in. 
z4 0.116 in. x5 4.20 in. x12 9.36 in. 
z5 1.33 in. x6 23.41 lb./in. x13 11.56 in.
  x7 0.50 in. x14 11.60 in.

Table 3 Optimal scale design  
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4. CONCLUSIONS 
This article presented and demonstrated a 
methodology for defining a formal link between 
marketing product planning and engineering design 
decision-making. The ATC framework is especially 
suitable in allowing disciplinary separation while 
retaining rigorous linking and coordination. 

For the marketing community, this method will help 
in working with complex products where some 
combinations of desired characteristics are 
technologically impractical or physically impossible 
to produce. The infeasible set is typically a function 
of the technical decisions of the product and is 
difficult to express as a function of the target 
characteristic levels without exhaustive enumeration. 
Using this method allows constraints to be derived in 
terms of design decisions and then linked through the 
model to product characteristics. 

For the engineering design community, this method 
will help to put design decisions into the larger 
context of the firm and its objectives. This context 
can help to resolve tradeoffs among competing 
performance objectives in multiobjective 
optimization by providing information about the 
relative importance of each engineering objective in 
the context of explicit models of demand and the 
producer’s objectives. 

This article focused on the basic elements of the links 
between marketing and engineering design. The 
methodology can be extended in several ways. 
Models of demand heterogeneity can be introduced 
to design product lines. Multiple product topologies 
can be included for product variety, and design 
topologies could potentially be generated 
automatically (Campbell, Kotovsky and Cagan, 
1998). Cost models can be integrated to the 
engineering subproblem such that the marketing 
product planning subproblem sets target production 
cost and the engineering design subproblem designs 
products that meet the cost targets. In addition, 
models of product families can be used to study 
commonality effects on product cost structure 
(Fellini, Kokkolaras and Papalambros, 2003), and 
manufacturing investment decisions, particularly 
considering reconfigurable and flexible equipment 
(Koren et al., 1999), can be included in the model. 
Finally, if the conjoint analysis survey can be 
designed optimally to avoid questions about 
infeasible product characteristic combinations, then 
the expense of the survey can be reduced and the 
accuracy improved.  
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NOMENCLATURE 
 ○ Term-by-term vector multiplication 
cI Investment cost 
cV Variable cost per product 
g Vector function of inequality constraints 
h Vector function of equality constraints 
j Product index 
J Number of product alternatives 
k Product characteristic index 
l Product characteristic level index 
n Choice occasion number 
p Selling price 
Pj Probability of choosing alternative j 
q Product demand 

r Vector response function that calculates 
product characteristics 

s Size of the entire market 
v Deterministic component of utility 
w Vector of weighting coefficients 
x Vector of design variables 

zE Vector of product characteristics achieved by 
engineering 

zM 
Vector of product characteristic targets set by 
marketing 

Z Binary characteristic level indicator variable 
β Part-worth coefficient 
ε ATC deviation tolerance variable  
Π Profit 

Ψk 
Spline function to interpolate part-worths for 
characteristic/price k 

Φ Binary variable indicating observed choice 
ξ Random (error) component of utility 
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APPENDIX: MARKETING AND ENGINEERING SUBPROBLEMS 

Objective Function
Name Description Value Units Scaled

f Maximize profit while minimizing deviation 
from engineering design -67900986 - -6.790

Π Profit $67,990,273 $

ε Weighted deviation 89,287 -

Decision Variables : zM,p Eng. Design : zE
Name Description Units Scaled Min Max Value Dev. % Dev w

z 1 Weight Capacity 255 lbs 0.273 200 400 254 -0.4 -0.183% 1.0E+05
z 2 Platform aspect ratio 0.996 - 0.422 0.75 1.333 0.997 0.001 0.089% 1.0E+05
z 3 Platform Area 134.0 in^2 0.851 100 140 134.0 0.0 0.045% 1.0E+05
z 4 Size of gap between 1-lb interval marks 0.1159 in 0.427 0.063 0.1875 0.1156 -0.0003 -0.211% 1.0E+05
z 5 Size of number (length) 1.334 in 0.584 0.75 1.75 1.334 0.000 -0.036% 1.0E+05
p Price $26.41 $ 0.820 10 30

Intermediate Calculations
Name Description Value Units

v 1 Interpolated part worth of capacity 0.162 -
v 2 Interpolated part worth of aspect ratio 0.282 -
v 3 Interpolated part worth of area 0.017 -
v 4 Interpolated part worth of gap 0.127 -
v 5 Interpolated part worth of number size 0.281 -
v 6 Interpolated part worth of price -0.507 -

v Total deterministic component of utility 0.362 -

S Market Share 58.95% -

q Demand 2,947,575 units

Name Description Value Units
s Size of market 5,000,000 -

c V Variable cost per unit $3.00 $
c I Investment cost $1,000,000 $
v 0 Attraction of the outside good 0 -

Marketing Model
Maximize profit with respect to price and product characteristic targets

