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Abstract

This paper is about estimating the parameters of the exponential

random graph model, also known as the p∗ model, using frequen-

tist Markov chain Monte Carlo (MCMC) methods. The exponen-

tial random graph model is simulated using Gibbs or Metropolis-

Hastings sampling. The estimation procedures considered are

based on the Robbins-Monro algorithm for approximating a solu-

tion to the likelihood equation.

A major problem with exponential random graph models re-

sides in the fact that such models can have, for certain parameter

values, bimodal (or multimodal) distributions for the sufficient

statistics such as the number of ties. The bimodality of the ex-

ponential graph distribution for certain parameter values seems a

severe limitation to its practical usefulness.

The possibility of bi- or multimodality is reflected in the

possibility that the outcome space is divided into two (or more)

regions such that the more usual type of MCMC algorithms,

updating only single relations, dyads, or triplets, have extremely

long sojourn times within such regions, and a negligible proba-

bility to move from one region to another. In such situations,

convergence to the target distribution is extremely slow. To

be useful, MCMC algorithms must be able to make transitions

from a given graph to a very different graph. It is proposed to

include transitions to the graph complement as updating steps

to improve the speed of convergence to the target distribution.

Estimation procedures implementing these ideas work satisfac-

torily for some data sets and model specifications, but not for all.

Keywords: p∗ model; Markov graph; digraphs; exponential fam-

ily; maximum likelihood; method of moments; Robbins-Monro

algorithm; Gibbs sampling; Metropolis-Hastings algorithm.
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1. Introduction

Frank and Strauss (1986) proposed Markov graphs as a family of

distributions for undirected and directed graphs with non-trivial

dependence between edges, but with certain appealing conditional

independence properties. More specifically, a random graph is a

Markov graph in this sense if the number of nodes is fixed (say,

at g) and nonincident edges (i.e., edges between disjoint pairs

of nodes) are independent conditional on the rest of the graph.

Frank and Strauss elaborated on Besag (1974) in their use of the

Hammersley-Clifford theorem to characterize Markov graphs.

As an important subfamily they defined the triad model for

undirected graphs. The symbol y is used to denote an undirected

graph with g nodes represented by the adjacency matrix y =

(yij)1≤i,j≤g , where yij = 1 or 0 indicates that there is, or there is

not, an edge between i and j. Note that y being an undirected

graph implies that yii = 0 and yij = yji for all i, j. The probability

function of the triad model is

Pθ{Y = y} = exp
(
θ1 u1(y) + θ2 u2(y) + θ3 u3(y) − ψ(θ)

)
(1)

where the parameter is θ = (θ1, θ2, θ3), the sufficient statistic

(u1(y), u2(y), u3(y)) is defined by

u1(y) =
∑

1≤i<j≤g yij number of edges

u2(y) =
∑

1≤i<j≤g
∑
k 6=i,j yik yjk number of twostars

u3(y) =
∑

1≤i<j<k≤g yij yik yjk number of triangles,

(2)

and ψ(θ) is a normalizing constant. For θ2 = θ3 = 0 this distri-

bution reduces to the Bernoulli graph, i.e., the random graph in

which all edges occur independently and have the same probabil-

ity P(Yij = 1) = exp(θ1)/(1 + exp(θ1)) for i 6= j.

This model was extended by Frank (1991) and by Wasserman

and Pattison (1996) to arbitrary statistics u(y), with a focus on

directed graphs (digraphs). This led to the family of probability

functions

Pθ{Y = y} = exp (θ′u(y)− ψ(θ)) (3)

where y is the adjacency matrix of a digraph and the sufficient

statistic u(y) is any vector of statistics of the digraph. They

called this family the p∗ model. This formula can in princi-

ple represent any probability distribution for digraphs, provided

that each digraph has a positive probability. Subsequent work
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(among others, Pattison and Wasserman, 1999; Robins, Pattison,

and Wasserman, 1999) elaborated this model and focused on sub-

graph counts as the statistics included in u(y), motivated by the

Hammersley-Clifford theorem (Besag, 1974). Models for directed

or undirected graphs defined by (3) will be called here exponential

random graph models and, equivalently, p∗ models.

1.1. Parameter estimation

Frank and Strauss (1986) commented on the difficulties of esti-

mating parameters in the Markov graph model. They presented

a simulation-based method to approximate the maximum likeli-

hood (ML) estimate of any one of the three parameters θk , given

that the other two are fixed at 0. They also proposed a kind of

conditional logistic regression method to estimate the full vector

θ. This method, of which the principle was proposed in a differ-

ent context by Besag (1975), was elaborated for random digraph

models by Strauss and Ikeda (1990), Frank (1991), and Wasser-

man and Pattison (1996). It is a pseudolikelihood method which

operates by maximizing the so-called pseudologlikelihood defined

for digraphs by

`(θ) =
∑
i,j

ln
(
Pθ {Yij = yij | Yhk = yhk for all (h, k) 6= (i, j)}

)
. (4)

Although this method is intuitively appealing and easily imple-

mented using any statistical package for logistic regression analy-

sis, the properties of the resulting estimator for exponential graph

models are unknown. (Corander, Dahmström and Dahmström

(1998) gave some some simulation-based comparisons between the

maximum pseudolikelihood estimator and the ML estimator.) For

statisticians, an obvious drawback of the pseudolikelihood method

is that it is not a function of the complete sufficient statistic u(Y )

which implies that it is not an admissible estimator for a squared-

error loss function (cf. Lehmann, 1983).

Dahmström and Dahmström (1993) proposed a simulation-

based (Markov chain Monte Carlo, MCMC ) method for estimat-

ing the parameters of the Markov graph distribution. They con-

centrated on the estimation of θ2 , assuming that θ3 = 0, and

proposed a stepwise simulation method. This work was extended

by Corander et al. (1998) to estimating a parameter of more than

one dimension. Crouch, Wasserman, and Trachtenberg (1998)
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also elaborated an MCMC estimation method for the p∗ model.

All these authors followed the approach of Geyer and Thompson

(1992) to construct Monte Carlo-based algorithms for approxi-

mating the maximum likelihood estimate. Their methods rely

on Monte Carlo simulations of the Markov graph at the current

parameter value. It will be discussed below, however, that simu-

lation algorithms for exponential random graph distributions can

suffer from severe convergence problems, not signaled by these

authors, and these problems can invalidate the estimation algo-

rithms in which the simulations are used.

1.2. Overview of the present paper

This paper is about the simulation and MCMC estimation of ex-

ponential random graph models. Sections 2 to 4 demonstrate a

basic problem in the simulation of exponential random graph dis-

tributions. Stated briefly, the conclusion is that in the parameter

space for the triad model and for many differently specified mod-

els, there is a large region in which the demarcation between the

subset of parameters θ leading to graphs with relatively low ex-

pected densities, and the subset of parameters θ leading to graphs

with relatively high expected densities, is quite sharp; and for pa-

rameters in or near this demarcation zone, the distribution of the

graph density can have a bimodal shape. The demarcation be-

comes more marked as the number g of nodes increases. Section

5 proposes an algorithm augmented with bigger updating steps

to improve the convergence propoerties.

Sections 6 to 8 are about MCMC estimation methods for ex-

ponential random graph models. When fitting such models to

empirically observed networks, the parameter estimates often are

very close to the demarcation zone mentioned above, which leads

not only to instability of the estimation algorithm but also to a

poor representation of the data by the estimated model. This

situation leads to poor convergence properties for the more usual

MCMC procedures for simulating exponential random graph dis-

tributions. Some proposals are discussed to try and circumvent

the simulation problems explained in sections 2 to 4. These pro-

posals sometimes are effective, but not always. Finally, Section 9

discusses the implications for the use of exponential random graph

models in network analysis.
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2. Simulation of exponential random digraphs

A graph (directed or undirected) will be represented in this paper

by its adjacency matrix y = (yij)1≤i,j≤g ; the number of vertices is

denoted by g; the diagonal of the adjacency matrix is zero (yii = 0

for all i). Random variables, vectors, and matrices are indicated

by capital letters. Replacing an index by a + sign indicates sum-

mation over this index. The focus is on directed graphs.

