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Many areas of design involve both quantifiable and subjective goals, preferences, and

constraints. Subjective aspects of design are typically ignored in optimization models

because they are difficult to model with mathematics; however, they are extremely

important in areas such as product design and architectural design. The objectives of this

thesis are (1) to formulate quantifiable aspects of architectural floorplan layout design

using computational optimization algorithms, (2) to provide a method for integrating

mathematical optimization with human decision making, and (3) to develop the use of

optimization techniques as a tool to aid early conceptual design. Two design tools have

been developed: an automated tool and an interactive tool. 

The automated tool uses a

decomposition strategy to separate

topological decisions (discrete design

decisions) from purely geometric

decisions (sizing and placement). The

designer specifies desired design

characteristics of the building, and the

program automatically generates a

population of feasible, goal-directed

design alternatives. 

The interactive tool uses an object

oriented representation with an interface

that allows the designer to interact with the building layout optimization problem. Using

the interactive tool, the designer can refine the problem definition on-the-fly and quickly

explore solution alternatives and trade-offs while receiving both visual and computational

feedback. By interacting with the optimization process, the designer can guide global

search and take unmodeled preferences into account. This interactive approach is a novel

use of optimization methods as an exploratory sketching tool for the early conceptual

design phase.
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CHAPTER

��������

Computational design tools for spatial layout planning present perhaps the most

comprehensive challenges in the area of architectural design computation. Spatial design

tools are the common ground where design representation, generation, evaluation and

decision-making are required to be addressed simultaneously for the goal of realizing

meaningful design exploration tools. Additionally, a multitude of ill-posed design

intentions, non-explicit goals, and the non-deterministic nature of the design process itself

add to the problem complexity. Given the difficulties, the problem of architectural layout

design continues to challenge researchers from all areas of design computation.

Reported attempts to automate the process of layout design started over 35 years ago

[1]. Researchers have used several problem representations and solution techniques to

describe and solve the problem (details of previous research models are discussed in

Chapter 2). This thesis presents an alternative automated layout method that generates

goal-directed design alternatives given a set of design objectives and constraints.

Architectural design involves a mix of quantifiable and subjective goals, preferences

and constraints. Aesthetic preferences and other subjective aspects of designs are typically

ignored in automated models because these aspects are difficult to model with

mathematics. Designers generally explore subjective aspects during the conceptual design

phase by sketching and comparing design alternatives. Very few CAD packages address

the needs of designers during this initial conceptual exploratory phase of design. Chapter

2 discusses this further. This thesis presents a novel interactive design tool that uses

optimization to help the designer quickly generate and compare designs using visual and

computational feedback to understand design trade-offs.

This chapter gives an overview of the work presented in the thesis. Two optimization

models (a geometry model and a topology model) are introduced, and two design tools (an

automated tool and an interactive tool) that use the optimization models are discussed.
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1. 1 Optimization Models

Two separate optimization models have been developed to model different parts of the

building layout design problem. The geometric optimization model defines position and size

variables for each room, and the design variables have continuous domains. The topology

optimization model defines design decision variables including room connectivity and rough

position, and the design variables have discrete domains.

1. 1. 1 Geometric Optimization Model

The geometric optimization model is used in both

the automated design tool and the interactive design

tool. The model is discussed in detail in Chapter 3.

The geometric floorplan layout problem is posed as a

process of searching for the best location and size of a

group of interrelated rectangular units. This

representation assumes that most architectural

floorplans can be described as combinations of

rectangular shapes (including L-shapes, etc.). The

problem is formulated mathematically with a set of

design variables representing layout dimensions.

Design objectives and constraints are formulated as

functions of the design variables. Several optimization algorithms are used to solve for optimum

layout geometry. The layout geometry optimization determines room position and size (topology

is fixed during optimization). Figure 1 shows a sample layout geometry.

Figure 1. Sample layout geometry
2
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1. 1. 2 Topology Optimization Model

The topology optimization

model is used together with the

geometry model in the automated

design tool. The model is

discussed in detail in Chapter 4.

The topology layout problem is

posed as a process of searching

for the set of room connectivities

and rough locations that yields

the best geometry. The topology

defines room connections (by

doorway or accessway), rooms

that lie on external walls, and the

rough placement of rooms inside

the building bounds. The problem is formulated with a set of discrete design variables

(representing topology decisions) and design constraints. An evolutionary algorithm is

used to search for high quality designs that meet all specifications (design ‘quality’ refers

to the objective function value of the resulting geometric layout). Figure 2 shows an

example topology. In this figure nodes represent room positions, and lines represent

connections between rooms.

Theoretically, topologies could be evaluated based on topological objectives, such as

openness, proximity, directionality, or symmetry; however, even though these aspects are

often thought of as topological, they are difficult to evaluate without geometry. However,

any design objective can be evaluated in a geometric layout because the geometry defines

the layout completely (the geometric layout treats connectivity and materials as fixed

values). This is why each topology is evaluated based on the best geometry that it can

produce.

Figure 2. Sample layout topology
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1. 2 Design Tools

Two design tools have been developed to assist a designer in exploring solutions to building

floorplan layout problems: an automated design tool, and an interactive design tool.

1. 2. 1 Automated Design Tool

The mechanics of the automated design

tool are discussed in detail in Chapter 3 and

Chapter 4. By combining the topology and

geometry models, the automated design tool

can be used to generate high-quality design

alternatives for consideration. In this

process, the designer specifies topological

and geometric constraints and objectives.

For example, the designer might specify that

the living room and bedrooms must be

adjacent to external walls for natural

lighting, there must be valid paths from

every room to the entryway, and the kitchen

must be connected to the dining room. The

topology optimization algorithm will search

for topology alternatives that satisfy these

constraints (Chapter 4). Each valid topology

is then translated into a local optimal geometric layout using the geometric optimization algorithm

(Chapter 3). This process is shown in Figure 3. The topology algorithm searches for the topology

that results in the best geometry, and the algorithm generates a population of feasible layout design

alternatives. This automated design generator helps the design process because it formalizes

design objectives and constraints, it can assist the search for solution alternatives, and it has the

potential to generate novel designs that are not biased by the same set of assumptions and

strategies that human designers use.

Figure 3. Automated building layout 
optimization method
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1. 2. 2 Interactive Design Tool

Automated design generation tools are sometimes not adequate for problems such as

architectural design for several reasons. Architectural design involves many subjective

decisions about aesthetics or other preferences that are difficult to model or quantify

mathematically. For design qualities that can be well defined, it is often difficult to foresee

all issues that may affect the optimization model before observing some results. The

usefulness of such a tool can be greatly improved if the designer is given the opportunity

to refine the problem definition during the optimization process while receiving feedback.

In addition to modeling issues, automated tools face computational difficulties.

Currently, the only methods that can compute or verify the global optimum of a function

involve systematic exhaustive search with some kind of tree-pruning (branch and bound /

constraint satisfaction programming (CSP) forward checking). These methods suffer from

combinatorial explosion in large, highly constrained problems such as building layout.

Other stochastic methods explore a smaller subset of the design space, and they can often

find good solutions quickly; however, these algorithms do not guarantee solution quality

in finite time because of their stochastic nature. Strict global optimality is less important in

ill-defined problems like architectural design, which generally have some design

preferences that are not well represented in the model. Instead, it is important that the

designer is able to explore and compare high quality alternatives. Allowing the designer to

use experience and intuition to guide the search can improve search time relative to well-

defined objectives and constraints as well as take into account unmodeled objectives and

constraints. In addition, the designer can assist gradient algorithms that may have

computational difficulties for non-smooth objective and constraint functions by guiding

the design away from first-order discontinuities.
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A building geometry optimization design

tool was created to allow the designer to

interact with the problem in a number of

ways, including interactively defining the

problem, guiding the search for a solution,

and exploring design alternatives (see

Figure 4). This tool offers a new, powerful

approach to using optimization in the design

process. Instead of using optimization in the

final design stages to fine-tune a solution to a

well-defined problem, optimization is used to

help the designer define the problem and to

explore solution alternatives and trade-offs

interactively, while receiving both visual and

computational feedback. If the designer

changes the problem formulation, the new

formulation is automatically updated, and

search in the new design space begins with the last design found before the change. The interactive

design tool is discussed in Chapter 5.

Figure 4. Interactive building layout 
optimization method
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CHAPTER

�����
��

In this chapter, the automated layout design tool presented in the thesis is contrasted

with other research attempts to automate layout design. The new tool offers a novel

approach, and advantages are discussed. The interactive design tool is contrasted with

other interactive optimization methods. It is compared to other CAD systems as a tool for

design exploration in the early, conceptual phase of design, and it is presented as a novel

way to use optimization in this early stage.

2. 1 Automated Spatial Configuration

Spatial configuration optimization is concerned with finding feasible locations and

dimensions for a set of interrelated objects that meet all design requirements and

maximize design quality in terms of design preferences. Spatial configuration is relevant

to all physical design problems, and so it is a very important area of research. Research

work on automation of spatial configuration includes component packing [16]-[18], route

path planning [23], process and facilities layout, VLSI design [21][22], and architectural

layout [1]-[13]. Architectural layout is particularly interesting because in addition to

common engineering objectives such as cost and performance, architectural design is

especially concerned with aesthetic and usability qualities of a layout, which are generally

more difficult to describe formally. Also, the components in a building layout (rooms or

walls) often do not have pre-defined dimensions, so every component of the layout is

resizable.

Reported attempts to automate the process of layout design started over 35 years ago

(Levin 1964 [1]). Researchers have used several problem representations and solution

search techniques to describe and solve the problem. Table 1 outlines some of the major

contributions to this field.
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Table 1: Outline of Research in Automated Building Layout

Authors System Representation Solution Strategy

Liggett

Mitchell[2]
Fixed Grid Space Allocation

Constructive placement 
followed by iterative 
improvement

Sharpe

Marksjo[3]
TOPAZ Fixed Grid Space Allocation Simulated annealing

Jo

Jagielski

Gero[4][5]

EDGE
Fixed Grid Space Allocation using an 
ordered schema

Evolutionary algorithms

Baykan 

Fox[6]
WRITE

Topology: search through combinations of 
disjunctive constraints

Geometry: cartesian coordinates of each 
room edge. Constraints are defined by the 
specific topology

Topology: CSP 
enumeration techniques 
(backtracking)

Geometry: CSP 
enumeration techniques 
(backtracking)

Schwarz

Berry

Saviv[7]

ABD

Topology: decision variables define specific 
topological relationships that define 
geometric constraints

Geometry: Two constraint graphs define 
wall locations in x-dir and y-dir. Constraints 
are functions of decision variables

Topology: Enumerative or 
heuristic CSP search 
techniques

Geometry: CSP 
enumeration techniques

Medjeoub

Yannou[8]

ARCHi

PLAN

Topology: specific room adjacency and 
room proximity define geometric 
constraints

Geometry: Room coordinates, length and 
width

CSP solution enumeration 
techniques

Michalek

Choudhary

Papalambros

Topology: room connectivity defines 
geometric constraints, and rough placement 
is used only as a starting point for geometric 
optimization

Geometry: room coordinates, length and 
width

Topology: Evolutionary 
algorithms 

Geometry: SQP
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2. 1. 1 Fixed Grid Space Allocation

One approach to spatial allocation

is to define the available space as a set

of grid squares and use an algorithm to

allocate each square to a particular

room or activity [2]-[5] (see Figure 5).

This problem is inherently discrete,

non-linear, and multi-modal. Because of

the combinatorial complexity, it cannot

be solved exhaustively for reasonably-

sized layout problems. Several heuristic

strategies have been developed to find

solutions without searching the design space exhaustively.

Liggett and Mitchell [2] use a constructive placement strategy, where space is

allocated for rooms one at a time based on the best probable design move at each step.

Using this strategy, squares will be completely allocated for the first room before the other

rooms are considered. One by one, the rooms are allocated enough squares on the grid to

meet size requirements. The placement of each room is guided by a probability model that

tries to minimize cost in terms of cost of travel between spaces. Once a design is complete

by placing all of the rooms, the algorithm uses an iterative improvement strategy to find a

local optimum. In this phase, the space allocation is altered slightly to improve the design

objectives. This heuristic approach is useful in many situations; however, it does not

guarantee global quality or even feasibility.

Sharpe and Marksjo [3] use a metropolis (simulated annealing) algorithm to explore

the space of potential allocations globally and stochastically. More recently, Gero [4][5]

has used an ordered schema to describe the allocation of space and an evolutionary

algorithm (genetic algorithm) to search for solutions. These stochastic solution strategies

have more potential to search the design space globally. Gero was able to produce

improved solutions to layout problems posed by Liggett and Mitchell as well as other

layout problems.

The fixed grid allocation approach is a successful approach for allocating a pre-

defined space into rooms or activities. This approach can be used for applications such as

to redistribute activities in an office building during a reorganization, or to distribute

a b
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b
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c
c
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c
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c
c
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fffeeddd
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Figure 5. Sample fixed grid 
allocation layout
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activities in a newly purchased building. The approach may also be successful in generating new

buildings with variable boundaries; however, this has not yet been reported.

2. 1. 2 Decomposition of Topology and Geometry

Another approach to representing the building layout design space is to decompose the

problem into two parts: topology and geometry. Topology refers to logical relationships between

layout components. Geometry refers to the position and size of each component in the layout.

Topological decisions define constraints for the geometric design space. For example, a

topological decision that room i is adjacent to the north wall of room j restricts the geometric

coordinates of room i relative to room j.

Baykan and Fox [6] developed a system using Constraint Satisfaction Programming (CSP)

techniques1 to enumerate solutions to a graph representation of the layout design space. The

topology space is described by defining which rooms are adjacent. Adjacency is represented as

sets of disjunctive constraints, for example,

room i adj-to room j

would be represented as

(room i adj-to-north-of room j) OR 

(room i adj-to-south-of room j) OR 

(room i adj-to-east-of room j) OR 

(room i adj-to-west-of room j). 

1. To learn more about CSP formulation and solution techniques, see reference [37].
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The space of topologies is searched using CSP backtracking to enumerate all feasible

combinations of topological constraints.  

Each topology combination is searched for feasible combinations of room edge

coordinates [(x1, y1), (x2, y2)] that satisfy the constraints using backtracking. This

approach is complete (will always find the solution if one exists); however, search time

and space are intractable for large problems (a studio apartment layout is used as a

tractable example).

Medjeoub and Yannou [8] have a similar representation, but first they enumerate all

topologies that produce at least one feasible geometry. The designer is then able to review

the topological possibilities and select those which s/he wants to explore geometrically.

This approach can handle moderately-sized problems (up to twenty spaces including stairs

and halls). 

Schwarz, Berry, and Saviv [7] describe the same basic combinatorial topology search

with a vector of decision variables, and geometric solutions are searched for each

topology. Geometry is represented using two constraint graphs that describe wall positions

in the x-direction and in the y-direction. Wall positions are constrained based on the

topological decisions (decision variable values). They have shown success for small

problems (up to nine rooms).

kitchen adj-to 
dining room

N S E W

bath adj-to 
dining hall

N S E W N S E W N S E W N S E W

... ... ... ... ...
Figure 6. Sample search tree of 

topology combinations
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2. 1. 3 What is still needed

Existing solutions to the automated building layout problem are varied. Each representation

and solution method has its own set of biases and assumptions. Many research attempts have

yielded impressive results; however, there is still a need for improvements and additions.