Parameters

Formula

Formula

f ε= −Π +

1

v

v

eS
e

=
+

1

v

v

eq s
e

=
+

( ), pΨ z

( )V Iq p c cΠ = − −

( ) 2
M E 2

ε = −w z z

( )1 1
Ψ z

( )2 2
Ψ z

( )3 3
Ψ z

( )4 4
Ψ z

( )5 5
Ψ z

( )6 pΨ

 



 

AN OPTIMAL MARKETING AND ENGINEERING DESIGN MODEL FOR PRODUCT DEVELOPMENT 
USING ANALYTICAL TARGET CASCADING 11

Name Description Value Scaled Formula Last

f Minimize normalized squared target deviation 8.9E+04 8.9E-06 #####

Product Characteristics : zE(x,y) Targets : zM
Name Description Value Units Formula Min Max Target % Dev w

z 1 Weight Capacity 254 lbs 200 400 255 -0.183% 1.0E+05

z 2 Platform aspect ratio 0.997 - 0.75 1.333 0.996 0.089% 1.0E+05
z 3 Platform Area 134.0 in^2 100 140 134.0 0.045% 1.0E+05
z 4 Size of gap between 1-lb interval marks 0.1156 in 0.063 0.188 0.1159 -0.211% 1.0E+05

z 5 Size of number (length) 1.334 in 0.75 1.75 1.334 -0.036% 1.0E+05

Name Description Value Units Ref. Values (from rev. eng.) Min Max
x 1 Length from base to force on long lever 0.71 in 0.63 0.125 36
x 2 Length from force to spring on long lever 11.10 in 9.25 0.125 36
x 3 Length from base to force on short lever 0.72 in 0.63 0.125 24
x 4 Length from force to joint on short lever 4.46 in 4.50 0.125 24
x 5 Length from force to joint on long lever 4.20 in 4.19 0.125 36
x 6 Spring constant 23.41 lb/in 23.44 1 200
x 7 Distance from base edge to spring 0.50 in 0.50 0.5 12
x 8 Length of rack 5.00 in 5.00 1 36
x 9 Pitch diameter of pinion 0.31 in 0.25 0.25 24
x 10 Length of pivot's horizontal arm 0.52 in 0.50 0.5 1.9
x 11 Length of pivot's vertical arm 1.59 in 1.00 0.5 1.9
x 12 Dial diameter 9.36 in 5.75 1 36
x 13 Cover length 11.56 in 10.00 1 36
x 14 Cover width 11.60 in 10.25 1 36

Name Description Value Units
g 1 Dial diameter must be less than base width -1.64 in
g 2 Dial diameter must be less than base length minus spring and plate 0.00 in
g 3 Length of short lever has to be less than base length -2.30 in
g 4 Joint position on the long lever must be shorter than the length -7.62 in
g 5 Rack shorter than base when pivot is rotated 90 deg -2.76 in
g 6 Rack length must be sufficient to span between pivot and center of dial -1.97 in
g 7 Long lever must attach to top of scale (Pythagorean Theorem) 0.00 in
g 8 Long lever must attach to base a minimum distance y13 from centerline -14.23 in

Name Description Value Units
y1 Gap between base and cover 0.30 in
y2 Minimum distance between spring and base 0.50 in
y3 Internal thickness of scale 1.90 in
y4 Minimum pinion pitch diameter 0.25 in
y5 Length of window 3.00 in
y6 Width of window 2.00 in
y7 Distance btwn top of cover and window 1.13 in
y8 Number of lbs measured per tick mark 1.00 lbs
y9 Horizontal distance between spring and pivot 1.10 in
y10 Length of tick mark + gap to number 0.31 in
y11 Number of lbs that number length spans 16.00 lbs
y12 Aspect ratio of number (length/width) 1.29 -
y13 Min. allowable dist. of lever at base to centerline 4.00 in

Formula

Constraints (g(x,y),h(x,y))

Parameters (y)

Design Variables (x)

Engineering Model
Minimize deviation from target product characteristic values

Objective Function

( )( )
( ) ( )( )

6 9 10 1 2 3 4
1

11 1 3 4 3 1 5

4 x x x x x x x
z

x x x x x x x
π + +

=
+ + +

( ) 1
2 13 14z x x −=

3 13 14z x x=

( ) 1
4 12 1z x zπ −=

( )22 2 1
1 2 13 1 7 14 12( ) ( 2 )x x x y x x y+ ≤ − − + −

( )( )( )( )

( ) ( )( )( )
1 1

11 1 12 102

5 1 1
12 11 1

2 tan

1 2 tan

y z x y
z

y y z

π

π

−

− −

−
=

+

( ) ( )1
8 13 1 12 7 7 9 1022x x y x y x y x≥ − − + − − −

5 1 2x x x≤ +
( )4 5 13 12x x x y+ ≤ −

12 14 12x x y≤ −
12 13 1 7 92x x y x y≤ − − −

( ) ( )2 22
13 1 7 13 1 22x y x y x x− − + ≤ +

( ) 2
M E 2

f = −w z z
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