One of the convenient ways to approximate such random draws

is by Gibbs sampling (Geman and Geman, 1983) applied to the el-

ements of the adjacency matrix. This means that an initial matrix

Y (1) is chosen, and the elements of this matrix are stochastically

updated. This updating mechanism circles through the whole

matrix again and again, thus defining a stochastic process Y (t)

which is a Markov chain; the distribution of Y (t) tends asymptot-

ically to the desired random graph distribution. This procedure

implies that the matrices Y (t) and Y (t+1) differ at most in only

one element (the one that is updated in step t).

The Gibbs sampling procedure specifies that all elements Yij in

turn are randomly updated. If, in step t, element Yij is the one

being updated, then its new value is generated according to the

conditional distribution given all the other elements,

Pθ

{
Y

(t+1)
ij = a | Y (t) = y(t)

}
= (5)

Pθ

{
Yij = a | Yhk = y

(t)
hk for all (h, k) 6= (i, j)

}
(a = 0, 1) .

In this step, all other elements are left unchanged, i.e., Y
(t+1)
hk =

Y
(t)
hk for all (h, k) 6= (i, j). Note that the left hand side of this

equation is the transition probability to be defined, and the right

hand side is the conditional distribution in the target distribution

(3). This is the same conditional distribution used also in the

pseudolikelihood procedure based on (4), but now used for an en-

tirely different purpose. A general theorem (Geman and Geman,

1983) implies that the distribution of the digraph Y (t) converges

for t→∞ to the exponential random graph distribution.

Frank (1991) and Wasserman and Pattison (1996) discussed

how to obtain the conditional probabilities (5) for the exponential

random graph model (3). For a given adjacency matrix y, define

by y(ij1) and y(ij0) , respectively, the adjacency matrices obtained

by defining the (i, j) element as y
(ij1)
ij = 1 and y

(ij0)
ij = 0 and
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leaving all other elements as they are in y. Then the conditional

distribution (5) is defined by

logit
(
Pθ {Yij = 1 | Yhk = yhk for all (h, k) 6= (i, j)}

)
= θ′

(
u(y(ij1))− u(y(ij0))

)
. (6)

In words this means that the conditional distribution is defined

by a logistic regression model where the sufficient statistics are

given by the difference between the values for u(y) obtained when

letting yij = 1 or yij = 0, and leaving all other elements of y as

they are.

2.1. Instability of the simulation algorithm

Scrutinizing experimental results of the Gibbs sampling procedure

for various parameter values shows that, depending on the initial

state of the digraph and the parameter values used, it can take

extremely long (e.g., in the order of a million steps or more) before

the Gibbs sampler seems to converge to a stable distribution. This

can be intuitively understood from the following example.

Consider an exponential random graph model (3) for a directed

graph with two effects: the number of ties and the number of

transitive triplets. This means that the sufficient statistics are

u1(y) = y++ =
∑
i,j yij

u2(y) =
∑
i,j,h yij yjh yih .

(7)

Some calculations on the basis of (6) show that the conditional

probability (5) used for Gibbs sampling is here defined by

logit
(
Pθ {Yij = 1 | Yhk = yhk for all (h, k) 6= (i, j)}

)
= θ1 + θ2 (ISij + OSij + TPij)

(8)

where ISij , OSij , and TPij are the number of in-twostars, out-

twostars, and twopaths (‘mixed stars’) connecting i and j,

ISij =
g∑

h=1
h 6=i,j

yih yjh

OSij =
g∑

h=1
h 6=i,j

yhi yhj

TPij =
g∑

h=1
h 6=i,j

yih yhj .
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Suppose that θ1 is negative and θ2 positive, and the initial state

Y (1) has a low density. When, in a given updating step for element

Yij , the current digraph has no twostars or twopaths connecting

points i and j, the transitive triplets parameter θ2 will have no

effect, however large it is. If the initial digraph has a low density

and θ1 is negative, then the number of twostars and twopaths will

remain low for a long time and θ2 will hardly have an effect on the

simulation results. However, when by chance some more twostars

and twopaths appear, then the positive θ2 value will lead to an

increase in the number of ties, and possibly to an explosion of ties

and an extremely quick transition to a high-density graph.

Whether this explosion occurs depends on the current number

of twostars and twopaths and their positions – a matter of chance

– and on the two parameter values θ1 and θ2 . If, for a given

value of θ2 , parameter θ1 is negative and sufficiently large in ab-

solute value, then the explosion will never occur. It is plausible

that there exists a non-empty region of values of the parameters

(θ1, θ2), such that for parameters in this region, if one starts with

a low-density digraph the explosion will occur with probability 1.

The expected waiting time until the explosion will be a decreasing

function of θ1 and θ2 . Although the theory of finite Markov chains

implies that the probability is also 1 that the simulations will at

some time return to a low-density state, I conjecture that for

the parameter values where an explosion can occur, the expected

waiting time for a high-density graph to return to a low-density

state is much and much higher than the expected waiting time

for a low-density graph to explode to a high-density state.

Example 1.

This property can be examined by running the JAVA applet

“pstardemo” provided with this article. This applet runs the

Gibbs sampler for parameter values and a number of nodes which

can be determined by the user. For the exponential random graph

model with sufficient statistics (7), the applet can be used to ex-

perimentally determine for which parameter values the explosion

effect occurs. The parameters θ1 and θ2 of the current model

are denoted ‘ties’ and ‘transitivity’ in the applet; the parameters

called ‘reciprocity’, ‘similarity’, and ‘two-stars’ should be equal to

0 to obtain the model currently under discussion.
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Have a look now at the pstardemo applet in the file

pstar.htm. This applet can be viewed in a web browser

that supports JAVA.

(The preceding paragraph links to the file pstar.htm.

The best readability is obtained by opening the present pdf

text and the JAVA applet in separate windows.)

When the applet is opened, it shows a digraph with

g = 12 nodes, a ‘ties’ parameter of θ1 = −4.0, and a ‘tran-

sitivity’ parameter of θ2 = 2.0. Clicking on ‘Random’ gen-

erates a random low-density graph. Click on ‘Simulate’

and the random Gibbs sampling steps will start. For some

time the generated graph retains a low density, but after

some random waiting time (usually less than a minute)

the density will increase to 1.0: the explosion effect. Once

the complete graph has been reached, the probability de-

fined by (8) is so large that it is virtually impossible for

the simulation process to go to a lower density. Click sub-

sequently on ‘Stop’, ‘Random’, and ‘Simulate’ to restart

Gibbs sampling with a low-density graph.

If the same procedure is followed still with θ1 = −4.0 but

with a lower transitivity parameter θ2 , as long as θ2 is

larger than 1.4, the explosion will still occur, but after

a longer average waiting time. This can be tried out by

specifying the ‘Reciprocity’ parameter at 0.1.

If one starts with a high-density graph, still with θ1 =

−4.0, the digraph will quickly go to a low-density state for

θ2 ≤ 0.28, but stay at a high-density state for θ2 ≥ 0.29.

If, in addition to the mentioned two effects, there is also

a positive reciprocity effect corresponding to the statistic

u3(y) =
∑
i<j

yij yji ,

then the explosive effect will occur more quickly because

the reciprocity effect will support the increase in ties when

there are sufficiently many twostars or twopaths.

pstar.htm
pstar.htm
pstar.htm
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This demonstrates that for certain parameter values of the ex-

ponential random graph model, the Gibbs sampling procedure has

two distinct states, or regimes, defined by subsets of the outcome

space. In the preceding example with, e.g., a ‘ties’ parameter

of −4.0 and ‘transitivity’ parameter of 1.5, one state consists of

digraphs with a high density and is almost stable in the sense

that the expected time before leaving this state is astronomically

long; the other state consists of low-density digraphs and is semi-

stable in the sense that the procedure will after some time leave

this state (the explosion effect), while the expected time until

this occurs is long but not astronomically so. For some other

parameter values the Gibbs sampler will practically permanently

remain in a low-density state; and for still other values, it will

practically permanently remain in a high-density state. The next

section demonstrates a model with parameter values where the

Gibbs sampler switches evenly between the low-density and the

high-density regime.