1. Successful generation of global quality solutions has been achieved for medium-sized prob-

lems; however, there is still a need for a strategy that can handle larger problems computation-

ally. 

2. In all of the present decomposed solutions, the designer must specify which rooms are adjacent.

In real design situations, specific adjacencies may be compromised, as long as there exists an

acceptable pathway from one room to another. For example, in a house it may be important that

there is a valid pathway from the bedroom to the foyer that does not pass through bathrooms or

closets; however, the exact adjacency path may be flexible. There is a need for a system that

can handle these path requirements without adjacency requirements.

3. Computational evaluation speed is a major drawback. It would be useful to take advantage of

the speed of gradient-based algorithms on the geometric aspects of the layout, because they

have a continuous variable nature. Gradient-based algorithms can efficiently handle large sets

of constraints and objectives, especially those that can be represented linearly.

4. There is a need to generate layouts that can be easily manipulated and altered by a designer. It

is rare that a designer would simply choose a computer generated layout without altering it,

because many subjective architectural considerations have not been formalized into the mathe-

matical model used by the computer. The designer should be able to quickly make changes to

generated layouts.

The tool presented in this work addresses all of these concerns. The interactive design tool can

work with much larger geometric layouts than reported in the literature, and the topology layout

optimization can handle problems as large as those reported in the literature [8]. Generic path

constraints have been implemented, the computational efficiency of gradient algorithms has been

used where appropriate, and the design tool allows easy manipulation by designers.
12



J. Michalek - Interactive Layout Design Optimization
2. 2 Interactive Optimization

2. 2. 1 Interactive Multi-Objective Optimization

Most work on interactive optimization

focuses on multi-objective optimization. This is

because preferences are expressed a posteriori;

after some idea of the trade-off is gained from

comparison of results. Optimization algorithms

are generally designed to maximize or minimize a

single objective function. Multi-objective

interactive techniques use some variation of the

Interactive Weighted Tchebycheff (IWT)

approach [50]. In this approach the multi-

objective problem is converted into a single

objective problem by minimizing the weighted

sum of distances to an ideal point. Figure 7 shows an example of this situation. Here, f1

and f2 are two competing objective functions. An optimization algorithm will generate

different points on the Pareto curve depending on how the objectives are weighted. After

obtaining a solution, the designer alters the weights (the relative importance) of each

objective to tune trade-off preferences and move along the Pareto set. This is often an

insufficient approach because there is poor understanding of the relationship between the

location of the desired Pareto points and the corresponding weights.

Several alternative methods involve the

designer choosing an ‘aspiration point’: a

design close to the Pareto set ([48], [47]). The

algorithm then searches for a point on the

Pareto set close to the aspiration point (see

Figure 8). This is very important, because it

allows the designer to interact with values that

s/he can relate to physically, instead of an

arbitrary weighting scheme. Other techniques

have been developed, including an epsilon-

f1(x)

f2(x)

ideal pt.

Pareto curve

non-dominated designs

Figure 7. Pareto set in a 
multi-objective 

optimization problem

infeasible designs

feasible designs

f1(x)

f2(x)

ideal pt.

Aspiration point

Figure 8. Pareto 
optimization using an 

aspiration point

Pareto design
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inequality constraint method where new constraints are added to the problem based on the

designer’s feedback (Azarm 1998 [50]).

In the thesis, the simple Interactive Weighted Tchebycheff approach with linear weights is

used because the objective functions are generally not competing. More advanced interactive

approaches for exploring the Pareto set could be added in the future to help with competing

objectives. More importantly, the approach in this thesis expands on a concept known well in the

multi-objective optimization literature -- that the designer must generally see some physical results

in order to understand design trade-offs. In interactive multi-objective optimization, when the

designer has seen results, s/he can use that information to alter the objective function definition by

changing individual objective weights. This idea is expanded in the thesis, allowing the designer to

see physical results of the entire design in real-time during optimization and to use this information

interactively to change aspects of the problem statement or redirect search.

2. 2. 2 Interactive Design Space Exploration

In addition to weighted multi-objective optimization, some researchers have extended the

interaction to a process where the designer can change the optimization model during the

optimization process. OptdesX, a commercial optimization tool [52][53], allows the designer to

monitor changes in the design variables during optimization. The designer can pause an

optimization run to make changes in the design variables and move in the design space. For

example, if the designer notices a variable, objective, or constraint value changing to an

unacceptable value, s/he may realize immediately that the model has errors. Alternatively, if the

designer notices that some of the design variables are ‘stuck’ in an undesirable region, the designer

can stop the optimization run and ‘nudge’ the design by manually changing the value of the design

variable. The change could result in moving search into a better local minimum. OptdesX offers a

general platform for watching and interacting with the optimization process; however,

visualization is limited to numerical information, and the designer cannot change the design

problem itself without reprogramming and recompiling.

Tidd, Rinderle, and Witkin [55] developed a system for a designer to interact with design

variables and resultant design behaviors. In this method, each design variable and behavior is

represented in graphical form. By ‘pulling’ on the graphs as if they were physical objects, the

designer influences the design objectives and changes the shape of the design space. The

optimization algorithm reacts to this change and alters design variables accordingly to find a new
14
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local optimum. In this way, the designer can interact with the design problem in an

intuitive way to understand design trade-offs from an entirely new perspective.

2. 2. 3 Interactive Building Layout Optimization

Arvin and House [54] created a physics-based system for architectural layout. In this

system, rooms are connected with simulated springs and dampers, and a dynamic

simulation is run to push and pull the rooms into position. The designer influences the

design by adding springs or changing spring constants. It is unclear how cumbersome this

process would be for an architect; however, it does give the designer a new way to explore

the problem -- one where spaces (such as rooms) are the working elements instead of the

lines used in sketching.

Liggett and Mitchell [45] used the probability model in their automated design tool to

create an interactive design tool for building layout. Their fixed grid space allocation

representation uses constructive placement to allocate rooms into the building space one at

a time (see Section 2. 1. 1). Liggett and Mitchell developed an interactive design tool to

provide graphic feedback to the designer on the probable ‘goodness’ of design moves at

each step. The designer can then use this feedback, along with intuition and other

considerations that are not be represented in the model, to guide the space allocation

selection. 

Because of the difficulty in modeling many architectural design preferences, many

researchers feel that

“...attempts to use fully automated computer algorithms to solve the
layout problem should be reexamined with a view of incorporating
man’s visual capability into the procedures.” (Scriabin and Vergin
[60])

2. 2. 4 What is still needed

Integrating the computational power of optimization algorithms with the guiding

power of human judgement is an extremely rich area for exploration in the design

optimization field. Many design disciplines are concerned with aesthetic and usability

issues that are difficult to quantify mathematically, but are easy to evaluate visually by a

human. Also, many optimization algorithms get trapped in local minima or get diverted
15



because of non-linearities. Building layout design in particular has both of these qualities, and a

tool is needed that allows the designer to guide the search algorithms into areas of interest and

away from computational traps. A human designer with a visual interpretation of movement in the

design space has the potential to recognize computational traps and guide the search into preferred

areas of the design space. The designer can also guide search into areas that are interesting for

unmodeled subjective reasons.

This thesis work addresses these concerns with an interactive design tool that supports the

designer by computationally optimizing aspects that can be modeled mathematically, while giving

the designer control to make decisions influenced by subjective human judgement and intuition.

2. 3 Exploratory Design CAD Tools

Most CAD systems are very good at producing precise, accurate renderings of well defined

designs. Many CAD systems also include detailed analysis packages for obtaining simulation

feedback on the performance of a design. However, very few CAD packages address the needs of

a designer during the initial conceptual exploratory phase of design when the problem is ill-

defined, and the solution has not yet been decided.

The conceptual phase of design (or ideation phase) is the initial phase where
the internal ideas of the designer are externalized or explored interactively
and represented tentatively in some form using any medium... These are
usually early sketches, rough mock-up models and concept renderings.
Normally during the conceptual phase, designers quickly represent as many
as possible different solutions in a short time. These are evaluated visually
before exploring further possibilities. There are two important characteristics
during this phase. First, the quick and intuitive representation of concepts.
Secondly, the generation (in a very short time) of many different solutions and
variations. Sketching is the most widely used imagery aid in evolving new
ideas during the conceptual phase. (Stuyver and Hennessey [57])

2. 3. 1 Ill-Defined Design Problems

The vast majority of design problems are ill-defined. In an ill-defined problem the initial

constraints on the problem are not fully formulated. Resolving ill-defined problems is a process of

searching for and refining a set of design constraints [61]. Few CAD tools exist to help a designer

to refine design constraints. 

Tidd, Rinderle and Witkin [55] developed a system for a designer to interact with design

variables and resultant design behaviors (see Section 2. 2. 2). Arvin and House [54] created a
16
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similar physics-based system for architectural layout (see Section 2. 2. 3). These tools

provide a glimpse of the potential of tools that help the designer to explore constraint

options interactively during conceptualization.

2. 3. 2 Rapid Generation of Design Alternatives

Some commercial systems such as Working Model 2D allow designers to quickly

model simple mechanisms to see how they will function. The designer can also receive

feedback on forces and accelerations. Other drawing packages such as Alias, FormZ, and

3D Studio allow simple 3D shapes to be created and manipulated easily to explore basic

forms.

Most architectural CAD tools are either drafting or analysis machines -- neither

focusing on the rapid generation of design alteratives. Kharrufa, Saffo, Aldabbagh and

Mahmood [46] developed an architectural CAD tool allowing the designer to interact with

intuitive objects such as spaces instead of drawing lines. They suggested that 

CAD could offer significant help... by presenting the architect with
information such as expected cost and spatial allocation, which can
improve the decision making. Furthermore, it could be used to
simulate part of the building’s expected performance in areas such as
thermal loads and lighting (Kharrufa, Saffo, Aldabbagh and
Mahmood [46]).

Many architectural analysis tools exist for performing these kinds of simulations; however

The biggest stumbling block that prevents the computer being used to
produce this extra information during the preliminary design stage is
that the data concerning the building must first be input. This is a
lengthy process that might defeat the aim of improving efficiency.
(Kharrufa, Saffo, Aldabbagh and Mahmood [46])
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2. 3. 3 What is still needed

An interactive tool for early design stage conceptualization is needed that can

• help the designer to interactively refine the ill-defined design problem,

• provide an intuitive representation to interact with,

• provide a simple interface that enables rapid design and exploration of
alternatives, and

• provide computational feedback on the performance of designs.

These needs are qualitative in nature. Nevertheless, they are important qualities for an

exploratory design tool. The design tool presented in this thesis addresses all of these issues for

architectural layout design. The interactive design tool provides assistance that allows the designer

to refine the problem definition during exploration, and the use of optimization allows the designer

to quickly generate high-quality layouts and receive both visual and computational feedback.
18
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3. 1 Problem Formulation

The geometric optimization problem is posed as a process of finding the best location

and size of a group of interrelated rectangular units. By formulating the geometric layout

problem mathematically with a set of variables, objectives, and constraints, optimization

algorithms can be used to solve for optimum layout designs. The geometric optimization

problem has been formulated so that all objectives and constraints are continuous

functions of the design variables, and all design variables have continuous domains. To the

author’s knowledge, this is the only work in architectural layout design that uses this kind

of formulation intended for gradient-based optimization.

3. 1. 1 Units

The layout problem is posed as a search for the best placement and size of a group of

interrelated Units into a two dimensional cartesian space.

Definition 1. A Unit is a rectangular, orthogonal space
defined to perform a specific architectural function.

Examples of architectural functions include living spaces, storage spaces, facilities, and

accessibility spaces.
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There are several ways to represent a Unit

mathematically. Figure 9 shows some alternative

variable representations that were used as the

research evolved. Each representation affects the

shape of the design space and the gradient

calculations used by the optimization algorithms,

introducing bias into the solution strategy. 

An algorithm using model 9(a) can move each

wall of a Unit independently of the others with a

single variable; however, moving the entire Unit

without altering its size requires changing at least

two variables simultaneously. An algorithm using

this representation may have trouble satisfying area

constraints when a Unit needs to be moved.

Model 9(b) is unbalanced. The north and east

walls can move independently, but the south and

west walls cannot move directly without affecting

the north or east walls.

An algorithm using model 9(c) can move a

Unit without affecting its size; however, it cannot

move any wall independently without changing at least two variables simultaneously. This

representation may have trouble violating adjacency constraints when it needs to move walls.

Model 9(d) represents a Unit as a point in space (x,y), and the perpendicular distance from that

point to each of the four walls: {N, S, E, and W}. This model has more variables; however, it

allows an optimization algorithm to change the position of a Unit independently without affecting

its size (by changing x or y), and it can change any of the four wall positions independently (by

changing N, S, E, or W). Furthermore, (x,y) does not need to be the center of the Unit, and {N, S, E,

W} need not be restricted to positive numbers. Although this model increases the problem

dimensionality, it offers a lot of flexibility to make the best design moves at each step of

optimization. To the author’s knowledge, this is the only implementation of such a representation

which has improved behavior of gradient algorithms in this problem.

(xW,yS)

Figure 9.
(a)

(x,y)
Figure 9.

(b)

l

w

(x,y)

Figure 9.
(c)

l

w (x,y)

Figure 9.
(d)

S

N
W E

Figure 9. Alternative variable 
representations of a Unit

(xE,yN)
20



J. Michalek - Interactive Layout Design Optimization
Model 9(d) was adopted for most of the examples presented here (except where

noted); however, the object-oriented implementation includes all of these representations,

and it is easy to switch between them or add new representations.

3. 1. 2 Rooms

Definition 2. A Room is a Unit that is used as a living
space.

A living space is any space that is considered to be used for sustained living activity.

Typically this definition would not include pathways or hallways that are used for access,

but may include closets or other Units. It is up to the designer to decide which Units

should be Rooms. The differentiation between living space vs. non-living space is

important only in optimization objectives to maximize the amount of space used for living

and minimize all other space (see Section 3. 2. 15). 

Figure 10 shows four different

types of units which are discussed

below. In Figure 10, “Living

Room”, “Bedroom”, and

“Bathroom” are Rooms.

Figure 10. An example layout 
showing four different types of Units
21



3. 1. 3 Boundaries

Definition 3. A Boundary is a Unit that has other Units con-
strained inside itself and is not considered living space.

Boundaries are used to group Units together. By default, the outer walls of the building are defined

by a Boundary Unit, and all other Units are forced inside of this Boundary Unit. 

In Figure 10, the large purple colored rectangle that defines the outer walls of the building is a

Boundary.

3. 1. 4 Hallways and Accessways

Definition 4. A Hallway is a Unit with no physical walls that is not
considered living space.

Definition 5. An Accessway is a Hallway that is constrained to geo-
metrically intersect two Units.