3. Simple cases: independent dyads or two-stars

Theoretical understanding of the exponential random graph can

be promoted by considering special cases for which some proper-

ties can be deduced analytically.

3.1. The reciprocity p∗ model

A first model for which exact calculations are possible is the reci-

procity p∗ model, where the only effects are number of ties and

reciprocity,

u1(y) = y++ =
∑
i,j yij

u2(y) =
∑
i<j yij yji .

(9)

The
(
g
2

)
dyads (Yij, Yji) for i < j are independent and the prob-

abilities for the dyads to be of the types mutual (yij = yji = 1),

asymmetric (yij + yji = 1), or null (yij = yji = 0), are given by

P{Yij = Yji = 1} = e2θ1+θ2−ψ(θ)

P{Yij + Yji = 1} = 2eθ1−ψ(θ) (10)

P{Yij = Yji = 0} = e−ψ(θ)
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where

ψ(θ) = log
(
e2θ1+θ2 + 2eθ1 + 1

)
.

Generating random draws from this model is straightforward. The

independence between the dyads precludes the explosion effect

discussed in the preceding section.

3.2. The twostar p∗ models

The second model is the out-twostar p∗ model, having as sufficient

statistics the number of ties and the number of out-twostars,

u1(y) = y++ =
∑
i,j

yij

u2(y) = 1
2

g∑
i,j,h=1
j 6=h

yij yih =
∑
i

(
yi+
2

)
. (11)

The probability function for this model can be written as

P{Y = y} = exp

(∑
i

(
θ1yi+ + θ2

(
yi+
2

))
− ψ(θ)

)

which indicates that the rows (yi1, . . . , yin) of the adjacency matrix

are statistically independent for i = 1, . . . , g. It may be noted

that, if the total number of ties y++ is fixed, the number of out-

twostars is a linear function of the sum of squared out-degrees,

and hence of the out-degree variance. High values of θ2 therefore

imply a high expected out-degree variance.

Similarly the in-twostar p∗ model can be defined, for which the

columns in the adjacency matrix are independent.

3.3. The reciprocity and twostar p∗ model

The reciprocity and the out-twostar p∗ models can be combined

in a model with density, reciprocity, and out-twostars effects. The

model is defined by the three sufficient statistics

u1(y) = y++ =
∑
i,j

yij

u2(y) =
∑
i<j

yij yji (12)

u3(y) = 1
2

g∑
i,j,h=1
j 6=h

yij yih =
∑
i

(
yi+
2

)
.
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For this model the digraph does not fall apart in independent

parts, but some explicit calculations still can be made. The crucial

part θ′u(y) of the logarithm in the probability (3) can be rewritten

as follows:

θ1u1(y) + θ2u2(y) + θ3u(y) =
(
θ1 + 1

2
θ2 + 1

2
(g − 2)θ3

)
y++

+ 1
2
θ2
∑
i<j

(
yijyji + (1− yij)(1− yji)

)
− 1

2
θ3
∑
i yi+(g − 1− yi+) + c(θ)

where c(θ) is some function of θ not depending on y which there-

fore is incorporated into the normalizing constant ψ(θ). The

point of this re-expression is that the second and third terms

of the right-hand side are invariant upon changing all yij into

(1 − yij), i.e., transforming the digraph into its complement. If

θ1+ 1
2
θ2+ 1

2
(g−2)θ3 = 0 the first term vanishes, which implies that

under this condition this p∗ distribution is invariant for transform-

ing the digraph into its complement. In particular, the expected

density must be 0.5. Since the properties (25) and (26) below im-

ply that ∂E(u1(Y ))/∂θ1 > 0, where E denotes the expected value

of a random variable, the expected value of the density increases

as a function of θ1 . This implies the following.

Property. Under the exponential random graph model with the

three sufficient statistics (12), it holds that

sign

(
E y++

g(g − 1)
− 1

2

)
= sign

(
θ1 + 1

2
θ2 + 1

2
(g − 2)θ3

)
. (13)

This property indicates for the reciprocity-and-twostar p∗ model,

for which parameters the expected density of the stationary distri-

bution is equal to, less than, or greater than 0.5. This is exploited

in the next example.

Example 2. Consider again the JAVA applet. The reciprocity

and twostar p∗ model is obtained by using the ‘ties’ parameter for

θ1 , ‘reciprocity’ for θ2 , ‘two-stars’ for θ3 , and setting the ‘simi-

larity’ and ‘transitivity’ parameters to 0. The parameter values

proposed below all correspond to a digraph distribution with ex-

pected density equal to 0.5. In this way we can see experimentally

how fast, or slow, can be the convergence to the asymptotic dis-

tribution.
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Look again at the pstardemo applet in the file pstar.htm.

Keep the digraph at g = 12 vertices, with a constant

‘reciprocity’ parameter θ2 of 1.0. Set the ‘transitivity’

parameter to 0.0, and let the ‘similarity’ parameter re-

main 0.0. In this experiment, the ‘ties’ parameter θ1

and the ‘two-stars’ parameter θ3 are varied in such a way

that θ1 = −0.5− 5 θ3 . Then the expected density of the

asymptotic distribution is 0.5.

First let θ3 = 0, θ1 = −0.5, which yields the reciprocity

model. When the applet is run, the stationary distribu-

tion is reached almost immediately. The density of the

generated digraph fluctuates about 0.5.

Now increase θ3 by small steps, which will make the vari-

ance of the density rise.

At θ3 = 0.4, θ1 = −2.5, the distribution of the density

has started to acquire a bimodal shape.

At θ3 = 0.5, θ1 = −3.0, the density is clearly bimodally

distributed and the random graph process switches be-

tween low-density and high-density regimes (which may

last thousands of iteration steps).

At θ3 = 0.6, θ1 = −3.5, the Gibbs sampler switches be-

tween a low-density and a high-density regime, the av-

erage number of iterations before switching to the other

regime being in the order of a few million.

For θ3 = 0.7, θ1 = −4.0, the regimes are so extreme (with

densities lower than 0.10 and, respectively, higher than

0.90) that for practical purposes the time before switch-

ing to the other regime seems infinitely long.

This example shows that, depending on the parameter values,

the exponential random graph distribution can have a bimodal

shape in the sense that most of the probability mass is distributed

over two clearly separated subsets of the set of all digraphs, one

subset containing only low-density and the other subset contain-

ing only high-density digraphs. The separation between these

two subsets can be so extreme that Gibbs sampling steps, or other

stochastic updating steps which change only a small number of arc

variables Yij , have a negligible probability of taking the Markov

pstar.htm
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process from one to the other subset. This means that for such

models simulation results are in practice determined by the initial

state, and give us completely misleading information about the

expected values of the digraph statistics.

4. Existence of different regimes

It is clear from Examples 1 and 2 that depending on the model

specification (sufficient statistics and parameter vector), there

may occur different regimes between which the Gibbs sampling al-

gorithm can switch, like a high-density and a low-density regime.

A regime is defined here by a subset of the outcome space such

that graphs generated consecutively by the algorithm will stay

within this subset for very many iterations, and switches between

these subsets occur very rarely. The examples demonstrate the

possibilities of the existence of a single regime or of two regimes.

The existence of two or more regimes is reminiscent of the long-

range dependence that is known to occur for certain parameter

values in the Ising model (cf., e.g., Besag, 1974, Newman and

Barkema, 1999, Besag, 2000), a class of probability distributions

for binary variables in a lattice.

This also is related to the degeneracy problem discussed by

Strauss (1986) for the transitivity model and other models for

interaction. Strauss noted that, for a range of parameter values,

the expected graph density will tend to 1 when one considers a

sequence of exponential random graph distributions with fixed

parameter value and g tending to infinity. However, this concerns

asymptotics for an increasing number of vertices, whereas the

present paper considers graphs with a constant number of vertices.

Note that the stochastic process Y (t) produced by the Gibbs

sampling algorithm is ergodic in the sense that for every two out-

comes there is a positive probability to go from one outcome to

the other in a finite number of steps. The probability is positive

(but tiny) already for such a change to occur in g(g − 1) steps .

Therefore, if there are two or more regimes, they must communi-

cate in the sense that there is a positive probability to go from one

to the other regime in finitely many steps. However, if there are

two regimes then it is possible that one is dominant in the sense

that the expected sojourn time is much longer in this regime than

in the other regime. Further it is possible, whether or not one of
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the regimes is dominant, that the expected sojourn time in either

regime is extremely long, so that for practical purposes the initial

situation determines whether the simulation process will show one

regime or the other. This is the case, e.g., for model (12) with

parameter values θ1 = -4.5, θ2 = 1.0, θ3 = 0.8; note that both

regimes here have probability 0.5.

The existence of two regimes tells us something not only about

the Gibbs sampling algorithm for this model, but also about the

probability distribution from which it samples. As is illustrated

by Example 2, the distribution of the number of ties Y++ will have

a bimodal shape if there are two regimes, the relative heights and

widths of the modes reflecting the probabilities of the two regimes.

In Example 2 the distribution of Y++ is symmetric about its mean
1
2

(
g
2

)
, and the two modes are equally high. In Example 1 the

existence of two modes, and their relative sizes, depends on the

parameter values.

The possibility of two (or perhaps multiple) regimes in the

Gibbs sampling algorithm, and the associated bimodality (or mul-

timodality) leads to three problems.

1. For many choices of the vector of sufficient statistics u(y), a

subset of the distributions of the family (3) has a bimodal

shape. However, a bimodal distribution is very undesirable

for modeling a single observation of a social network. For

fitting a distribution to a single observation, the major mode

of the fitted distribution should be equal, or very close, to

the observed data; this is not guaranteed for families of dis-

tributions containing bimodal distributions.

2. If there are two (or more) regimes the convergence of the

Gibbs sampler to the target distribution can be so slow that

this algorithm is unsuitable for generating a random draw

from the distribution.

3. For the parameter values where the distribution has a bi-

modal shape, the expected values of the sufficient statistics

u(Y ) are extremely sensitive to the parameter values θ, i.e.,

some of the derivatives ∂Eθuk(Y )/∂θk are very large. (This

is a consequence of property (26) in Section 6.) This can

cause instability of algorithms for parameter estimation, and

requires extra care in setting up the algorithms.
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The first problem can only be solved by specifying the model,

as defined by the vector of sufficient statistics, in such a way

that the observed data set is fitted by a unimodal distribution.

More research is needed to investigate whether, and how, this is

possible. The last two problems can be solved perhaps by an

appropriate construction of algorithms.

4.1. Graphs with fixed densities

For exponential random graph distributions with a given number

of ties, the situation is different. The density is constant by defi-

nition. However, there still can be several regimes with very low

probabilities of transitions between them. As an example consider

again model (12), now under the condition that Y++ is constant,

so that the first sufficient statistic and the parameter θ1 are ir-

relevant. Suppose that θ2 = 0. If θ3 is high, there is a tendency

to have a high number of out-twostars. Suppose, to simplify the

discussion, that Y++ is constrained to be equal to c(g − 1) for

some integer c with 1 ≤ c ≤ g−1. Then the maximum number of

out-twostars is obtained by the digraphs for which c vertices have

out-degrees g − 1 and the other g − c have out-degrees 0. This

implies that if θ3 is high, there will be
(
g
c

)
regimes, each corre-

sponding to a subset of c vertices all having very high out-degrees,

the others having very low out-degrees. Depending on the initial

situation the Markov chain algorithm will quickly enter in one of

these regimes, and it may take a large number of steps before a

transition to another regime is observed. If θ3 is large enough, for

practical purposes the waiting time is infinite.

This suggests that the behavior of MCMC algorithms to sim-

ulate exponential random graphs is more complicated if the re-

striction is made that the number of ties is fixed. The reason is

that the paths for communicating between different outcomes are

so much more restricted.
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5. Other iteration procedures for simulating random graphs

In addition to Gibbs sampling, various other procedures can be

used to construct a Markov chain Y (1), Y (2), Y (3), . . . , Y (t), . . .

of which the distribution converges to the exponential random

graph distribution (3). The main technique used for constructing

such chains is detailed balance (see, e.g., Norris, 1997, Newman

and Barkema, 1999). To explain this concept, the set of all ad-

jacency matrices (either all symmetric adjacency matrices, or all

adjacency matrices) on g vertices is denoted Yg .

Denote the transition probabilities of the Markov chain by

P (ya, yb) = P
{
Y (t+1) = yb | Y (t) = ya

}
(14)

for ya, yb ∈ Yg . If there exists a probability distribution π on Yg
such that

π(ya)P (ya, yb) = π(yb)P (yb, ya) for all ya, yb ∈ Yg (15)

then P and π are said to be in detailed balance and π is a station-

ary distribution of the Markov chain with transition probabilities

P (ya, yb). If all states communicate (i.e., for each pair of states

ya, yb there is a positive probability to go from one to the other

state in finitely many steps) then π is the unique stationary dis-

tribution and and also the asymptotic distribution. For a proof

see any textbook on discrete Markov chains, e.g., Norris (1997).

This is applied here to π(y) given by (3), so that the requirement

for the transition probabilities is

log

(
P (ya, yb)

P (yb, ya)

)
= θ′

(
u(yb)− u(ya)

)
. (16)

Note that this expression does not involve the problematic norm-

ing constant ψ(θ). Many definitions of transition probabilities

satisfying (16) are possible. The following sections indicate some

possibilities.

5.1. Small updating steps

The smallest updating steps are those where Y (t) and Y (t+1) differ

in at most one element Yij . To define the updating step from Y (t)

to Y (t+1), randomly determine a cell (It, Jt) (i.e., randomly choose

any of the
(
g
2

)
possibilities (i, j)) and determine the cell value



Tom A.B. Snijders 18 MCMC estimation for exponential random graphs ⇐

Y
(t+1)
It,Jt according to probability distribution (6). For any pair of

matrices ya, yb differing in only one element (i, j), it follows that

P (ya, yb) =

(
g

2

)−1
exp (θ′u(yb))

exp (θ′u(ya)) + exp (θ′u(yb))

which indeed satisfies (16). This procedure uses the same updat-

ing probabilities as Gibbs sampling but the order in which the

cells Yij are visited is random rather than deterministic. This

distinction is referred to as mixing vs. cycling (see Tierney, 1994).

An alternative is known as the Metropolis-Hastings algorithm.

In this algorithm, the new value Y
(t+1)
It,Jt depends also the previous

value Y
(t)
It,Jt . Under the condition (It, Jt) = (i, j), the Metropolis-

Hastings probability for changing the cell value Yij is

Pθ

{
Y

(t+1)
ij = 1− y(t)

ij | Y (t) = y(t)
}

= min
{

1, exp
(
θ′(u(y(ijc))− u(y))

)}
, (17)

where y(ijc) is the adjacency matrix obtained from y by changing

element yij into 1− yij and leaving all other elements as they are.

This algorithm changes Y (t) more frequently than Gibbs sampling,

and therefore often is more efficient.

Another Monte Carlo method for approximating draws from

the exponential random graph distribution follows from the theo-

rem in Snijders (2001) which gives a specification of a model for a

continuous-time network evolution process converging in distribu-

tion to the exponential random graph model. This is a different

approach because the approximation theorem holds for the con-

tinuous time process, so the stopping rule must be specified as

a time point rather than as an iteration number. However, the

calculations for each step in this algorithm are much more time-

consuming than the steps of the procedures mentioned above, and

this is not offset by a more rapid approximation of the limiting

distribution. Therefore this does not seem a practically useful

option.