Generally, a Hallway is used like a Room, but it does not function as living space. It functions only

to provide a path between other rooms. Accessways are generally restricted to be small, and they

are forced to intersect two other Units. They function to keep the two Units adjacent and

connected, and to ensure that there is room for a door or opening. 

In Figure 10, “Hall” is a Hallway. The Units labeled “A” are Accessways. Notice that each

Accessway overlaps two other Units, ensuring access between those Units.

3. 1. 5 Windows

Units that are along external walls may have windows for natural lighting. Windows are

generally added to Rooms and Hallways. By default, adding a window to one of the walls of a

Room also adds an explicit constraint to force the Room against the respective wall of the building

Boundary. It is then assumed that any room with a window is against an external wall for natural

lighting calculations. Window height can be fixed for each Unit, and window width is a variable

for each direction that has a window:  represent the width of the north,

south, east and west windows, respectively.

�Ni
�Si

�Ei
and �Wi

� � �
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3. 1. 6 Constraints

The model formulation includes a toolbox of constraints that can be used to maintain

relationships between Units. Design constraints have been developed to provide for the

following relations:

Force Inside: Used to force some Units inside of others, such as
forcing all Rooms to be inside the building Boundary.

Prohibit Intersection: Used to prevent Rooms from intersecting
and occupying the same space.

Force Minimum Intersection: Used to force Accessways to
sufficiently overlap Rooms to guarantee space for a doorway or
opening.

Force To Edge: Used to force Rooms against the edge of an
external Boundary Unit to ensure feasibility of external doors for
access or windows for natural lighting or emergency exit.

Bound Size: Used to provide bounds on acceptable length, width,
and area of each Unit.

Bound Ratio: Used to bound Unit length-to-width ratios within
an acceptable range.

Feasible Window: Used to ensure a window is small enough to
fit on its wall.

Bound Build Cost: Used to provide bounds on acceptable
estimated cost of building the structure.

Bound Lighting: Used to provide a bound on minimum
acceptable natural lighting for each Room.

Mathematical models of these constraints are explained in Section 3. 2.

3. 1. 7 Objectives

Several design objectives have been developed for measuring the quality of each

design based on designer preference.
23



Minimize Heating Cost: Minimize the estimated annual cost to heat the
building.

Minimize Cooling Cost: Minimize the estimated annual cost to cool the
building.

Minimize Lighting Cost: Minimize the estimated annual cost to
illuminate the building.

Minimize Wasted Space: Minimize the amount of space contained in the
building Boundary that is not occupied by living space.

Minimize Accessway Size: Minimize the size of Accessways to bring
connected Units as close together as possible.

Minimize Hallway Size: Minimize the size of Hallways.

The designer can choose a single optimization objective or may select several objectives and

weight them in terms of importance. Mathematical models of each of these objective functions are

explained in Section 3. 2.

3. 1. 8 Notes on an Earlier Model Formulation

The mathematical model used in this thesis work evolved as the project progressed. The final

refined model has been described above, but some of the optimization tests used other earlier

models to represent the problem. For completeness, earlier models will be described below and

referenced when they were used.

In modeling Units, the model in Figure 9(b) was used for some of the early optimization runs.

This was a reasonable model because initially it was assumed that the south and west walls of the

building are external walls, and the north and east walls are not.
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In some of the earlier models, halls and

accessways were not modeled as Units.

Instead, hallways were represented by a

parameterized hallway structure (see

Figure 11). In this model, instead of

Accessways, each Room has a door,

represented by its center point. The door

point is constrained to be inside the

room and away from corners. Each door

point is also constrained to connect with

the hall structure. These constraints

would force each door to an edge

between its Room and the hall structure,

guaranteeing connection and ensuring

access to other Rooms and to an exit.

The current model using Hallway Units and Accessway Units is more general, and it

behaves better during optimization, so the early model will not be discussed further except

to be referenced when used.

In addition, a mixed-discrete

formulation was developed specifically

for the hybrid SA/SQP solution method

(Section 3. 4. 2). In this formulation, two

discrete decision variables are added to

each room. The first discrete variable,

, determines which side of the

Room the door is on {north, south, east,

west}, and a continuous variable, d,

determines where the door is located

along that wall. The second discrete

variable, , determines if the Room

will be forced against an external wall. In

this model, it is assumed that the south

and west walls are the only external walls, so the set of legal values for this variable is

Figure 11. Example showing parameterized 
hall structure in early problem formulation.

The grey colored rectangles represent the hall
structure inside the green building bounds. The
colored squares represent Rooms inside the space.

Figure 12. Example diagram 
showing the mixed-discrete 

early formulation
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{south, west, free}. If , then the Room’s y-coordinate variable is fixed. If

, then the Room’s x-coordinate variable is fixed. If , then the Room’s

x and y-coordinates are free variables. Figure 12 shows a graphical representation of how this

formulation works, and Section 3. 4. 2 explains further how this formulation was used.

3. 2 Mathematical Optimization Formulation

The design optimization problem is formulated as

(1)

where x is the vector of alterable design variables, n is the number of variables, h(x) is a vector of

equality constraints, and g(x) is a vector of inequality constraints written in negative null form2.

The continuous problem formulation allows us to take advantage of powerful gradient-based

optimization algorithms designed to search continuous design spaces. Gradient algorithms use

gradient information to make function approximations and calculate best search directions from

the approximations. These algorithms can have unstable behavior if the functions are not smooth

(do not have continuous first derivatives), so it is important to formulate the problem so that

objective and constraint functions are as smooth as possible.

3. 2. 1 Design Variables

The optimization variables, x in Eq. (1), follow the variables defined in Figure 9d. Variables

for each Unit include a reference point location (x, y), distances to each wall (N, S, E, W), and any

windows added to each Unit ( ). 

(2)

2. See Papalambros and Wilde [28] for details on design optimization conventions
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The window variables drop out when the window is not physically present for a specific

Unit and direction.

3. 2. 2 Resultant Variables

In order to simplify

calculations and notation, several

resultant intermediate variables

will be used to describe geometry

that results from the design

variables (see Figure 13). This is

useful in an object-oriented

implementation because the design

variable model can be changed

without rewriting every constraint

(only resultant relation calculations

need to be rewritten). The

following resultant variables are

calculated from the design

variables as follows.

  Unit north wall location (3)

Unit south wall location (4)

Unit east wall location (5)

Unit west wall location (6)

  Unit length (7)

  Unit width (8)

Figure 13. Diagram of design variables and 
resultant variables for a single Unit
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Note that relations (3)-(8) are linear, so linear functions of these resultant variables are also

linear functions of the original variables. Introducing this notation simplifies the model and makes

it easier to understand.

3. 2. 3 Force Inside Constraint Group

The Force Inside Constraints are generally used to force Units into the main building

Boundary or other grouping Boundaries. In order to force Unit i inside Unit j, the following

constraints must all be satisfied:

 Unit i inside north wall of Unit j, (9)

 Unit i inside south wall of Unit j, (10)

 Unit i inside east wall of Unit j, (11)

 Unit i inside west wall of Unit j. (12)

3. 2. 4 Prohibit Intersection Constraint Group

Each Prohibit Intersection Constraint functions to prevent two Units from occupying the same

space. By default, one Prohibit Intersection Constraint is added for every combination of Rooms,

Hallways, and Accessways, except where two Units are forced to intersect, or where one Unit is

forced inside of another. 

In order to prevent Unit i from intersecting Unit j, Unit i must be entirely to the north, south,

east, or west of Unit j. At least one of the following constraints must be satisfied

 Unit i is north of Unit j, (13)

 Unit i is south of Unit j, (14)

Unit i is east of Unit j, (15)

 Unit i is west of Unit j. (16)
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This logical disjunctive constraint set

(17)

can be represented in negative null form using a min function

(18)

This nonlinear, non-

smooth formulation is

undesirable for gradient-based

calculations; however, the

nature of the constraint makes

it unavoidable. With this

formulation, the constraint

function acts as a smooth linear

function except when the close

corners of two Units are nearly

diagonal (see Figure 14).

Several other mathematical

representations were explored,

but this representation seems to

have the best behavior.

3. 2. 5 Force Minimum Intersection Constraint Group

Units are generally forced to intersect in order to ensure access (as Accessways do), or

to make a more complex geometric shape by combining rectangular Units. Forcing

intersection is the opposite of prohibiting intersection, so forcing intersection can be

written as the conjunction of the following constraints
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Figure 14. An example nonlinearity of a disjunctive 
logic constraint represented as a min() function.
In the figure, g represents the value of the prohibit
intersection constraint: the left side of Eq. (18)
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 Unit i overlaps north wall of Unit j, (19)

 Unit i overlaps south wall of Unit j, (20)

 Unit i overlaps east wall of Unit j, (21)

 Unit i overlaps west wall of Unit j. (22)

Although these constraints ensure intersection of the two Units, they permit intersection at a

point. In designing architectural spaces, we are generally interested in intersection that provides

enough room for a doorway or opening, so we must add an additional constraint. There will be

enough room for a doorway or opening if the overlap in one of the cartesian directions is at least as

large as the opening. Therefore, in addition to intersection, at least one of the following conditions

must be satisfied

Unit i overlaps north wall of Unit j, (23)

Unit i overlaps south wall of Unit j, (24)

 Unit i overlaps east wall of Unit j, (25)

Unit i overlaps west wall of Unit j. (26)

where di is the minimum size for a door or opening in Unit i. This disjunctive set of constraints can

be represented in negative null form using a min function similar to Eq. (18).

(27)

Although this constraint function is nonlinear and non-smooth in part of the design space, it is

linear in most of the design space (similar to Figure 14).

ySi
yNj

�

ySj
yNi

�

xWi
xEj

�

xWj
xEi

�

Nj
ySi

– max di dj( , )	

Ni
ySj

– max di dj( , )	

Ej
xWi

– max di dj( , )	

Ei
xWj

– max di dj( , )	

min max di dj( , ) xEj
– xWi

+ max di dj( , ) xEi
– xWj

+
        max di dj( , ) yNj

– ySi
+ max di dj( , ) yNi

– ySj
+

� �
�


�0
30



J. Michalek - Interactive Layout Design Optimization
The complete Force Minimum Intersection Constraint Group is represented as a set of

constraints that force intersection (Eq. (19)-Eq. (22)) and another constraint to ensure that

the overlap is large enough for access (Eq. (27)).

3. 2. 6 Force To Edge Constraint Group

The Force To Edge Constraints are used to force a Unit to the edge of a Boundary

because of a window or external door. It is assumed that the first Unit i has already been

forced inside Unit j by another constraint. In order to force a Unit to a particular wall, one

of the following constraints can be added:

 Unit i against north wall of Unit j, (28)

 Unit i against south wall of Unit j, (29)

 Unit i against east wall of Unit j, (30)

 Unit i against west wall of Unit j. (31)

If connection to an edge is important, but the specific edge is not important, (for

instance, a building may require an external door, but it is not important which one), then

the following constraint can be added to represent a disjunction of Eq. (28)-Eq. (31)

(32)

This representation is non-smooth at Unit corners; however, it is quadratic in most of the

design space (similar to Figure 14).

3. 2. 7 Bound Size Constraint Group

Three kinds of constraints are provided to bound the size of a Unit: minimum area,

minimum length/width, and maximum length/width. Length is not distinguished from

yNi
yNj

=

ySi
ySj

=

xEi
xEj

=

xWi
xWj

=

min xEi
x– Ej

� �2
xWi

xWj
–� �2

ySi
ySj

–� �2
yNi

yNj
–� �2� � �

� �
� �
� �

0=
31



width. It is assumed that a maximum area constraint would not be used to bound the area. Instead,

Unit area is only reduced to improve objective functions, such as cost objectives. Minimum area,

, minimum length/width, , and maximum length/width, , can be set for each Unit.

Default values are applied to each Unit based on common room dimensions because results may

not be physically meaningful if a lower bound on length/width or area is not provided.

minimum area, (33)

minimum length, (34)

minimum width, (35)

maximum length, (36)

maximum width. (37)

3. 2. 8 Minimum Ratio Constraint Group

Unit length-to-width ratio can be bounded to maintain a desired aesthetic scheme or prevent

long, narrow Rooms that may not be usable. The Minimum Ratio constraint group consists of two

constraints.

minimum width to length ratio, (38)

minimum length to width ratio. (39)

3. 2. 9 Build Cost Constraint

The build cost constraint is used to keep the construction cost below some value, . For

simplicity, build cost is measured only in terms of material cost. Material costs for walls  and

for windows  are specified as dollars per square foot of material, and other costs are ignored.

The build cost constraint is calculated as

(40)
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where  are the areas of the external walls in each compass direction and

 are the areas of windows facing each compass direction. These

quantities are computed in Eq. (49)-Eq. (56).

3. 2. 10 Feasible Window Constraint Group

In addition to the simple bound restricting window size to be positive, the window

width cannot be larger than the wall it is on. Each window added to a Unit is given one of

the following feasible window constraints (as appropriate).

north window size, (41)

south window size, (42)

east window size, (43)

west window size. (44)

3. 2. 11 Bound Lighting Constraint Group

A simple estimation of the amount of daylight entering a Unit with windows is

calculated using environmental and material information. The following procedure is

used.

Determine available daylight at the window exterior. IESNA
[63] provides three standard skies for use in the evaluation of
daylight designs. Approximate available daylight can be
determined from these based on altitude and azimuth angles.

 = vertical sky illuminance (direct)

 = vertical sky illuminance (sky)

for month m.

Find coefficient of utilization. The coefficient of utilization,
, is a function of the room geometry and window size, and it

determines the fraction of the available daylight that enters the
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room.  can be found in pre-tabulated data [62] based on room depth,
window width, and window height.

Determine net transmittance of windows. The net transmittance for a
window facing direction j is calculated as

(45)

where j takes on each of the directions {N, S, E, W},  is the
transmittance of the window (material property),  is the area of the
glass in direction j, and  is the area of the wall in direction j.

Determine Daylight at the Room Center. The horizontal illuminance at
the center of room i is calculated as

(46)

for room i, where j takes on each direction {N, S, E, W}, and m spans the
12 months of the year. The illuminance is then converted into watts, :

(47)

where  is the area of room i, and  is the efficacy of the light source
(assumed to be 80).

The required natural lighting per square foot, , is defined for each
Unit by the designer (default 1 Watt/sq.ft.). Assuming uniform light
distribution, total required natural lighting can be calculated as

. The minimum percentage of required lighting that is provided
by natural light, , can be specified by the designer. 

The final constraint is written as:

. (48)

3. 2. 12 Minimize Heating Cost Objective

The annual energy cost to heat the building is calculated as a function of the building

Boundary Unit shape, volume, surface area, and material as well as environmental conditions.
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Simplified calculations (ASHRAE [62]) are used to calculate an approximation. The

procedure for calculating heating loads is as follows:

1. Calculate the net area of windows on each external wall. It
is assumed here that windows on all Units are constrained against
external walls

area of north windows, (49)

area of south windows, (50)

area of east windows, (51)

area of west windows. (52)

(UNW, USW, UEW, and UWW refer to Units with north, south,
east, or west windows respectively).

2. Calculate the net area of each external wall.

area of north wall, (53)

area of south wall, (54)

area of east wall, (55)

area of west wall. (56)

where 1 indicates Unit 1, which is assumed to be the building
Boundary Unit.

3. Calculate heat loss. The heat loss calculation assumes that all
heat is lost from the external walls and windows (no heat is lost
through the roof). This model could be changed depending on
what type of building is being modeled. The coefficient of
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transmittance for the wall, , and window, , are tabulated based
on the materials used. The annual heat loss is calculated as

(57)

where i is the set of months where heat is used, and  is the average
internal/external temperature difference for month i.

4. Calculate cost to maintain temperature. Gas heat is assumed, and the
cost of gas per cubic foot,  and efficiency of the heater in Watts per
cubic foot of gas, , can be specified. The heating cost objective
function is formulated as

minimize  (58)

3. 2. 13 Minimize Cooling Cost Objective

The procedure for calculating cooling loads is more complicated than heating loads because

heat due to solar gain must be taken into account.

1. Calculate the net area of windows on each external wall. Use Eq.
(49) - Eq. (52).

2. Calculate the net area of each external wall. Use Eq. (53) - Eq. (56).

3. Calculate solar heat gain through the windows. Several parameters
are important in calculating solar heat gain. Depending on the orientation
of the windows (N, S, E, or W), the Solar Heat Gain Factor, , can be
found in tables for a given location [62]. The shading coefficient, , is
a property of the glass [62], and the time-lag factor, , is a tabulated
function of glass type and window orientation [62]. The annual solar heat
gain, , is calculated as
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(59)

where i is the set of months where air conditioning is used.

4. Calculate conductive heat gain through the building
exterior. The orientation of each exterior wall and windows is
accounted for in the factor. The cooling load due to conduction is
calculated as 

(60)

where i is the set of months where air conditioning is used.

5. Calculate the cost to maintain temperature. Electric cooling
is assumed, and the rate of electricity, , and efficiency of the
air conditioning unit, , can be specified. The cooling cost
objective function is formulated as

minimize . (61)

3. 2. 14 Minimize Lighting Cost Objective

This objective minimizes the cost spent on lighting the building by encouraging

natural lighting. The amount of natural lighting in room i, , is calculated as in Section

3. 2. 11, Eq. (47). The minimum daylight requirement per square foot, , is set by

the designer based on usage intention. The total required cost if all of this light is

provided by electric lighting can be calculated as:
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, (62)

where i is the set of Units, and  is the number of hours of use per month.

The total cost to minimize is then the maximum possible electricity cost minus the cost

savings from natural lighting (see Section 3. 2. 11):

minimize , (63)

where i is the set of Units, and  is the number of hours of available light per month.

3. 2. 15 Minimize Wasted Space Objective

Wasted space refers to space that is not living space. This could be space used for hallways or

un-allocated space inside the building Boundary. Wasted space is calculated as the area of the

building Boundary minus the total area used as living space. The objective is formulated as

minimize , (64)

where 1 indicates Unit 1, which is assumed to be the building Boundary Unit.

3. 2. 16 Minimize Accessway Size Objective

This objective brings connected Units together. Accessways may be constrained to be small

(Section 3. 2. 7) to keep Units together. Alternatively, the Minimize Accessway Objective can be

used to bring Units together if possible, but allow them to be separated if necessary, providing that

there is an Accessway between them. This method allows Accessways to function similarly to

Hallways depending on the design situation. The objective is formulated as

minimize . (65)
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3. 2. 17 Minimize Hallway Size Objective

This objective is used to provide extra living space where possible. Generally, the

Minimize Wasted Space Objective (Section 3. 2. 15) will naturally minimize Hallways in

order to increase the area of each Room. However, there are some situations where the

objective function is flat with respect to Hallway variables. An example is shown in

Figure 15. 

In Figure 15a, , where  is the west wall position variable for Unit 4, and

f is the value of the Minimize Wasted Space objective function. It appears to the algorithm

as if there is no reason to change ; however, if  is decreased enough, as in Figure

15b, then Room 1 is able to move in and take up the space. Using the Minimize Hallway

objective will tend to provide more space for living space where possible. This is one

example where designer interaction with the optimization problem during optimization

would be helpful. The objective is formulated as

minimize . (66)

3. 2. 18 Multi-Objective Optimization

Multiple objectives can be selected and combined into a single objective function using a

weighted sum of the individual objective functions. 

Room 1 Room 2

Room 3

Hallway 4

Room 1 Room 2

Room 3

Hallway 4

Figure 15. Example showing effects 
of the Minimize Hallway Objective
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, (67)

where fj(x) is the jth objective function, wj is the weighing (relative importance) of the jth

objective function, and N is the total number of objective functions. Appropriate weights may be

difficult to set for objective functions measured in different units. After obtaining results, weights

can be adjusted to compensate and to guide the design to desired results. The objectives in the

toolbox do not compete in most of the design space, except for cost objectives, which are all

measured in dollars. This makes multi-objective optimization much easier. In practice weights

only need to be adjusted to keep the function values in the same order of magnitude to avoid

computational problems.

3. 3 Local Optimization Methods

Several gradient-based optimization algorithms were used to solve the geometric layout for

local optima.

3. 3. 1 Sequential Quadratic Programming

Sequential Quadratic Programming (SQP) is a method for solving continuous optimization

problems as Eq. (1). A typical SQP algorithm is shown in Figure 16.3
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Figure 16. Description of the Sequential Quadratic 
Programming method for optimization.
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OptdesX [53], an optimization package, was used to implement SQP on the early

problem formulation described in Section 3. 1. 8. SQP successfully generated local optima

if the initial design was feasible or near feasible. Infeasible starting points often led the

algorithm to become trapped in infeasible space. The algorithm worked well; however, the

problem was reformulated and re-implemented using CFSQP so that an object-oriented

C++ code could be written and a GUI could be developed to interact graphically with the

problem.

CFSQP, a C implementation of Feasible Sequential Quadratic Programming [31], was

used to solve the building geometric layout problem presented in this thesis. FSQP is

similar to SQP except that once a feasible design is found, search directions are altered to

maintain feasibility at every iteration. If the initial design is infeasible, a penalty function

strategy is used to find a feasible design. In addition, CFSQP uses a Quasi-Newton

Method to approximate the Hessian of the Lagrangian . Instead of using finite

difference methods to approximate the Hessian at every design, the Quasi-Newton Method

begins by assuming an arbitrary Hessian (usually the identity matrix). Then, at each

iteration, the Hessian approximation is updated with new design space information. The

Hessian updates are constructed so that the Hessian is guaranteed to be positive definite at

every iteration. This is important for convergence properties. CFSQP also handles linear

constraints separately so that they are solved more efficiently.

3. Refer to Papalambros and Wilde [28] for more details on SQP, Lagrangian, KKT conditions, line search, active set 
strategies, Quasi-Newton Methods, finite difference, and penalty functions.

$2
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The CFSQP algorithm has been successful at generating locally optimal geometric designs for

the layout problem. A sample optimization of a particular layout problem is shown in Figure 17

CFSQP is very fast for moderately sized problems, and it is relatively stable; however,

sometimes the algorithm becomes stuck and is unable to find the next move or determine KKT

optimality. This may be partly due to non-smooth constraints (Eq. (18), Eq. (27), Eq. (32)). SQP is

only provably convergent for smooth convex problems, and it may have unpredictable behavior if

gradient functions are discontinuous. Still, in practice the algorithm almost always converges

quickly, and convergence problems can usually be avoided by perturbing the design slightly to

move it away from non-smooth areas of the design space. An auto-perturb feature has been

implemented to automatically avoid this problem. The auto-perturb feature alters each design

variable by a small random number if the algorithm gets stuck. This usually moves search away

from the first-order discontinuity and produces a reliable solution.

Figure 17. Progression of the CFSQP algorithm optimizing a sample 
apartment complex building to minimize annual cost and wasted space;
(a) shows the initial layout sketch provided by the designer (accessways
shown as lines between Units); (b) is an intermediate feasible iteration
(accessways shown also as rectangles); and (c) shows the completed
design (accessways shown as wall openings for clarity).

(a) (b) (c)
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3. 3. 2 Generalized Reduced Gradient

In addition to SQP, the OptdesX package was used to implement the Generalized

Reduced Gradient (GRG) algorithm on the original layout formulation (see Section 3. 1.

8). A typical GRG algorithm is shown in Figure 184.

GRG was successful at generating local optima for the layout problem, and it is

unclear if either GRG or SQP is a superior solution method for this formulation. However,

GRG seemed to have more difficulty with discontinuous gradient functions, so SQP was

pursued for the remainder of the problems.

3. 3. 3 Limitations of Local Search

These gradient-based search algorithms find locally optimal designs. This means that

the design is better than any neighboring design; however, the solution is highly dependent

on the starting point, and there is no guarantee that the design is of global quality. The

design space of this problem contains many local optima, some of which have poor global

4. For more information on GRG, active set strategy, reduced space, steepest descent, and Newton’s Method see 
Papalambros and Wilde [28].
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Figure 18. Description of the Generalized 
Reduced Gradient method for optimization.
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quality. Also, if the starting point is highly infeasible, then the algorithms often cannot find

feasible designs. 

3. 4 Global Optimization Methods

Global optimization methods have been developed to overcome the limitations of local search

and to find solutions of global quality. Several global search strategies were used to generate

geometric layouts.

3. 4. 1 Simulated Annealing

Simulated Annealing (SA - also known as the metropolis algorithm) is a stochastic algorithm

inspired by the way that molecules in metals minimize energy state during the annealing process.

A typical SA algorithm is shown in Figure 19.

Initially, the algorithm explores randomly, accepting almost every new point. As the

temperature cools, the algorithm rejects more of the uphill moves. The idea is that by sometimes

allowing the algorithm to accept an uphill move, there is a chance of working its way out of local

minima, but as the algorithm progresses, it begins to accept only downhill moves, switching from

global to local focus. SA is a stochastic algorithm, and it is not guaranteed to converge to a local or

global minimum in finite time; however, it is often successful at finding solutions of global quality.

SA was implemented using several variations of the early formulation layout problem (see

Section 3. 1. 8). Because SA cannot handle constraints explicitly, the constraints were modeled as

penalty terms in the objective function. Due to the high dimensionality and highly constrained

space of the problem, SA was unable to find a feasible design, even when run for several days on a

1 Choose initial design and initial temperature 
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2 Examine a random design in the neighborhood of 
the current design. 
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Figure 19. Description of the 
Simulated Annealing algorithm.
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trivial problem. Providing SA with a feasible starting point does not solve this problem

because SA accepts many random design moves in the beginning of the algorithm,

moving far from the initial design. If the cooling schedule and initial temperature are

adjusted to prevent this, then the global search quality of SA is lost.

These results suggest that a stochastic algorithm is not a practical solution to a

problem formulation with high dimensionality and a highly constrained space, although

alternate formulations of the layout problem may be more suited to this kind of search (for

example [3]).

3. 4. 2 Hybrid SA/SQP Search Method

A hybrid SA/SQP search strategy was developed to take advantage of the global

qualities of SA and the efficiency of SQP in order to generate local optima of global

quality. The method is outlined in Figure 20.

In this method, SA is used to search for a good starting point, and SQP is used to find

the local minimum near each starting point. In this way SA can search the space more

globally with large moves while SQP worries about the details. A sample objective

function is shown in Figure 21. In this example, SQP can find six different local optima

depending on where the starting point is chosen. Each point that SA selects is evaluated by

locally optimizing it, so SA observes any point in the vicinity of a local optimum to have

the objective value of that local optimum. In a sense, the objective function is being

screened for SA. Notice in the example that the function SA observes has only two local

optima instead of six. Also, an algorithm searching the resultant function can make larger

Figure 20. Description of the 
SA/SQP hybrid algorithm
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design moves without as much danger of overstepping important features. The discontinuity of the

resultant objective function is acceptable because SA does not require continuous functions, as

long as they are defined over the entire domain. Also, the penalty function formulation that

CFSQP uses to find feasible space is sometimes successful at finding a feasible optimum even

when SA chooses an infeasible starting point (see Section 3. 3. 1).

Figure 21. Hybrid SA/SQP sample 
function with multiple local minima.
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The hybrid SA/SQP method was

implemented on the early problem

formulation for building layout (see Section

3. 1. 8). In this problem, the building external

shape was specified within a tolerance. Local

optima of reasonable global quality were

obtained for up to seven room apartment

layouts (70 variables, 269 constraints). Figure

22 shows two resultant layouts generated by

this method. It is important to understand that

these designs were generated automatically

with no feasible initial starting point. This is a

substantial improvement. Using SA alone, we

were unable to produce even a feasible

design. SQP is quick at generating solutions;

however, the designer must define where

Rooms should be placed relative to one another. In this problem, the early formulation

specifies that all Rooms must be connected to a hallway structure, but it does not specify

arrangement. The algorithm is able to automatically generate a quality feasible

arrangement and optimize that geometry locally.

3. 4. 3 Evolutionary Algorithms

Evolutionary algorithms define a class of algorithms inspired by the natural evolution

of organisms. Evolutionary algorithms include several sub-classes: genetic algorithms

(GA), genetic programming (GP), evolutionary programming (EP), and evolutionary

strategies (ES). In design optimization, evolutionary algorithms are used to evolve a

Figure 22. Sample results 
generated by the SA/SQP 

hybrid algorithm
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population of designs over a number of generations. A typical evolutionary algorithm is described

in Figure 23, although there are many variations.5

The selection function is written so that high quality designs are more likely to be chosen. The

crossover operator combines traits from two designs to produce a new design with the assumption

that high quality designs have high quality components. The crossover operator generates new

combinations of these high quality components. In Genetic Algorithms, for example, the design

variables are translated into binary strings called chromosomes, and crossover involves cutting the

chromosomes at a random place along the string and swapping ends. The mutation function

introduces some random perturbation to the system, and it is usually applied with low probability

to introduce extra variance.

5. Refer to Bentley [42] for more information on evolutionary algorithms.

Figure 23. Description of a typical 
Evolutionary Algorithm
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Genocop [40][41], a GA tool written in C, was used to

implement a genetic algorithm to solve the layout problem for

designs of global quality. Due to the high dimensionality and

highly constrained nature of the problem formulation, the GA

was only able to generate feasible designs for the most trivial

problems. It is possible that finding the right set of GA

parameters or using different heuristics could improve the ability

to find feasible and quality designs; however, the complexity of

the problem grows quickly with problem size, and it is unlikely

that a GA would be practical for sizable problems. Besides, one

should take advantage of the efficiency and reliability of gradient

algorithms when the formulation has so many simple constraint

functions.

3. 4. 4 The Maximum Distance Distribution Method

One way to explore for solutions of global quality is to use a variation of an

optimization technique referred to as the Maximum Distance Distribution Method

(MDDM [29],[30]). This method was developed for discrete problems, but it also works

for continuous problems. The concept is to use a local optimization algorithm to find a

local minimum  using the formulation in Eq. (1). Once the local minimum is found, a

new optimization problem is formulated to maximize the distance from  subject to an

extra constraint that the new point must have an objective value at least as good as .