5.2. Updating by dyads or triplets

Another possibility is to update stochastically not a single ele-

ment Yij , but several elements at once. The most natural groups

of elements to be changed together are dyads (Yij, Yji) or triplets

defined here as triples of elements of the form (Yij, Yih, Yjh),
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(Yij, Yih, Yhj), and/or (Yij, Yjh, Yhi).

These groupwise updating steps can be defined as follows with

updating probabilities analogous to Gibbs sampling. (Metropolis-

Hastings versions also are possible.) In the first place, choose a

random dyad or triplet to be updated. Denote by I, a subset of

{(i, j) | i 6= j}, the set of elements of the adjacency matrix to

be changed (updated) in a given step, and denote by Y(t+1)(I)

the set of adjacency matrices with elements equal to y
(t)
ij for all

(i, j) /∈ I. The set Y(t+1)(I) is the set of all allowed outcomes

of Y (t+1). This set has 2|I| elements, where |I| is the number of

elements of the set I (note that |I| = 2 for a dyad and |I| = 3 for

a triplet). The groupwise updating probabilities are

Pθ

{
Y

(t+1)
ij = y | Y (t) = y(t)

}
=

exp
(
θ′u(y)

)
∑
ỹ∈Y(t+1)(I) exp

(
θ′u(ỹ)

) (18)

for y ∈ Y (t+1)(I).

5.3. Big updates

Item (2.) in Section 4 stated that the Gibbs sampler sometimes

converges very slowly. The procedures mentioned above suffer

from the same problem, because the steps taken are so small.

Better convergence properties may be obtained if also updating

steps are included that imply bigger ‘jumps’ in the space Yg .

Analogous to cluster-flipping algorithms for the Ising model

(cf. Newman and Barkema, 1999), it is possible to update Y by

switching variables Yij from 0 to 1 or vice versa not just in a

few cells (i, j), but in a big set of cells. Such a set could be

defined by rows and/or columns. The biggest step is changing the

graph to its complement, called here an inversion. It is proposed

here to use one of the algorithms described above, augmented

with inversion steps as follows. At each step t, with a rather

small probability, say, 0.01, an inversion step is taken instead of

the step of the basic algorithm. The inversion step is governed

by a probability pr(y). In an inversion step, with probability

pr(y) the current matrix Y (t) = y is replaced by its complement

Y (t+1) = 1− y defined by

(1− y)ij = 1− yij for all (i, j) ; (19)

with probability 1 − pr(y) the current matrix is left as it is,

Y (t+1) = y. Gibbs and Metropolis-Hastings versions of the up-
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dating probabilities are, respectively,

pr(y) =
exp (θ′u(1− y))

exp (θ′u(1− y)) + exp (θ′u(y))
(20)

and

pr(y) = min
{

1, exp
(
θ′(u(1− y)− u(y))

)}
. (21)

Inversion steps using these probabilities satisfy the detailed bal-

ance equation (16) and therefore still yield the correct stationary

distribution.

This augmentation of the algorithms described in the preced-

ing sections by inversion steps is expected to produce good con-

vergence properties for the reciprocity-and-twostar model of Sec-

tion 3.3. More generally, this procedure may give good results for

graph distributions with a bimodal shape, one mode having low

and the other high graph densities. For graph distributions with

more than two modes, however, it may be necessary to propose

other ‘big updating steps’.

5.4. Using inversion steps for variance reduction

The inversion step can be used in an additional way to reduce the

estimation variance of expected values of functions of exponential

digraph distributions. Let Y be a random graph, produced as

the final result of a long MCMC sequence Y (t), such that Y is

assumed to be a random draw from the target distribution. For

the estimation of Ef(Y ) for some function f(y), one will construct

many, say N , independent replications of the MCMC sequence,

resulting in random draws Y (1), . . . , Y (N), and estimate Ef(Y )

by

1

N

N∑
n=1

f(Y (n)) .

However, it can be proved that

Ef(Y ) = E
(
pr(Y )f(1− Y ) + (1− pr(Y ))f(Y )

)
, (22)

where pr(y) is defined in (20). The random variable on the right

hand side has a smaller variance than f(Y ). Therefore it is more

efficient to estimate Ef(Y ) by

1

N

N∑
n=1

(
pr(Y (n))f(1− Y (n)) + (1− pr(Y (n)))f(Y (n))

)
. (23)
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This is an example of conditioning, a principle mentioned in Rip-

ley (1987, p. 134).

An example where this yields a considerable reduction in vari-

ance is provided by the reciprocity-and-twostar model of Sec-

tion 3.3 with θ1 + 0.5θ2 + 0.5(g − 2)θ3 = 0, for which pr(y) = 0.5

for all y. On the other hand, the gain in efficiency will be small if

the distribution of pr(Y ) is concentrated strongly on values close

to 0.

5.5. Random graphs with fixed densities

Sometimes it is found interesting to simulate exponential random

graph distributions conditional on the density or, equivalently, on

the total number of ties, Y++ . This means that still the probabil-

ity function (3) is used, but only digraphs with the given number

of ties are permitted. The same ideas can then be applied to

define stochastic iteration steps yielding a Markov chain converg-

ing to the desired distribution, but now the steps must keep the

number of ties intact. The simplest procedure is to select two

elements (i, j) and (h, k), leave them unchanged if y
(t)
ij = y

(t)
hk , and

if y
(t)
ij 6= y

(t)
hk determine their new values with probabilities (18)

where Y(t+1)(I) now is the set of two adjacency matrices, one be-

ing y(t) and the other the same matrix but with elements (i, j)

and (h, k) interchanged. The Metropolis-Hastings version of the

updating step is defined in an analogous fashion.

5.6. Random undirected graphs

Another special situation is obtained when only undirected graphs

are considered, i.e., the restriction is made that yij = yji for all

(i, j). Exponential models for undirected random graphs were

studied by Frank and Strauss (1986) and Corander et al. (1998).

To generate random draws of exponential models for undirected

graphs, the above-mentioned techniques can be applied to the

half-matrix of non-redundant elements (yij)i<j . Inversion steps

still can be used.
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6. ML estimation for exponential families

The exponential random graph model is a so-called exponential

family of distributions with canonical sufficient statistic u(Y ). It

is well-known (e.g., Lehmann, 1983) that the maximum likelihood

(ML) estimate θ̂(y) for an exponential family is also the solution

of the moment equation

µ(θ) = u(y) , (24)

where u(y) is the observed value and µ(θ) is defined as the ex-

pected value

µ(θ) = Eθ{u(Y )} ;

that µ(θ) is also the gradient of ψ(θ),

µk(θ) = ∂ψ(θ)/∂θk ; (25)

that the covariance matrix Σ(θ) = cov(u(Y )) of u(Y ) with ele-

ments σhk(θ) is the matrix of derivatives of µ(θ),

σhk(θ) =
∂µk
∂θh

=
∂2ψ(θ)

∂θh ∂θk
; (26)

and that the asymptotic covariance matrix of the ML estimator

θ̂ is given by

covθ
(
θ̂
)

=
(
Σ(θ)

)−1
. (27)

This theory cannot be easily applied to derive ML estimators

for exponential random graph models, because the functions ψ(θ)

and µ(θ) cannot be easily calculated except for the simplest mod-

els. This was a reason in the earlier literature for proposing the

pseudolikelihood estimators discussed in Section 1. In the present

section first the reciprocity p∗ model is briefly discussed, because

it allows an explicit comparison of the ML and pseudolikelihood

estimators. Subsequently a brief overview is given of algorithms

for parameter estimation based on Monte Carlo simulation.