(68)

If optimizing Eq. (68) yields a solution, , in a new area of the design space, then

optimizing Eq. (1) again with  as a starting point will tend to yield a better local

minimum. This process can be repeated by iteratively solving Eq. (1) and Eq. (68) to

obtain better solutions. MDDM is not guaranteed to converge to the global optimum;

however, in practice there are many situations where this method is successful at

Figure 24. Sample 
geometry generated 

by Genocop
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improving the quality of the local optimum returned. An example is provided in Figure 25. The

method is especially useful if  is flat in some feasible direction at .

An auto-improve feature has been implemented to set up and run MDDM iteratively after

finding a local minimum, and it has been successful at improving designs in some situations.

Combining the auto-improve feature with the auto-perturb feature (see Section 3. 3. 1) one can

create interesting results that move far from the initial starting point and sometimes obtain global

solutions (see Figure 25). If the MDDM formulation cannot find a point satisfying Eq. (68) using

local search, then the design is perturbed. If the perturbation moves the search area enough, the

algorithm will explore other areas of the design space, and it may find another point. If not, the

design will be perturbed again. Eventually, an improved design may be found. If an improved

design has not been found by some limit number of perturbations, then the algorithm reverts to the

last best known feasible design and terminates. This method is heuristic; however, in some

situations it improves the design significantly before terminating.

3. 4. 5 Strategic Exploration

Another design exploration program was written to produce design alternatives by searching

the space using a strategy of random design changes. To use this program, the designer sketches an

f x&� � x&

Figure 25. Demonstration of the MDDM 
method for finding improved local optima.

An initial design (a) was optimized using
CFSQP. The result is a local optimum (b) (the
design cannot be improved by small changes
in the design variables). The MDDM method
was used to generate design (c), an improved
local optimum for this problem.

(a)

(b)

(c)
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initial design using the interactive design tool. The program then makes design moves of

three types:

1.Swap the positions of two Units.

2. Perturb the position of a Unit.

3. Reduce the size of a Unit.

After each design move, the program attempts to re-optimize using the geometric

optimization algorithm. The algorithm first attempts to find a feasible design using penalty

methods. If it is unable to find a feasible design, the program makes another design move

at random. When a feasible design is found, it is saved, and the program continues by

making more random design moves. This strategy was used to generate designs for a

simple three-bedroom apartment layout. The program generated 200 design alternatives

overnight. A sample of generated designs is shown in Figure 26. Although this strategy is

not rigorous, it is a useful tool for generating a spread of design alternatives that can be

explored further with the interactive design tool (Chapter 5). 
51



Figure 26. Sample designs generated by the strategic exploration algorithm.
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3. 5 Summary

Given an initial geometry, geometric constraints, and a design objective, the geometric

optimization algorithm is successful at generating a local optimal geometry by finding the

best size and position for each Unit. The algorithm assumes that the layout geometry can

be described by combinations of orthogonal rectangles. Additional methods have been

implemented (Section 3. 4) to include some global exploration with the local search.

These global methods are successful to some extent; however, it is better to use local

search for situations when the designer wishes to explore specific areas of interest and

guide search. In geometric optimization, the size and position of Units can vary, but the

Units themselves and Unit interactions (connectivity, etc.) are treated as constant

constraints. The designer can explore different Unit topologies by interactively trying

various alternatives (Chapter 5), or the designer can use the topology optimization

algorithm (Chapter 4) to automatically explore configuration alternatives by passing each

valid alternative to the geometric optimizer.
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4. 1 Problem Formulation

The topology optimization problem is presented as a process of finding the best set of

relationships between rooms in a space. In this formulation, relationships include

connectivity, and initial rough location. Connectivity defines which rooms are directly

connected by a doorway or open pathway. Rough location defines rough arrangement of

rooms. Other models ([7],[8]) have used decision variables to define topological spatial

relationships (i.e.: adj-to-north-of, adj-to-south-of, etc...). However, the use of rough room

position to describe spatial relationships does not enforce these relationships during

geometric optimization, so the geometric optimization algorithm has more freedom to

manipulate the geometry.

Design objectives must be defined in order to evaluate a given topology. Topologies

could be evaluated based on topological qualities, such as openness, proximity,

directionality, or symmetry; however, even though these aspects are often thought of as

topological, they are difficult to evaluate without rough geometry. It is best to evaluate

objectives using a geometric layout, therefore we evaluate each topology based on the best

geometry that can be generated from it. Using this method, layouts can be optimized for

any objective that can be formulated in terms of geometry or topology. 
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Figure 27 shows the topology optimization

process. A discrete optimization algorithm

uses information from previous topologies to

generate new topologies. Each new feasible

topology, X, is translated into a geometric

optimization problem (Section 3. 2). A locally

optimal geometry, x*, is found (Section 3. 3),

and the quality of that geometry, fg(x*), defines

the quality of the topology that generated it,

ft(X). The discrete optimization algorithm

searches for the topology that generates the

best geometry.

Figure 27. Building topology 
optimization method
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4. 2 Mathematical Model

4. 2. 1 Variables

The variables for the topology optimization problem are the initial grid position of

each room, and the connectivity between each room and every other room/external wall.

(69)

where  represents integer cartesian coordinates of room i, and  represents the

existence of a connection between room i and room j (or external wall j). Figure 28 shows

a visual representation of the design variables.

It is important to note that topological decisions about relative position of rooms (i.e.;

room i is-north-of room j) are represented here using absolute positions of rooms. It is

necessary to use absolute position in this representation so that the topology can be
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translated into initial geometry for geometric optimization. Several other methods of representing

topological decisions ([7],[8]) do not use absolute positions; however, it is necessary in this

strategy because the geometric optimization algorithm requires a starting design with geometric

information. For example, if the starting design defined all Units to be positioned at (0,0), the

geometric optimization algorithm would be unable to use gradient information to search for

feasible geometries because of the nature of the constraints at that point (see Section 7. 1. 9). The

use of absolute positions has several consequences:

The mapping from topology to geometry is not injective (one-to-one).
It is possible for more than one topology to generate the same geometry.
This means that computation time can be wasted searching similar
topologies.

The mapping from topology to geometry
is not surjective (onto). Because each
room is represented as a grid point, each
topology could be interpreted
geometrically in several ways (see Figure
29). It is not clear, however, that every
geometric alternative can be generated
using the topology definition in this thesis.

The space of topology combinations is
exponential. 

For a grid size of mXm squares and n
rooms, there are m2n possible room
position combinations. This is a large
space of possibilities. Compare this to the
4n possible connection combinations
generated when each room relationship can
take on the 4 allele values: {adj-to-north,
adj-to-south, adj-to-east, adj-to-west}.

Because of these limitations, this representation is

not well suited to small problems where all solutions need to be enumerated (see Section 7. 1. 9 for

thoughts on improving this shortcoming). It is not clear that the representation can enumerate all

possible topology alternatives; however, this method is powerful for larger problems where

heuristic search is necessary. This is because in practice heuristic search algorithms can often find

reasonable quality designs quickly, while enumeration algorithms must systematically explore

designs one by one, which can often take too long to be practical.
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4. 2. 2 Overlap Constraints

This constraint ensures that no two rooms occupy the same space.

(70)

4. 2. 3 Connectivity Constraints

Connectivity constraints are defined by the designer for each problem. The constraints

describe how a certain room is required to be connected to an outside wall, to another

room, or how certain rooms are required to not be connected. For example,

room i required to connect to room j, (71)

room i required not to connect to room j,(72)

 (73)room i required to connect to at least

one external wall.

4. 2. 4 Path Constraints

Path constraints are defined by the designer

for each problem. A path may be required between

all combinations of rooms, or a path may be

required between certain rooms. For example, a

path could be required from the bedroom to the

kitchen without passing through a bathroom or

closet. These constraints involve room

connectivity, and they are generated for each

specific constraint with an algorithm (see

Appendix B). An example is shown in Figure 30.

In this 4-room example, at least one path from

room 1 to room 4 must be connected excluding

paths passing through room 3:

xi xj– yi yj–+ 1 i j)(	

' ij 1=

' ij 0=

' iN ' iS 'iE ' iW+ + + 1	

2

1
4

3

Figure 30. Example connectivity 
graph showing alternative paths
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(74)

This constraint will be satisfied if rooms 1 and 4 are connected ( ), or if both room 1

is connected to room 2 ( ) and room 2 is connected to room 4 ( ).

4. 2. 5 Planarity Constraints

The room connectivity and position must be such that the

geometry can be realized with a two-dimensional (planar) floorplan.

One way to ensure planar feasibility is to draw lines between

connected nodes on the position grid and ensure that no two lines

cross. These lines will be allowed to share endpoints as long as they

do not share any interior point. This constraint is difficult to represent

with a closed form mathematical function; however, the planarity

check function can be found in Appendix C.

In Figure 31, the planarity check would interpret the following: 2-

3 does not intersect 3-4 because they share only an end node (node 3).

1-4 intersects 2-3 because they cross (non-planar), and 3-4 intersects

2-5 because they cross at node 4 (which is an interior point of line 2-5).

4. 2. 6 Envelope Constraints

Units that are forced to be connected to an external wall must lie on the external envelope of

Units on that wall. The four constraints below are added for each unit i.

(75)

(76)

(77)

(78)
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4. 2. 7 Objective

The objective of the topology optimization problem is to minimize the objective value

of the resultant local optimal geometry formed by the topology.

minimize( fg( SQP( ) )) (79)

where fg is the objective value of the geometry, and SQP is a function that returns the local

optimum geometry for the topology . Notice that x and y determine starting locations

for rooms in the geometry formulation while  defines constraints for the geometry as

well as windows and accessways (see Figure 32). The optimization objective can be

anything defined by the geometry. Typically, we have optimized for the topology that

produces the most cost efficient layout.

Only feasible topologies are passed to the geometric optimizer (SQP). If the topology

violates any constraints, then the design is evaluated using penalty functions.

room location
room connectivity

Variables

Constraints
specified paths
specified connectivity
specified external wall
enforce planarity
avoid overlap

Objective
minimize result of 
geometric optimization

Unit position
Unit size

Variables

Constraints
force inside
prohibit intersection
force min intersection
force to edge
size bounds
ratio bounds
lighting bounds

Objective
minimize heating cost
minimize cooling cost
minimize lighting cost
minimize wasted space
minimize hall size
minimize accessway size

windows

accessways

Topology Geometry

Figure 32. Schematic showing the 
relationship between the topology and 
geometry optimization formulations

accessways

rooms & halls

X

X

�
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4. 2. 8 Penalty functions

Many non-linear discrete search

algorithms do not have an explicit way to

handle constraints. Constraints can be

handled either by limiting the operators

to produce only feasible moves or by

using penalty functions to penalize the

objective function for infeasible designs.

In this formulation, penalty functions are

used, and infeasible designs are not

passed to the geometric optimizer.

Figure 33 shows how this penalty

function works. Here we are trying to

maximize the topology objective function

ft(X). The following procedure is used to

evaluate a topology:

If the design is infeasible, ft returns a negative value that is penalized for
each constraint violated, and for the extent of violation.

If the design is feasible, X is passed to the geometric optimization
algorithm. Assuming the geometric algorithm finds a feasible geometry
(x*), ft returns a bonus value (B) minus the objective function value of the
geometric optimum fg(x*). The bonus value is set so that it is larger than
any objective value fg(x).

Using this method, all infeasible topologies return negative function values, all feasible topologies

return positive objective function values, and feasible topologies that result in better geometries

(lower fg(x)) have a better objective function value (higher ft(X)).

4. 3 Global Optimization Methods

The discrete topology design space is multi-modal, highly constrained, and highly infeasible,

so it must be searched with a global scope. The space of topologies could be searched exhaustively

with a CSP enumeration algorithm [37] or branch and bound; however, combinatorial explosion
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will cripple the algorithm for problems of significant size. Furthermore, enumeration is

unnecessary in a problem where many of the implicit design goals (such as aesthetic

intent) are not generally defined mathematically, but instead must be judged. It is not

meaningful to produce a strict global optimum; instead, it is more useful to produce an

array of quality design alternatives to explore. For this reason, evolutionary algorithms

(Section 3. 4. 3) were selected. Evolutionary algorithms search heuristically, and they can

be stopped at any point during the optimization process to return a population of best

designs found. This heuristic search, combined with penalty functions, can often find

quality feasible designs to large problems that are intractable for systematic search

methods.

4. 3. 1 Constraint Satisfaction Algorithms

Constraint satisfaction algorithms include a number of techniques for improving

search speed and reducing complexity including backtracking, node-consistency

checking, arc-consistency checking, path-consistency checking, forward checking, look-

ahead, and look-back schemes. Also, heuristic search strategies and value ordering

techniques can reduce search time.6 These techniques make a CSP representation a good

alternative for some classes of problems. Specifically, these techniques have been

developed for binary constraint satisfaction problems (where each constraint involves only

one or two variables). Theoretically this is useful because any constraint can be translated

into a group of binary constraints by introducing new variables For example, Figure 34

shows how a constraint involving three variables (x + y = z) can be translated into a four-

variable problem with only binary and unary constraints. In this translation, a new

encapsulated variable, w, is introduced. The domain of w is the set of vector combinations

of the individual variables. Theoretically, this binarization conversion method allows any

constraint problems to be solved using binary CSP methods; however, in practice

binarization is generally not worth doing because the new variables add significant

complexity to the search space.

6. For more information on CSP solution strategies, see [37].
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CSP solution techniques were not explored for this problem representation because of the

large number of multi-variable constraints and constraints that were difficult to express explicitly.

For example, the path constraints and planarity constraints would be difficult to represent as a set

of binary constraints. It is important to note that other problem formulations may be more suited to

this CSP representation ([6],[7],[8]).

4. 3. 2 Evolutionary Algorithms

An evolutionary algorithm for topology layout was implemented using GAlib, an evolutionary

algorithms optimization package [37]. A SteadyStateGA was selected (described in Figure 23).

Selector, crossover, and mutation functions are defined below, and an example to demonstrate the

process is shown in Figure 35.

Selector: A Roulette Wheel selector was used to select high quality
designs with greater probability than low quality designs. (Design A and
B are selected from the population Pk.)

Sexual Crossover: When sexual crossover is used, two parents are
selected from the population, and two new children are produced using
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Figure 34. Conversion of a 3-variable constraint into 
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an encapsulated variable
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mixed room connectivity from both parent. (One child is shown
as Design D.)

Asexual Crossover: When asexual crossover is used, one parent
is selected from the population, and one new child is produced by
swapping connectivity values between rooms or by swapping
room positions. (Shown as Design C.)

Mutation: After crossover, new designs are mutated slightly.
Room locations (x,y) are incremented or connectivities are
flipped with low probability. (Shown as Design E and F.)

The evolutionary algorithm implementation is able to generate quality feasible designs for

medium-sized example problems. An example problem is explored in Chapter 6.
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4. 4 Summary

Given constraints about building topology, the topology algorithm is able to search for feasible

topologies using stochastic techniques. Because of the stochastic nature, the algorithm cannot

guarantee a solution in finite time; however, in practice the algorithm has been successful at

generating feasible topologies for medium-sized problems (see Chapter 6). The topology

algorithm evaluates each feasible topology based on the best geometry that can be generated from

it using the geometry algorithm, assuming that all design objectives can be evaluated based on the

geometric outcome. In this process, room connectivities are translated as constraints in the

geometric algorithm, and room positions are translated into starting points for the geometric

design variables. Using this approach, the topology algorithm searches for the topology that will

result in the best geometry.
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A building geometry optimization design tool was created to allow the designer to

interact with the design problem in a number of ways including interactively defining the

problem, guiding search for a solution, and exploring design alternatives. This tool offers a

new powerful approach to using optimization in the design process. Instead of using

optimization in the final stages to fine tune a solution to a well-defined problem, the

optimization tool is used to help to refine the problem itself and to interactively explore

solution alternatives and trade-offs while receiving both visual and computational

feedback.

The geometric optimization approach uses CFSQP (Section 3. 3. 1), which guarantees

that once a feasible design has been found, every following iterate will be feasible. This

means that each iteration of the algorithm yields a feasible design alternative, and the

progression of the algorithm moves toward improved design alternatives. Allowing a

designer to see this progression of designs visually and intuitively introduces opportunities

for making design and modeling decisions based on the progression of the algorithm. The

object-oriented implementation allows for these changes to be made during optimization.

If the problem formulation is changed, the new formulation is automatically updated, and

search in the new design space begins with the last design found before the change. In this

case CFSQP will search a new design space with changed shape and possibly changed

dimensionality; however, the user sees an uninterrupted progression of designs.

This chapter presents a description of the interactive design tool capabilities and

describes advantages of the tool. A case study using the tool is presented in Chapter 6.

5. 1 Interactive Problem Definition

The interactive design tool allows the designer to add, delete, and modify objectives,

constraints, and Units during optimization to refine the problem definition. The designer
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can set up the initial problem and start optimization. At each iteration, the current design is

displayed. The designer can watch how the design is changing and use that information to change

the problem definition at any point during the optimization. This is useful because design is an

iterative process for the designer as well as for the algorithm. When the designer has visual

feedback, s/he can realize new preferences or forgotten constraints, and s/he can explore how

changes in the problem definition affect the design solutions. 

Refining the problem during optimization is accomplished using an object-oriented

representation of the building. Each time an optimization is performed, the program translates the

object-oriented representation into a set of mathematical design variables, objectives and

constraints. This automatic translation allows a new mathematical design space to be formulated

automatically with a different dimensionality or different objective and constraint functions.

Underneath, the problem is actually being regenerated, and a completely new mathematical

optimization is started in the new space at a point analogous to where the designer left off in the

old space. However, the mathematical reformulation is hidden from the designer, so it appears as

though the optimization is progressing naturally with the new design change. This allows a new

way to think about modeling changes during optimization because the designer sees modeling

changes as simple design moves that can be easily added and experimented with during

conceptualization.

5. 1. 1 Multi-Objective Optimization

If the designer chooses more than one objective function to optimize, the individual objectives

are combined into a single objective function using a weighted sum (Eq. (67)). The weights, or

relative importance, of each individual objective can be changed to reflect preference in competing

objectives. Defining appropriate weights for a set of objectives is nontrivial; however, using the

interactive tool, the designer can change objective weights as s/he observes how the design is

progressing during optimization. Defining appropriate weight values is easier once the designer

can see how the designs react to a particular set of weights. Furthermore, a good set of weights in

one area of the design space may be poor in another area, so it is important to have the flexibility to

change them during optimization. It is common practice to revise objective weights after finding

an optimum; however, this method allows the designer to interject during the process if s/he sees

the design migrating toward an undesirable area of the design space. In the future, other methods
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of describing objective preference, such as using aspiration points ([47],[48]), could be

implemented to make the process more intuitive for the designer.

5. 1. 2 Addition, Deletion, and Modification of Objectives

As the designer receives feedback of the optimization progression, s/he may want to

change the definition of the design objective. 

Adding an Objective: A designer watching the design
progression will be able to notice many types of layout
deficiencies visually, and s/he can add a new objective to enforce
a preference away from the deficiency. For example, if layout
solutions are lacking on use of space for living areas, the designer
can add a Minimize Wasted Space objective.

Deleting an Objective: After seeing the optimization
progression, the designer may decide that some objectives are
unimportant, or the designer may wish to remove an objective to
simplify the problem or observe how the design progression
reacts without the objective. If all objectives are removed, then
the algorithm terminates when it finds a feasible design.

Modifying an Objective: The designer can modify weights
(relative importance) of each objective to specify preference
(discussed in Section 5. 1. 1). 

5. 1. 3 Addition, Deletion, and Modification of Constraints

As the designer receives feedback of the optimization progression, s/he may want to

change the definition of the design constraints.

Adding a Constraint: If the design progresses into an
undesirable area of the design space, the designer can
dynamically add new constraints to prevent search in that area.

Deleting a Constraint: After seeing the optimization
progression, the designer may decide to remove certain
constraints in order to achieve a better solution. Often decisions
about which constraints should be ignored cannot be made until a
designer has seen some physical designs.

Modifying a Constraint: Some constraints can be relaxed by
modifying a numerical bound, such as a minimum area
constraint. Once the designer has seen some feasible design
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alternatives, s/he may choose to relax certain numerical bounds in order
to achieve a better solution.

5. 1. 4 Addition, Deletion, and Modification of Units

As the designer receives feedback of the optimization progression, s/he may want to change

the layout elements themselves.

Adding a Unit: Extra units may be added to change the problem (i.e., add
an extra bedroom or closet) or to enforce connectivity (i.e., add an extra
accessway).

Deleting a Unit: Units may be deleted if they become extraneous in a
particular layout. Rooms may be deleted (explore a two bedroom instead
of a three bedroom apartment) or forced connections may be relaxed (i.e.:
remove accessway (connectivity constraint) and allow two Rooms to
separate).

Modifying a Unit: Units can be stretched or moved during optimization
to force search into a different area of the design space. Modification can
be used to guide search into an area of interest (discussed in Section 5. 2).

5. 1. 5 Change of Variable Formulation

The geometric layout design problem can be formulated with several alternative variable

representations (see Section 3. 1. 1) each having its own representation used by CFSQP (defining

which terms are optimization variables and which terms are resultant calculations). The object-

oriented representation, however, can calculate constraints and objectives regardless of which

design parameters are used as optimization variables. It would be easy to switch between

representations during optimization if one representation produced better optimization behavior in

certain areas of the design space.

5. 2 Interactive Optimization

With the ability to modify design variables during search, the designer can guide the the

optimization process. Because the design variables are geometric in nature, the designer can

interact with the variables in an intuitive way. If the designer sees the design moving into an
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undesirable area of the design space, s/he can intervene and force search into a new area of

the space by manipulating Units. This method uses the designers experience and intuition

to guide global search along with the efficiency and accuracy of gradient algorithms to

direct local search.

In addition, the designer can also help the optimization algorithm to avoid

computational traps. Gradient based algorithms assume that all functions of the design

variables are continuous and have continuous derivatives. If the problem representation

violates these assumptions, the algorithm may have unpredictable behavior. In particular,

the geometric building layout formulation presented in Chapter 3 has non-smooth gradient

constraint functions in some areas of the design space. If the algorithm has computational

difficulties near one of these areas, usually it will appear to be stuck, and the designer can

nudge the Units slightly away from the non-smooth area to resume normal optimization.

Typically enlarging the building boundary slightly is enough to resolve the computational

difficulty. This ability is important for problems that have some irregularities.

5. 3 Interactive Design Exploration

5. 3. 1 Interactive Sketching

The interactive layout optimization tool can function as an interactive sketchpad for

exploring design alternatives. As a typical procedure, the designer would
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Define Rooms & Halls: Define which Rooms will be included in the
building (kitchen, bedroom, etc...) and what are acceptable sizes for each
Room (length, sq. ft.).

Move Rooms Into Rough Location: Rough dimensions also can be set
by stretching.

Define Connections: Add Accessways to define which Rooms will be
connected.

Choose an Objective: Choose an objective to optimize for

Add Additional Constraints: Add any special constraints besides those
added by default

Optimize: The optimization algorithm will compact the geometry into a
locally optimum layout.

Examine Results: Check results visually and check estimated
performance values calculated by the objective function.

Iterate: Use the information to refine the problem definition or guide
search into a new area.

The problem setup (steps 1-5) can be completed in less than one minutes for a typical two-

bedroom apartment. Optimization for the same problem usually terminates within a few seconds.

At this point, making changes to the design, such as relocating a room, is just a matter of dragging

rooms into alternative positions and re-optimizing. This process is extremely fast, and many

design alternatives can be easily examined both visually and computationally. The speed and

simplicity offers a lot of potential as an exploratory tool. Examining alternative configurations is

faster than sketching, and possibly more intuitive because the designer manipulates objects

(Rooms, Halls,...) instead of lines.

5. 3. 2 Design Feedback

In addition to receiving quick visual feedback about various configurations, the design tool

also provides computational feedback about design performance with respect to the design

objectives. The designer can immediately see quantitative data about design alternatives, including
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Performance Cost: An estimate of the annual heating, cooling,
and lighting cost.

Build Cost: An estimate of the cost of materials (glass and walls)
to build.

Lifetime Cost: An estimate of the net financial cost over the
lifetime of the building including trade-off between build cost and
annual performance cost, taking into account annual interest
rate.

Natural Lighting: An estimate of the lighting levels in each room
for a given environment.

Living Space: An estimate of the building area that is used for
living space in comparison to area used for passageways or
wasted space.

In the current implementation, all of these estimates are rough estimates, which is

appropriate for a conceptual exploratory tool; however, more accurate models could be

used if necessary. One drawback to using gradient-based optimization techniques is that

these functions must all be smooth, clean functions in order to behave well during

optimization; however, complex non-smooth simulation functions can be smoothed using

surrogate modeling techniques to fit into this model [43]. The use of rough models to

provide computational feedback to the designer during conceptualization offers the

potential for consideration of important computational objectives early in the design

process as well as the opportunity to explore how design changes affect building

performance.
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This chapter reports on studies that illustrate the use of the automated design tool and

the interactive design tool.

6. 1 Automated Design Tool

A large scale problem was implemented to test the scalability of the automated

building generation algorithm. This example problem involves a small apartment complex

with three separate apartments. Rooms and specifications are shown as below.

Table 2: Room Specifications for Demonstration Problem

Apt Room
Min Area 

(sq.ft.)

Min length &

width (ft.)

Max length &

width (ft.)
- Public Entry 9 3 100
1 Living Room 160 12 40
1 Dining Room 100 10 30
1 Kitchen 100 8 40
1 Bedroom 120 10 40
1 Bathroom 30 5 20
2 Living Room 160 12 40
2 Dining Room 100 10 30
2 Kitchen 100 8 40
2 Bedroom 1 120 10 40
2 Bedroom 2 120 10 40
2 Bathroom 30 5 20
3 Living Room 160 12 40
3 Dining Room 100 10 30
3 Kitchen 100 8 40
3 Bedroom 1 120 10 40
3 Bedroom 2 120 10 40
3 Bathroom 30 5 20
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Topological constraints are defined as in Section 4. 2. Constraints that are specific to this

problem are listed below.

This problem was run for 20,000 generations (100 designs each generation) to search for

global solutions (see Chapter 4 for details). Feasible designs take much longer to evaluate than

infeasible designs (because they are passed to the geometric optimization algorithm), so a second

termination criterion was added to terminate after 50 feasible designs were found. This criterion

was intended to make search time more consistent.

Table 3: Topology Specifications for Demonstration Problem

Constraint Type Section Constraint

Overlap
Section 
4. 2. 2

No two Units can occupy the same space

Connectivity
Section 
4. 2. 3

PublicEntry must connect to the LivingRoom of each 
apartment

Connectivity
Section 
4. 2. 3

PublicEntry must connect to an external wall

Connectivity
Section 
4. 2. 3

All bedrooms must connect to an external wall

Path
Section 
4. 2. 4

In each apartment, there must be a path from the 
Kitchen to the LivingRoom that may pass through the 
DiningRoom

Path
Section 
4. 2. 4

In each apartment, there must be a path from the 
Bathroom to the LivingRoom that may pass through the 
DiningRoom and Kitchen

Path
Section 
4. 2. 4

In each apartment, there must be a path from the 
DiningRoom to the LivingRoom that may pass through 
the Kitchen

Path
Section 
4. 2. 4

In each apartment, there must be a path from each 
Bedroom to the LivingRoom that may pass through the 
DiningRoom

Accessways
Section 
4. 2. 5

Accessway lines connecting Units cannot intersect

Envelope
Section 
4. 2. 6

Units that are connected to an external wall must lie on 
the boundary envelope of rooms
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Two sample solutions shown in Figure 36 were generated on separate runs using the

automated design tool.

Figure 36. Sample designs generated by the automated design tool
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The algorithm was able to generate local optimal solutions to this fairly complex problem.

However, global search is quite limited due to combinatorial complexity. Once a feasible topology

is found, it will have a much higher probability of being selected as a parent design by the

evolutionary algorithm because it will have a much higher fitness value than infeasible designs.

Thus, new designs tend to be very similar to the first feasible design found, and other designs are

usually discarded. The result is that the algorithm tends to fixate on the first feasible solution it

finds, exploring mostly variations of that solution. The algorithm can be run several times to

produce design alternatives, but generally when it is run once, the final population converges to

variations of one main design theme. This is a serious limitation for global search, and the

algorithm is more useful as a feasible-design-finder than as a true optimizer. For smaller problems,

the evolutionary algorithm is still able to search a significant range of the design space to find

global quality solutions. The evolutionary algorithm may be better suited to examples like this

than enumeration algorithms. For this problem, the evolutionary algorithm can consistently find

solutions in under 20,000 generations (  design evaluations). By comparison, even if the

room position grid was reduced to 20 X 20 squares an enumeration algorithm would have

 possible combinations to search. This is far too many combinations to

evaluate, and it is unclear how many need to be evaluated to find a feasible solution. 

The geometric optimization problem does not have the same combinatorial nature that the

topology problem has, and it is able to handle much larger problems. An example shown in Figure

17, and repeated below in Figure 37, contains 23 rooms, three hallways, one boundary, and 25

accessways for a total of 52 units. This geometric optimization problem contains 312 variables and

1578 constraints.
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6. 2 Interactive Building Exploration

Typically, optimization algorithms are used to fine tune design parameters to improve

a pre-existing parameterized design concept. The interactive optimization software

presented in this thesis is intended to use optimization as a tool to aid in design

conceptualization and exploration. A sample design problem is shown here for laying out

a simple apartment. The example will show how the optimization tool can be used to help

the designer to:

-- Quickly sketch design concepts

-- Receive visual and computational feedback on design concepts

Figure 37. Sample apartment complex geometric optimization.
(a) Initial layout sketch provided by the designer. 
(b) Optimized design.

(a)

(b)
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-- Formalize the design problem objectives and constraints

-- Use visual and computational feedback to refine the problem definition

-- Quickly explore design alternatives and design trade-offs

First, the initial layout concept is sketched out.

This design will consist of two bedrooms, a full

bath, kitchen, dining room and living area with a

hallway structure consisting of two main paths.