6.1. The reciprocity p∗ model

For the reciprocity p∗ model (9) it is possible to give explicit for-

mulae for the ML estimates. The numbers of mutual, asymmetric,

and null dyads (as defined by Holland and Leinhardt, 1976; also
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see Wasserman and Faust, 1994) are given by

M =
∑
i<j

yij yji

A =
∑
i,j

yij (1− yji)

N =
∑
i<j

(1− yij) (1− yji) .

The independence of the dyads implies that (M,A,N) has a

multinomial distribution with multinomial denominator
(
g
2

)
and

probabilities given by (10). General properties of the multinomial

distribution imply that ML estimates for this model are given by

θ̂1 = log (A/(2N))

θ̂2 = log
(
(4MN)/(A2)

)
.

(28)

On the other hand, the pseudologlikelihood (4) for this model is

identical to the loglikelihood of g(g−1) independent observations,

of which 2M +A are Bernoulli trials with odds ratio exp(θ1 + θ2)

among which 2M successes are observed, while the other 2N +A

are Bernoulli trials with odds ratio exp(θ1) among which there are

A successes. The parameter estimates maximizing this pseudo-

loglikelihood are also given by (28), but the standard errors given

by the pseudolikelihood procedure are lower: in fact they are too

low because of the incorrect independence assumptions which are

implicit in this loglikelihood. The fact that the ML estimates can

be explicitly calculated provides a possibility for checking MCMC

algorithms for computing ML estimates.

Example 3.

As an example, consider the friendship relation in Krackhardt’s

(1987) high-tech managers data as presented also in Wasserman

and Faust (1994). This is a directed graph with g = 21 vertices.

It has 102 ties, with a dyad count of M = 23 mutual, A = 56

asymmetric, and N = 131 null dyads. Table 1 gives the ML

and pseudolikelihood estimates for the reciprocity model, with

the associated standard errors.

The results confirm that the ML and the pseudolikelihood es-

timates are identical, but the standard errors as obtained from

the pseudolikelihood are considerably too low. The parameter

estimates demonstrate a strong tendency toward reciprocity.
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Table 1. Parameter estimates for the reciprocity p∗ model

for the friendship relation among Krackhardt’s high-tech

managers. Model 1: reciprocity.

ML pseudolikelihood

Effect estimate s.e. estimate s.e.

Density -1.54 0.16 -1.54 0.10

Reciprocity 1.35 0.35 1.35 0.18

6.2. Simulation-based estimation

If µ(θ) and Σ(θ) would be computable, the ML estimate could be

found by the Newton-Raphson algorithm with iteration step

θ̂(n+1) = θ̂(n) −
(
Σ(θ̂(n))

)−1 (
µ(θ̂(n))− u(y)

)
. (29)

The fact that Σ(θ) is a positive definite matrix guarantees the

convergence to the solution of the ML equation. However, none

of the functions ψ(θ), µ(θ), or Σ(θ) can be computed in practice

for exponential graph models, unless g is very small or the model

is very simple (e.g., the reciprocity p∗ model).

There are a variety of ways for solving intractable estimation

problems by means of Monte Carlo simulation; see, e.g., Mc-

Fadden (1989), Pakes and Pollard (1989), Geyer and Thomp-

son (1992), Gilks, Richardson, and Spiegelhalter (1996), and

Gouriéroux and Monfort (1996).

Geyer and Thompson (1992) give a method which can be used

for approximating ML estimates in exponential families. This ap-

proach was used for parameter estimation in exponential random

graph models by Corander at al. (1998) and by Crouch, Wasser-

man, and Trachtenberg (1998). The iteration steps in this proce-

dure can be sketched as follows. At the current parameter value

θ(n), a Monte Carlo simulation of the Markov graph is made; this

simulation is used to estimate cumulants (or moments) of the dis-

tribution, and these cumulants are used to make an expansion

approximating µ(θ) for θ in a neighbourhood of θ(n). The mo-

ment equation then is solved using this approximation, yielding

the updated provisional parameter estimate θ(n+1).
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The present paper uses a slightly different algorithm, which is

a version of the Robbins-Monro (1951) algorithm. The Robbins-

Monro algorithm may be considered to be a Monte Carlo variant

of the Newton-Raphson algorithm. The use of this method for mo-

ment estimation in statistical models for networks was proposed

also in Snijders (1996, 2001). I suppose the difference between the

Geyer-Thompson and the Robbins-Monro approaches is a matter

mainly of convenience.

7. MCMC estimation for exponential families

using the Robbins-Monro algorithm

The Robbins-Monro (1951) algorithm is a stochastic iterative al-

gorithm intended to solve equations of the form

E{Zθ} = 0 , (30)

where Zθ is a k-dimensional random variable of which the prob-

ability distribution is governed by a k-dimensional parameter θ,

and where realizations of Zθ can be observed for arbitrary values

of θ. Relatively accessible introductions to the Robbins-Monro

procedure and its extensions are given by Ruppert (1991) and

Pflug (1996).

It is clear from this description that the Robbins-Monro al-

gorithm can be used, in principle at least, to compute moment

estimates, and therefore also maximum likelihood estimates in ex-

ponential families such as the exponential random graph model.

The aim here is to solve (30), where Zθ is given by

Zθ = u(Y ) − u0 (31)

where u0 = u(y) is the observed value of the sufficient statistic and

Y has probability distribution (3) with parameter θ. The com-

bination of equations (30) and (31) is equivalent to the moment

equation (24).

The iteration step in the Robbins-Monro (1951) procedure

for solving (30) (the multivariate version is from Nevel’son and

Has’minskii, 1973), with step-size an, is

θ̂(n+1) = θ̂(n) − anD
−1
n Z(n) , (32)

where Z(n) for n = 1, 2, ... are random variables such that the

conditional distribution of Z(n) given Z(1), ..., Z(n − 1) is the
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distribution of Zθ obtained for θ = θ̂(n) . The step sizes an are a

sequence of positive numbers converging to 0. This is called the

gain sequence.

The stochastic process θ̂(n) (n = 1, 2, ...) generated by this

Monte Carlo simulation process is a Markov chain, because for

any n0 the sequence {θ̂(n)} for n > n0 depends on the past val-

ues via the last value, {θ̂(n0)}. Therefore this approach may be

called a frequentist Markov chain Monte Carlo (MCMC) method,

although the name MCMC is used more frequently for Bayesian

procedures.

For the discussion in the present section it is assumed that a

procedure is available to generate Monte Carlo draws Y (n) from

the exponential random graph distribution with arbitrary param-

eter θ. The preceding sections imply that the availability of such

a procedure is not always evident, and will depend on the choice

of the vector of sufficient statistics u(Y ).

For the classical choice an = 1/n in the Robbins-Monro up-

dating step, the optimal value of Dn is the derivative matrix

Dθ = (∂EθZ/∂θ). In our case, this matrix is given by (26). In

adaptive Robbins-Monro procedures (Venter, 1967; Nevel’son and

Has’minskii, 1973), this derivative matrix is estimated during the

approximation process. If Dn is a consistent estimator for Dθ and

if certain regularity conditions are satisfied (see Ruppert, 1991),

then θ̂(n) is asymptotically multivariate normal, with the solution

of (30) as its mean, and

1

n
D−1
θ covθ(Z)D′θ

−1
(33)

as its covariance matrix. This is the optimal asymptotic covari-

ance matrix possible for this kind of stochastic approximation

problem (see Ruppert, 1991, and Pflug, 1996). A particular prop-

erty of the present estimation problem, due to the fact that the

probability model is an exponential family, is that covθ(Z) = Dθ

so that the asymptotic covariance matrix (33) of the approxima-

tion by the Robbins-Monro algorithm is 1/n times the estimation

covariance matrix (27) of the ML estimator.

Instead of using an adaptive version of the Robbins-Monro al-

gorithm, one may also follow a procedure proposed by Polyak

(1990) and Ruppert (1988) (also see Pflug, 1996, Section 5.1.3,

and Kushner and Yin, 1997). They showed that, under conditions

which are satisfied here because the matrix of derivatives (26) is
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positive definite, the optimal rate of convergence can also be ob-

tained while using a constant positive diagonal matrix Dn = D0 .

The sequence an > 0 then must be chosen as n−c, for a c between

0.5 and 1.0. Further, the estimate of θ must be not the last value

θ̂(n) , but the average of the sequence θ̂(n) or the average of the

‘last part’ of this sequence.

These ideas were used also in Snijders (2001) to construct a

Robbins-Monro type algorithm for parameter estimation in an

actor-oriented model for network evolution. The same algorithm

is used here, but with a simplification possible because in this

case the matrix of derivatives can be estimated by the covariance

matrix of the generated statistics rather than by a finite difference

quotient. The algorithm is presented explicitly in the appendix.

A more extensive motivation for the specification of the algorithm

can be found in Snijders (2001).

The algorithm consists of three ‘phases’. The first phase is

used to determine the diagonal matrix Dn = D0 (independent

of n) to be used later in the updating steps (32). This matrix

is a diagonal matrix. Its diagonal elements are estimates of the

derivatives dkk = ∂Eθuk(Y )/∂θk evaluated in the initial value θ

of the estimation algorithm. The second phase iteratively de-

termines provisional estimated values according to the updating

steps (32). It consists of several subphases, as explained in the

appendix. The gain values an are constant within subphases and

decrease between subphases. Reasonable values for the first gain

value a1 are 0.001 ≤ a1 ≤ 0.1. A large value of a1 will lead the

process quickly from almost any reasonable starting value into the

vicinity of the solution of the moment equation, but also leads to

bigger steps, and therefore perhaps greater instability, once this

vicinity is reached. Therefore it is advisable to use a rather large

a1 (e.g., a1 = 0.1) if the initial value θ̂1 could be far from the ML

estimate, and a rather small value (e.g., 0.01) if the initial value

is supposed to be close already.

In the third phase the parameter value is kept constant at θ̂,

the presumably found approximate solution of the moment equa-

tion (24). A large number of steps is carried out to check the

approximate validity of this equation. This is done by estimating

from these simulations the expected value and standard deviation
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of each statistic uk(Y ) and from this computing the t-ratios

tk =
Êθ̂(uk(Y )) − u0

ŜDθ̂(uk(Y ))
. (34)

If |tk| ≤ 0.1, the convergence is considered to be excellent; for

0.1 < |tk| ≤ 0.2 it is good and for 0.2 < |tk| ≤ 0.3 it is fair.

Moreover, Phase three is used to estimate the covariance matrix

Σ(θ̂) = covθ̂(u(Y )), which then is used to estimate the standard

errors of the estimate θ̂ according to (27).

7.1. Measures to improve convergence

The combination of the Monte Carlo simulation methods ex-

plained above with the Robbins-Monro method yields, at least

in theory, a procedure which convergences with probability 1 to

the ML estimate of θ, provided that we are willing to continue

long enough with the Robbins-Monro algorithm and, within each

step in this algorithm, continue long enough with the simulations

to approximate a sample from the exponential random graph dis-

tribution. Whether this is a satisfactory procedure will depend

on the data set and the model specification. In my experience,

the use of inversion steps as proposed in Section 5.3 has proved

important to obtain reasonable convergence in models involving

triplet counts.

The existence of multiple regimes and the possibility of very

long sojourn times in these regimes, however, indicates that one

must be wary of convergence difficulties. Any MCMC procedure

for this estimation problem that does not take into account the

possibility of these regime changes may give unreliable results for

certain data sets.

In the specification of the algorithm as given in the appendix, a

small value is used for a1 , not greater than 0.1, to avoid instability

of the algorithm. If the result of Phase 3 of the algorithm is

that the found value θ̂ is rather close to being a solution of the

likelihood equation (24) but not close enough, then it is advisable

to restart the algorithm from this initial value θ̂ with a very small

step size such as given by a1 = 0.01 or even smaller.

The example of model (7) with the updating steps depending

on the conditional probability (8) illustrates that for models de-

pending on some subgraph count (in this case, counts of transitive
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triplets), the ‘sub-subgraphs’ which are part of this subgraph (in

this case, twostars and twopaths) can function like a lubricant to

help the process moving in the good direction. This is an algorith-

mic motive for the rule, which also is sensible from the point of

view of statistical modeling, that whenever some subgraph count

is included in the sufficient statistic u(Y ), also the counts for the

corresponding sub-subgraphs should be included in u(Y ).

Experience up to now with this algorithm is rather mixed. For

some data sets and models, good estimates (as judged by the t-

ratios (34)) have been obtained. The next section presents some

examples. For many other data sets the algorithm was less suc-

cesful. As far as this is due to the unknown ML estimate being in

the subset of the parameter space where the graph has a bimodal

distribution, there is no easy way out. In such a case, one might

look for a model specification, obtained by extending the vector

of sufficient statistics, for which the unknown ML estimate corre-

sponds to a unimodal distribution. However, there may be other

reasons for lack of convergence. In the first place, the MCMC

simulations may have been too short to approximate a random

draw from the exponential graph distribution with the given pa-

rameter value. This may be solved by using more updating steps,

or updating by more efficient steps. It may be possible to obtain

improvement here by developing other ‘big steps’ in addition to

inversions.

In the second place, the Robbins-Monro algorithm may be un-

stable, e.g., because of high correlations between the sufficient

statistics uk(Y ), or because of long-tailed distributions of these

statistics, or because the covariance matrix covθ (u(Y )) changes

very quickly as a function of θ. In this case it is advisable to

restart the algorithm from the currently found parameter value

but with a smaller initial step size a1 .
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8. Examples

This section presents examples for a directed graph and an undi-

rected graph. The presented results have all t-ratios (34) less than

0.1, indicating good convergence.

The first example continues the investigation of the friendship

relation among Krackhardt’s (1987) high-tech managers as pre-

sented in Wasserman and Faust (1994). The density of this graph

is 0.24. The MCMC estimation of the reciprocity model converged

quickly to the ML estimates presented in Table 1, thus providing

some confidence in the method and the computer program.

As a next result, the estimates are presented for the model

containing the following seven effects (sufficient statistics): num-

bers of ties, of mutual dyads, of out-twostars, of in-twostars, of

twopaths, of transitive triplets, and of three-cycles. The mathe-

matical definitions of the corresponding sufficient statistics are

u1(y) = y++ =
∑
i,j

yij

u2(y) =
∑
i<j

yij yji

u3(y) =
∑
i

(
yi+
2

)

u4(y) =
∑
i

(
y+i

2

)
u5(y) =

∑
i

y+i yi+

u6(y) =
∑
i,j,h

yij yjh yih

u7(y) =
∑
i<j<h

yih yhj yji .

The simulations were carried out with 60, 000 Metropolis-

Hastings updating steps in each simulation to generate a digraph.

Simulations with Gibbs steps or with updates of dyads or triplets

did not differ greatly from the Metropolis-Hastings steps.

Table 2 presents the MCMC and pseudolikelihood estimates.

They are quite different; for the three-cycles effect, the signs of

the estimates even are opposite. The pseudolikelihood results

appear to be totally unreliable for this dataset. For this small

data set, and controlling for all these effects, the MCMC results

show evidence only of the mutuality effect (more reciprocated ties
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than if this effect were nil) and the out-twostars effect (higher

dispersion of out-degrees than if this effect were nil).

Table 2. MCMC and pseudolikelihood parameter estimates

for the friendship relation in Krackhardt’s high-tech

managers. Model 2: structural effects.

MCMC pseudolikelihood

Parameter estimate s.e. estimate s.e.