Connections are defined as shown in the picture

by adding accessways between Units. Each Unit is

initialized with its own default constraints for

minimum area, length, and width (Section 3. 2. 7).

Default constraints are automatically added to

prohibit intersection between all Room-Room and

Room-Hallway combinations (Section 3. 2. 4).

Default constraints are added to force all Units

inside the building bounds (Section 3. 2. 3). Each Accessway is added by the designer to guarantee

connected access between two Units by doorway or opening (accessways represented here as lines

drawn between Units). Default constraints are added that force intersection between the

Accessway and each of the connected Units such that the intersection overlap is large enough for a

door or opening (Section 3. 2. 5). Using the defaults, this entire process takes about one minute.

Next, design objectives are specified. This design is optimized to

minimize annual heating cost (Section 3. 2. 12) and minimize wasted

space (Section 3. 2. 15). The optimization process takes a few

seconds, and the solution is shown here (accessway connectivity is

represented as lines between Units, and actual accessway position is

shown by the rectangular Units marked “A”).
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Suppose that after viewing the

results, the designer decides

that it will be more economical

if the bath and kitchen are close

together so that piping can be

clustered. The bath is dragged

down below the kitchen, and

the design is re-optimized. The

optimization algorithm repacks

the Units. Results show that the designer forgot an important constraint. The Hallway

between the living room and dining room was intended to be an entryway, but the designer

failed to specify that the Hallway must connect to an external wall. The designer now adds

a new constraint to force the hall against the west wall (Section 3. 2. 6) and optimizes the

design again.

Results show that another

constraint has been forgotten.

The two main Hallway Units

should be connected. Another

constraint is added to force a

sufficient intersection between

the two Hallways (Section 3. 2.

5). The new formulation is re-

optimized. Results now match

the designer’s intentions. It is much easier for designers to be sure that they have included

design intentions in a model if they see results. This tool allows the designer to quickly see

results and adjust the problem definition if necessary. The layout is saved as a design

alternative, and the designer continues to explore other alternatives.
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The designer considers moving the

bath to the east side of the apartment

to separate the public space from the

private space better, and also to

allow more room for the private

rooms while shrinking the

bedrooms. Another design

alternative is produced. The ability

to make design changes and quickly

examine results, consequences, and trade-offs is very useful. The effects of design changes can be

seen quickly - even faster than sketching with pencil and paper.

The designer notices that the doorway

(accessway) to the north bedroom could

be moved south, and the living room

could take up the space currently

occupied by a hallway. The living room

is moved north of the hallway and

enlarged so that it uses the space. The

apartment is re-optimized. 

The designer examines the results and decides that the default

minimum area for the living room (120 sq. ft.) was too small. The

minimum area is increased to 150 sq. ft. and the design is re-optimized.

This ability to change constraint parameters allows designers to

perform parametric studies intuitively and examine trade-offs. Many

constraints, such as minimum allowable room area constraints, are

flexible because these constraints can be relaxed if doing so provides a

significant gain somewhere else. A designer using this tool can often

see visually where relaxing constraints can improve the design, and it is quick and easy to explore

constraint relaxation. In this case, the constraint is increased to provide more space. The algorithm
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enlarges the living room to meet the new constraints. A new design alternative has been

created. The designer saves this design and moves on to explore.

The designer wants

to reduce the size of the

apartment. The last

design measured 27 X 40

(1080 sq. ft.). A new

design arrangement is

considered by moving

the kitchen and bath to

the north end, and

moving the living room

to the south. The design

is re-optimized. The

resulting design measures 30 X 33 (990 sq. ft.) - a reduction of 90 sq. ft. The design

alternative is saved. 

The designer decides

to consider adding a third

bedroom. The designer

places the third bedroom

and adds an Accessway.

The new design is

optimized. The new three-

bedroom layout can now

be compared to the two

bedroom layout. Adding an extra bedroom increases the apartment size from 30 X 33 (990

sq. ft.) to 30 X 42.5 (1275 sq. ft.), and the heating cost will rise an estimated 15%.

Providing the designer with computational feedback as well as visual feedback can aid in

decision making in the early conceptual stages of design. The new three-bedroom layout is

saved.
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After examining the results, the designer decides that the private area should be more

distinctly separate from the public area. The three bedrooms are moved to the west side of the

apartment, and the new design is optimized.

The result is accepted and saved as an alternative three bedroom arrangement. The design can

be viewed in several different ways to get a better feeling for the layout.

Accessways can be viewed

as openings or doorways, and

the living room and dining

room can be viewed without

physical walls.

The layout can be viewed in three dimensions to give a

different feel for the space allocation. Three dimensional

views can be used to help visualize the look and feel of the

interior space.
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This example has shown how the interactive optimization design tool can be used to

quickly generate and compare design alternatives visually and computationally. The

designer uses the optimization tool during conceptualization to help refine the problem

goals, understand design trade-offs, and explore design options. The entire process of

generating, visualizing, examining computational feedback, and using that information to

explore new designs in the above example was completed in about ten minutes. This tool

offers speed for design concept sketching with the power of computational feedback and

optimization results. The tool helps the designer to understand design trade-offs and to

define design objectives and constraints more formally as s/he views real results.
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This chapter discusses possible future directions and ideas for improvement of the

automated tool and the interactive tool.

7. 1 Automated Design Optimization Improvements

7. 1. 1 Improve Design Toolbox

New constraints and objectives can be added to the representation to improve

optimization behavior, better represent architectural criteria, and improve the quality of

resultant layouts. Constraint sets can be added to allow designers to more easily deal with

complex shaped rooms or building boundaries made of multiple Units. Current objective

and constraint functions can be improved for better accuracy. Also, additional objectives

and constraints can be added to model building codes, structural supports, routing of

wiring, piping and ducts, human traffic patterns, or other aspects of architectural design

that can be quantified.

7. 1. 2 Explore Shape Grammars

Shape grammars offer an alternative possible representation for exploring topology

and geometry simultaneously. Shape grammars have a strong presence in the field of

architecture, and the integration of a shape grammar with an optimization search

algorithm could yield interesting results.

7. 1. 3 Material Selection

In the current implementation, materials are assumed. New variables can be added to

the topology representation to represent material selection decisions for windows and
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walls. This is especially important in examining the trade-off between build cost and performance

cost.

7. 1. 4 Variable Number of Hallways

The number of hallways in a layout is somewhat arbitrary in this representation because

complex hallways structures are made up of some number of rectangular hallway units. In the

topology layout, a fixed number of hallways is assumed, and hallways are removed from the

geometric layout if they are not being used (less than 2 connections). An improved way to deal

with a variable number of hallways could be developed to improve layout solutions.

7. 1. 5 Diversity

Solution alternatives generated in a single run of the algorithm tend to be very similar

(although they differ greatly between runs). A diversity objective could be incorporated to increase

diversity of the resultant design population.

7. 1. 6 Multiple Floors

An ability to add extra floors can be added with spaces shared between the floors (such as

stairs or high ceilings).

7. 1. 7 Complex Shapes

A more generalized Unit component that can represent non-rectangular and non-orthogonal

shapes would be necessary to generalize this tool to handle a larger class of problems. It is

important, however, that the representation remain simple for two reasons: (1) The problem must

be fairly simple in order to get fast, reliable results from the optimization algorithm, which is

necessary for the interactive tool. (2) If the representation of the geometry is too complex, it will

be difficult to interact with, and the interactive tool will loose some of its use as a sketching tool.

There is a compromise between speed and the level of simplicity and approximation.
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7. 1. 8 Alternative Global Search Methods

Alternative global search methods can be explored, such as CSP algorithms, that

search the design space more rigorously and guarantee completeness. Alternate strategies

may be more successful at generating layouts for large problems. The topology strategy

presented in this paper is heuristic, and it is not guaranteed to find a solution in finite time.

Also, the evolutionary algorithms used in this thesis can be explored further to compare

different parameter values or new mutation and crossover functions. 

7. 1. 9 Topology Definition

The topology can be defined in a new way so that topology decisions create different

kinds of constraints in the geometry optimization problem. This could be especially

powerful if the topology decisions are designed to map to linear constraints in the

geometry optimization problem. Linear constraints can be handled efficiently by gradient

algorithms. It may be possible to construct a topology model that produces only linear

constraints for the geometric optimization algorithm. One idea would be to define

topology similar to definitions by [7] and [8] (see Chapter 2). Topology decision variables

could make decisions such as “Room1 is-west-of Room2”. This would produce a linear

constraint in the geometry model instead of the nonlinear Prohibit Intersection Constraint

that is usually used (see Section 3. 2. 4). Using this kind of topology, it is possible that the

rough position topology variables could be completely eliminated. If all constraints were

linear, an initial design where all Units are positioned at (0,0) would be manageable by the

geometry algorithm. In its current form, the geometry algorithm cannot handle such a

starting point because intersection constraints are nonlinear and non-smooth if two rooms

share the same center position. The rough position variables are used to generate initial

geometry that the geometry algorithm can manage, and it uses the rough position variables

to search different configurations. If decisions such as “Room1 is-west-of Room2” were

used instead to search different configurations, the mapping from topology to local

optimal geometry might be both injective and surjective (meaning that each valid topology

will create a different local optimal geometry, and that all possible local optimal geometry

could be created by a specific topology). This would be a significant improvement over

the current representation which is not injective or surjective (see Section 4. 2. 1).
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7. 2 Interactive Design Exploration Improvements

7. 2. 1 Develop Interface

The interface can be improved to commercial application quality to improve intuitive

interaction and increase speed and ease of use.

7. 2. 2 Interface with Design Constraints

Interface with design constraints is text based in the current representation. A system for

creating, displaying, and interacting with constraints graphically can be developed to give the

designer more of a physical feel for the design constraints and improve the process of interactively

refining the problem definition.

7. 2. 3 Trust Regions

Trust regions (bounding boxes) can be used to limit the size of optimization moves during

each iteration. This may be useful in interactive optimization if the designer can control the size of

the bounding box, forcing the design moves to slow down when s/he wants more interaction, and

allowing optimization to speed up when s/he wants more computational efficiency.

7. 2. 4 Generalization

The interactive tool can be generalized to work with exploration of other classes of product

design.
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This chapter summarizes and discusses the automated design tool and the interactive

design tool.

8. 1 Automated Building Layout Design

Two automated optimization algorithms have been used to automate the generation of

design layouts: the geometry and topology algorithms. The geometric algorithm, built on

rigorous gradient-based algorithms, is efficient and robust, and it has been successful at

optimizing geometry for large problems. In its present state, it is most useful as an aid for

design exploration, rather than design automation, because results are highly dependent on

the starting point defined by the designer. Several tools have been implemented for

searching the geometric space more globally, including a hybrid SA/SQP that uses SA to

choose starting points for SQP local optimization and a strategic program that uses a set of

design moves to explore the space and find feasible layouts. These tools have been

successful at automatically finding alternative arrangements for rooms and exploring

many local minima.

A second topology optimization algorithm was built on top of the geometric algorithm

to search feasible topology alternatives and find the feasible topology that generates the

best geometry. The topology problem defines room connectivity and rough placement, and

it is highly nonlinear and discrete in nature. Only global methods, such as enumeration

algorithms and heuristic algorithms, are useful for exploration of this kind of multi-modal

design space. Heuristic evolutionary algorithms were selected for this thesis because of

the combinatorial explosion that threatens enumeration algorithms. The results are

interesting, but limited. Heuristic algorithms also suffer from combinatorial explosion, and

solving a problem with around 20 rooms takes nearly a day of computation. Furthermore,

because the algorithms are heuristic, they cannot guarantee convergence in finite time, and

a designer cannot know how long he will have to wait to find a solution. One difficulty
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evaluating with topology combinatorial search algorithms for building layout is that results have

not been reported for buildings with more than 20 rooms. Automation of small problem solutions

is not as interesting from a design point of view because small problems often can be explored in

less time using intuition and sketching -- especially when the subjective nature of aesthetic

elements is considered. Automation of topology solutions would be much more useful for large

scale, highly constrained problems. One example would be to layout a public space, such as an

airport, and include additional considerations such as queuing, routing, and scheduling in the

model. For small problems that are highly dependent on designer judgement as well as

computational factors, an interactive approach that takes advantage of designer knowledge and

intuition is recommended. One advantage to the approach presented here is that the final design

generated by the algorithm can be used as a starting point for interactive design exploration.

8. 2 Interactive Layout Optimization

The interactive design optimization tool shows significant potential for computational

optimization algorithms to be used in the early conceptual stages of the design process to help

designers explore solutions and trade-offs. Design conceptualization is an extremely important

part of the design process, and it is one that computer tools typically ignore because of the poorly

understood nature of creativity and subjective judgement. The interactive tool assists the designer

with design generation and evaluation, rather than attempting to automate these processes

completely. This approach allows the designer to maintain control, to use quantitative and

subjective judgements where appropriate, and so it supports creative exploration. Such conceptual

support tools may finally begin to fill an important gap in the present array of computer design

support capabilities.
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Table 4: Mathematical Nomenclature

Variable Type Description

n Parameter Number of rooms

Vector Vector of design variables for the geometry optimization problem

Function Objective function of the geometric design variables

Parameter Weight of objective function j in a multi-objective formulation

Function Vector of inequality constraint functions of the geometry design variables

Function Vector of equality constraint functions of the geometry design variables

Vector Local optimal geometric design solution

Vector Local optimal geometric design solution to the MDDM formulation

Variable The reference point position of Unit i in the Cartesian x-direction

Variable The reference point position of Unit i in the Cartesian y-direction

Variable Perpendicular from Unit i reference point to north wall of Unit i

Variable Perpendicular from Unit i reference point to south wall of Unit i

Variable Perpendicular from Unit i reference point to east wall of Unit i

Variable Perpendicular from Unit i reference point to west wall of Unit i

Variable Length of north window of Unit i

Variable Length of south window of Unit i

Variable Length of east window of Unit i

Variable Length of west window of Unit i

Variable Discrete variable that determines which side of Unit i a door is on (alt. form.)

Variable Discrete variable that determines which external wall Unit i is against (alt. form.)

Result Cartesian y-coordinate of the north wall of Unit i

Result Cartesian y-coordinate of the south wall of Unit i

Result Cartesian x-coordinate of the east wall of Unit i

Result Cartesian x-coordinate of the west wall of Unit i

x

fg x� �

wj

g x� �

h x� �

x&

x†

xi

yi

Ni

Si

Ei

Wi

�Ni

�Si

�Ei

�Wi

�doori

�exti

yNi

ySi

xEi

xWi
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Result Length of Unit i (x-direction)

Result Width of Unit i (y-direction)

Result Area of Unit i

Parameter Height of Unit i

Result Area of the north wall of the building

Result Area of the south wall of the building

Result Area of the east wall of the building

Result Area of the west wall of the building

Result Total area of window glass on the north wall of the building

Result Total area of window glass on the south wall of the building

Result Total area of window glass on the east wall of the building

Result Total area of window glass on the west wall of the building

Parameter Minimum width of doorways or openings in Unit i

Parameter Minimum allowable area of Unit i

Parameter Minimum allowable length/width of Unit i

Parameter Maximum allowable length/width of Unit i

Parameter Minimum allowable length-to-width and width-to-length ratio for Unit i

Parameter Average internal/external temperature difference during month i

Parameter U-value of wall material (quality of material)

Parameter U-value of window material (quality of material)

Parameter Solar heat gain factor (function of geographical location)

Parameter Shading Coefficient (property of glass)

Parameter Time lag factor (property of glass and orientation)

Parameter Estimated efficiency of gas heater

Parameter Estimated efficiency of air conditioning unit

Result Estimated annual heat loss through building walls during heated months

Result Estimated solar heat gain per year during air conditioned months

Result Est. conductive heat gain through the building exterior during air cond. months

Result Estimated annual cost to heat the building

Result Estimated annual cost to cool the building

Table 4: Mathematical Nomenclature

Variable Type Description

li

wi

Ai

hi

AN

AS

AE

AW

A�N

A�S

A�E

A�W

di

Amin

lmin

lmax

Rmini

"Ti

Uwall

U�

�shgf

�sc

�tlf

#heater

#ac

Qheat

Qsolar

Qcond

�heat

�cool
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Parameter Maximum allowable material cost to construct the building

Parameter Estimated cost per unit area of wall

Parameter Estimated cost per unit area of window glass

Parameter Estimated cost of electricity

Parameter Average cost of gas per cubic foot

Result Average illuminance from natural lighting in Unit i

Parameter Minimum required average illuminance per square foot in Unit i

Parameter Minimum allowable percentage of required lighting from natural source for Unit i

Vector Vector of design variables for the topology optimization problem

Function Objective function of the topology design variables

Variable Connectivity between Unit i and Unit j

Penalty(X) Function Function to penalize a topology, X, for being infeasible

B Parameter Bonus given to feasible topologies in the topology optimization

Vector The kth population of designs in an evolutionary algorithm progression

Table 4: Mathematical Nomenclature

Variable Type Description
�budget

�wall

��
�elec

�gas

�i

 reqi

!mini

X

ft X� �

' ij

Pk
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This is C++ code that checks if a connected path exists from a start Unit to a goal Unit

while passing through only legal units (as defined by the designer in the problem

definition). The first checkForPath function recursively calls the second function checking

for longer paths each call.

LQW�%XLOGLQJ*HQRPH��FKHFN)RU3DWK�LQW�VWDUW��LQW�JRDO��YHFWRU�LQW!�OHJDO8QLWV��^

���&KHFN�IRU�D�SDWK�RI�OHQJWK�L�WKURXJK�DQ\�OHJDO8QLWV�EHWZHHQ�VWDUW�DQG�JRDO

���IRU�HDFK�SRVVLEOH�YDOXH�RI�L���5HWXUQV���LI�DQ\�OHJDO�SDWK�LV�IRXQG

LI��JHW&RQQHFWLYLW\�VWDUW��JRDO��  ����UHWXUQ���

IRU��LQW�L ���L���OHJDO8QLWV�VL]H����L����^

LI��FKHFN)RU3DWK�VWDUW��JRDO��OHJDO8QLWV��L���^

UHWXUQ���

`

`

���1R�SDWK�KDV�EHHQ�IRXQG�

UHWXUQ���

`

LQW�%XLOGLQJ*HQRPH��FKHFN)RU3DWK�LQW�VWDUW��LQW�JRDO��YHFWRU�LQW!�OHJDO8QLWV��LQW�SDWK/HQJWK��^

���7KLV�LV�D�UHFXUVLYH�IRUPXOD�XVHG�WR�ILQG�D�FRQQHFWLYLW\�SDWK�EHWZHHQ

���VWDUW�DQG�JRDO�RI�OHQJWK��SDWK/HQJWK����,W�UHWXUQV���LI�WKHUH�LV�D�SDWK

���WKURXJK�OHJDO8QLWV�IURP�VWDUW�WR�JRDO�RI�OHQJWK�SDWK/HQJWK�����RWKHUZLVH�

���3DWK�OHQJWKV�PXVW�EH�! ��

LI��SDWK/HQJWK������UHWXUQ���

���$�SDWK/HQJWK�RI���PHDQV�D�GLUHFW�FRQQHFWLRQ��FRQQHFWLYLW\�VWDUW��JRDO�� ���

LI��SDWK/HQJWK�  ����UHWXUQ�JHW&RQQHFWLYLW\�VWDUW��JRDO��

���7R�FKHFN�IRU�D�SDWK�RI�OHQJWK�SDWK/HQJWK�!����FKHFN�IRU�D�GLUHFW�

���FRQQHFWLRQ�EHWZHHQ�WKH�VWDUW�DQG�VRPH�URRP�L��DQG�D�SDWK

���RI�OHQJWK��SDWK/HQJWK����EHWZHHQ�URRP�L�DQG�WKH�JRDO���
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���7U\�WKLV�IRU�DOO�URRPV�L

IRU��LQW�L ���L���OHJDO8QLWV�VL]H����L����^

LI��L�� �VWDUW�		�L�� �JRDO��^

LI��JHW&RQQHFWLYLW\�VWDUW��L��  ����^

���&RQVWUXFW�UHPDLQLQJ�XQLWV�WR�DYRLG�ORRSV

YHFWRU�LQW!�UHPDLQLQJ8QLWV�

IRU��LQW�M ���M���OHJDO8QLWV�VL]H����M����^

LI��OHJDO8QLWV>M@�� �L��UHPDLQLQJ8QLWV�SXVKBEDFN�OHJDO8QLWV>M@��

`

LI��FKHFN)RU3DWK�L��JRDO��UHPDLQLQJ8QLWV��SDWK/HQJWK�������^

UHWXUQ���

`

`

`

`

���1R�SDWK�KDV�EHHQ�IRXQG�

UHWXUQ���

`
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This is a C++ function to check if a given topology is ‘planar’. In the check,

connections between units are represented as lines. This function checks to see if any of

the lines intersect. There are special rules about intersecting at endpoints included in the

comments. The main goal is to avoid passing designs to the geometric optimizer only if

there is no possible geometry that can satisfy the input.

LQW�FKHFN/LQH,QWHUVHFWLRQ�GRXEOH�$[���GRXEOH�$\���GRXEOH�$[���GRXEOH�$\���

���������GRXEOH�%[���GRXEOH�%\���GRXEOH�%[���GRXEOH�%\���^

GRXEOH�$G[� ��$[��$[���

GRXEOH�$G\� ��$\��$\���

GRXEOH�%G[� ��%[��%[���

GRXEOH�%G\� ��%\��%\���

GRXEOH�$PD[[� ��$[�!$[��"�$[����$[���

GRXEOH�$PD[\� ��$\�!$\��"�$\����$\���

GRXEOH�$PLQ[� ��$[��$[��"�$[����$[���

GRXEOH�$PLQ\� ��$\��$\��"�$\����$\���

GRXEOH�%PD[[� ��%[�!%[��"�%[����%[���

GRXEOH�%PD[\� ��%\�!%\��"�%\����%\���

GRXEOH�%PLQ[� ��%[��%[��"�%[����%[���

GRXEOH�%PLQ\� ��%\��%\��"�%\����%\���

���)LUVW�UHMHFW�IDU�DZD\�OLQH�VHJPHQWV�XVLQJ�ERXQGLQJ�ER[

LI��$PLQ[�!�%PD[[��UHWXUQ���

LI��$PLQ\�!�%PD[\��UHWXUQ���

LI��%PLQ[�!�$PD[[��UHWXUQ���

LI��%PLQ\�!�$PD[\��UHWXUQ���

���)LUVW�GHDO�ZLWK�SRLQWV

�������������������������
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LI��$G[�  ���		�$G\�  ����^

���$�LV�D�SRLQW

LI��%G[�  ���		�%G\�  ����^

���%�LV�D�SRLQW

LI��$[��  �%[��		�$\��  �%\���^

���7KH�WZR�SRLQWV�DUH�WKH�VDPH

UHWXUQ���

`

HOVH����7KH�WZR�SRLQWV�DUH�GLIIHUHQW

UHWXUQ���

`

HOVH�^�

���%�LV�D�OLQH

LI��%G[�  ����^

���%�LV�D�YHUWLFDO�OLQH

LI��$[��  �%[��		�$\��! �%PLQ\�		�$\��� �%PD[\��^

���3RLQW�$�LV�RQ�YHUWLFDO�OLQH�%

UHWXUQ���

`

HOVH����3RLQW�$�LV�QRW�RQ�YHUWLFDO�OLQH�%

UHWXUQ���

`

HOVH�LI��$\����%\��  ��%G\�%G[��$[����%[����^

���3RLQW�$�LV�RQ�OLQH�%

UHWXUQ���

`

HOVH����3RLQW�$�LV�QRW�RQ�OLQH�%

UHWXUQ���

`

`

LI��%G[�  ���		�%G\�  ����^

���%�LV�D�SRLQW��$�LV�D�OLQH

LI��$G[�  ����^

���$�LV�D�YHUWLFDO�OLQH

LI��%[��  �$[��		�%\��! �$PLQ\�		�%\��� �$PD[\��^

���3RLQW�%�LV�RQ�YHUWLFDO�OLQH�$

UHWXUQ���

`

HOVH����3RLQW�%�LV�QRW�RQ�YHUWLFDO�OLQH�$

UHWXUQ���

`
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LI��%\����$\��  ��$G\�$G[��%[����$[����^

���3RLQW�%�LV�RQ�OLQH�$

UHWXUQ���

`

HOVH����3RLQW�%�LV�QRW�RQ�OLQH�$

UHWXUQ���

`

���1H[W�GHDO�ZLWK�WKH�LQILQLWH�VORSH�FDVH�

������������������������������������������

LI��$G[�  ����^

���/LQH�$�LV�YHUWLFDO

LI��%G[�  ����^

���/LQH�%�LV�DOVR�YHUWLFDO

LI��$[��  �%[���^

���%RWK�OLQHV�KDYH�VDPH�[��FROLQHDU

LI��$PD[\�!�%PLQ\�		�$PLQ\���%PD[\��^

���/LQH�VHJPHQWV�RYHUODS

UHWXUQ���

`

HOVH����/LQH�VHJPHQWV�DUH�VHSDUDWHG�LQ�\�GLU

UHWXUQ���

`

HOVH����9HUWLFDO�OLQHV�VHSDUDWHG�LQ�[�GLU

UHWXUQ���

`

HOVH�^

���/LQH�%�LV�QRW�YHUWLFDO���)LQG�LQWHUVHFWLRQ�ZLWK�[ $[� $[�

GRXEOH�\� �%\�����$[����%[���%G\�%G[��

LI��\�! �$PLQ\�		�\�� �$PD[\�		

��\�!�%PLQ\�		�\���%PD[\��__��\  %PLQ\�		�\  %PD[\���		

$[��!�%PLQ[�		�$[����%PD[[��^

���/LQH�%�FURVVHV�OLQH�$�ZLWKLQ�VHJPHQW�$

���DQG�LQVLGH�RI�VHJPHQW�%

UHWXUQ���

`

HOVH�LI��\�!�$PLQ\�		�\���$PD[\�		

\�! �%PLQ\�		�\�� �%PD[\�		

$[��! �%PLQ[�		�$[��� �%PD[[��^

���/LQH�%�FURVVHV�OLQH�$�ZLWKLQ�VHJPHQW�%

���DQG�LQVLGH�RI�VHJPHQW�$
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UHWXUQ���

`

HOVH�UHWXUQ���

`

`

HOVH�LI��%G[�  ����^

���/LQH�%�LV�YHUWLFDO��/LQH�$�LV�QRW�

���)LQG�LQWHUVHFWLRQ�RI�OLQH�$�ZLWK�[ %[� %[�

GRXEOH�\� �$\�����%[����$[���$G\�$G[��

LI��\�! �%PLQ\�		�\�� �%PD[\�		

��\�!�$PLQ\�		�\���$PD[\��__��\�  �$PLQ\�		�\  $PD[\���		

%[��!�$PLQ[�		�%[����$PD[[��^

���/LQH�$�FURVVHV�OLQH�%�ZLWKLQ�VHJPHQW�%

���DQG�LQVLGH�RI�VHJPHQW�$

UHWXUQ���

`

HOVH�LI�\�!�%PLQ\�		�\���%PD[\�		

\�! �$PLQ\�		�\�� �$PD[\�		

%[��! �$PLQ[�		�%[��� �$PD[[��^

���/LQH�$�FURVVHV�OLQH�%�ZLWKLQ�VHJPHQW�%

���DQG�LQVLGH�RI�VHJPHQW�$

UHWXUQ���

`

HOVH�UHWXUQ���

`

���12:�'($/�:,7+�),1,7(�6/23(�&$6(6

�����������������������������������

���FDOFXODWH�\�LQWHUFHSWV�

GRXEOH�$BE� �$\�����$G\�$G[�$[��

GRXEOH�%BE� �%\�����%G\�%G[�%[��

LI���$G\�$G[��  ��%G\�%G[���^

���/LQHV�DUH�SDUDOOHO

LI��$BE�  �%BE��^

���/LQHV�DUH�FROLQHDU

LI��$PLQ[���%PD[[�		�$PD[[�!�%PLQ[��^

���/LQH�VHJPHQWV�RYHUODS

UHWXUQ���

`

HOVH����/LQH�VHJPHQWV�GR�QRW�RYHUODS
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UHWXUQ���

`

HOVH����/LQHV�DUH�QRQ�FROLQHDU

UHWXUQ���

`

HOVH�^�

���6ORSHV�DUH�QRW�HTXDO��ILQG�LQWHUVHFWLRQ�SW

GRXEOH�[[� ��%BE���$BE����$G\�$G[���%G\�%G[���

GRXEOH�\\� ��$G\�$G[�[[���$BE�

LI��[[�! �$PLQ[�		�[[�� �$PD[[�		

\\�! �$PLQ\�		�\\�� �$PD[\�		

[[�!�%PLQ[�		�[[���%PD[[�		

��\\�!�%PLQ\�		�\\���%PD[\��__��\\  %PD[\�		�\\  %PLQ\����^

���,QWHUVHFWLRQ�SRLQW�LV�ZLWKLQ�VHJPHQW�$�

���DQG�LQVLGH�RI�VHJPHQW�%

UHWXUQ���

`

HOVH�LI�[[�!�$PLQ[�		�[[���$PD[[�		

��\\�!�$PLQ\�		�\\���$PD[\��__��\\�  �$PD[\�		�\\  $PLQ\���		

[[�! �%PLQ[�		�[[�� �%PD[[�		

\\�! �%PLQ\�		�\\�� �%PD[\��^

���,QWHUVHFWLRQ�SRLQW�LV�ZLWKLQ�VHJPHQW�%

���DQG�LQVLGH�RI�VHJPHQW�$

UHWXUQ���

`

HOVH�^����/LQH�LQWHUVHFWLRQ�LV�QRW�LQVLGH�RI�HLWKHU�VHJPHQW

���127(��7KH�WZR�OLQH�VHJPHQWV�PD\�VKDUH�HQGSRLQWV

UHWXUQ���

`

`

`
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