Number of ties -2.066 0.656 -2.538 0.399

Mutual ties 2.035 0.437 2.569 0.291

Out-twostars 0.219 0.049 0.210 0.035

In-twostars -0.025 0.110 0.079 0.058

Twopaths -0.104 0.066 -0.208 0.040

Transitive triplets 0.070 0.087 0.205 0.054

Three-cycles -0.004 0.225 0.168 0.121

When the values of some of the coordinates of these estimates

are increased only slightly, the graphs generated according to

these changed parameters have densities close to 1. This shows

that the ML estimate is very close to the region where the ex-

pected density Eθ(u1(Y )) increases extremely rapidly from a low

to a high value. This phenomenon was found for quite many data

sets for which this type of model was fitted.

As a next example, the symmetrized version of the Sampson

(1969) monastery data is used that was also considered by Frank

and Strauss (1986), and presented in their Figure 7. The Markov

undirected graph model, defined by (1) and (2), was fitted. The

sufficient statistics are the numbers of edges, two-stars, and tri-

angles. For this undirected graph with g = 18 nodes, there are 61

edges, 393 twostars, and 70 triangles. The MCMC and pseudo-

likelihood estimates are presented in Table 3. The pseudolikeli-

hood estimates appear to differ strongly from the MCMC esti-

mates.

The three statistics are extremely highly correlated. This is

reflected by the estimated correlation matrix of the estimates,

ĉor


θ̂1

θ̂2

θ̂3

 =


1.0 −0.982 0.947

−0.982 1.0 −0.990

0.947 −0.990 1.0

 .
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Table 3. MCMC parameter estimates for the undirected

Sampson data set, Markov graph model.

MCMC pseudolikelihood

Effect estimate s.e. estimate s.e.

Edges -0.77476 0.88 -0.0810 0.66

Twostars -0.04875 0.11 -0.2285 0.06

Triangles 0.34520 0.20 0.9754 0.12

An eigenvalue decomposition of the estimated covariance ma-

trix of the three parameter estimates shows that the eigenvector

with the smallest eigenvalue corresponds to the linear combina-

tion (0.0515 θ̂1 + 0.9523 θ̂2 + 0.3007 θ̂3) which has standard error

0.0028, much smaller than the standard errors of the three in-

dividual estimates. Thus, this linear combination is known more

precisely than is suggested by the standard errors of the individual

estimates. This implies that, in order to get a parameter estimate

which accurately solves the likelihood equation, the coordinates

should be retained in at least 4 and preferably 5 decimal figures,

notwithstanding the large standard errors of the individual esti-

mates. It also implies that quite different values could be obtained

as approximate ML estimates, but this particular linear combina-

tion would have to be almost the same (making some allowance

for the inaccuracy with which these eigenvectors and eigenvalues

are estimated).

9. Discussion

This article considered MCMC simulation and parameter estima-

tion procedures for exponential random graph models, also called

p∗ models. In this discussion, a distinction must be made between

MCMC simulation algorithms, which employ a fixed parameter

value and have the purpose to simulate a random draw from the

exponential graph distribution with this parameter value, and

MCMC estimation algorithms, which have the purpose to esti-

mate the parameter for a given data set and thereby repeatedly

use MCMC simulation algorithms.

Consideration was given first to applying the usual type of
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MCMC algorithms for simulating a sequence converging to a given

exponential random graph distribution, such as the Gibbs sampler

and the Metropolis-Hastings algorithm, using small steps where

only one arc variable (one cell entry of the adjacency matrix) is

updated in each step. It was shown that for certain specifications

of the sufficient statistics and the parameter values, the graph

density and many other statistics have bimodal or perhaps mul-

timodal distributions. This happens especially if the sufficient

statistics include subgraph counts such as triad counts. In rather

many cases there are two modes, one for a high graph density

and the other for a low graph density. MCMC algorithms that

change one or just a few arc variables per step may require an

exceedingly high number of iteration steps to go from outcomes

near one mode to outcomes near the other mode. However, such

switches are necessary to estimate the relative probabilities of the

several modes. This rules out such small-step MCMC algorithms

as a way to estimate expected values of statistics of exponential

random graphs for these specifications of sufficient statistics and

parameter values. It was proposed to augment small-step MCMC

algorithms by occasionally changing the graph to its complement

(‘inversion steps’), using probabilities that still guarantee asymp-

totic convergence to the desired graph distribution. For some

model specifications this solves the convergence problems posed

by bimodal distributions. Whether one, two, or three arc vari-

ables are changed in the ‘small steps’ did not have a great effect

on the efficiency of the algorithm.

MCMC algorithms for parameter estimation in these models

are even more complex, because they employ the MCMC sim-

ulation algorithm many times, with different parameter values.

This paper considered an MCMC estimation method based on

the Robbins-Monro algorithm. If the true ML estimate is within

or near the part of the parameter space where the graph density

has a bimodal distribution, the algorithm may be unstable. Then

it is advised to use very small step sizes.

The quality of the estimates produced by the algorithm can be

evaluated by the t-statistics (34). Judging by this evaluation, it

appears that the proposed algorithm performs well for some data

sets and models, but there are other data sets for which it fails to

find an estimate that solves the moment equation to a satisfactory

degree of precision. More research is needed to find good practical
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methods for estimating the parameters of this type of model.

Another problem for the estimation procedure is posed by the

extremely high correlations of the subgraph counts that are often

used in applications of the p∗ model. This property leads, how-

ever, to accuracy problems rather than essential problems. It is

conceivable that approximate orthogonalisation of the sufficient

statistics could be used to solve this problem.

The algorithm proposed in this article is included in the SIENA

program (version 1.94 and higher) which is available on the web

at http://stat.gamma.rug.nl/snijders/socnet.htm.

Some attention was paid also to the pseudolikelihood estimates

which are currently the most often used method for modeling so-

cial networks by p∗ models. In some examples, these estimates

were quite far from the maximum likelihood estimates. In an-

other example, the estimates were identical but the standard er-

rors obtained for the pseudolikelihood method were considerably

too large. It seems to me that the basis for the use of the pseudo-

likelihood estimators is so weak that their use should not be advo-

cated until more research has been done supporting their quality.

In addition to posing technical problems for parameter estima-

tion, however, the bimodality of many exponential distributions

for random graphs also poses a general conceptual problem in

their use for modeling networks. Bimodal distributions do not

in general create a problem if a sample from the distribution is

available, but they do if only one outcome is observed, such as

is usual for applications in social network analysis. When these

exponential models for random graphs are applied to a single ob-

served social network, it is important to establish that the param-

eter estimates represent the observed network, and do not just as

well represent a totally different network (as could happen if the

parameter estimates correspond to a bimodal distribution). A

counter-argument could be that social reality often is equivocal,

and that a given set of local rules for relationship preferences,

as embodied in the parameter values, could correspond to very

different network structures, as embodied in the observed data.

This would be a social network version of the long-range depen-

dence known from the Ising model. To take this argument seri-

ously, however, more research is needed investigating the relation

between micro-processes and network macro-structures, and how

http://stat.gamma.rug.nl/snijders/socnet.htm
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these two aspects can be reflected in statistical models for social

networks.

For the appropriateness of using exponential random graph

models for modeling single observations of social networks, in any

case more research is required to obtain insight in whether and

how it is possible to specify such models so that fitted distribu-

tions are unimodal; or, at least, have a dominant mode that is

close to the observed network.

APPENDIX: STOCHASTIC APPROXIMATION

ALGORITHM

The algorithm consists of three phases. It is very similar to the

algorithm of Snijders (2001), except that Phases 1 and 3 are sim-

plifications possible here due to the special structure of the estima-

tion problem (the exponential family), and in all phases inversion

is used to reduce estimation variance as indicated by (23). For

further motivation and some background discussion, the reader is

referred to the mentioned publication.

Steps in the iteration process are indicated by n. The digraph

Y (n) is assumed in each step to be generated by a Monte Carlo

method according to the exponential random graph model with

parameter θ dependent on the current step. The MCMC algo-

rithm used to generate each Y (n) starts with a random graph in

which each arc variable Yij is determined independently with a

probability 0.5 for the values 0 and 1; it uses Gibbs or Metropolis

Hastings updating steps by single arcs, dyads, or triplets; and it

has a probability of 0.01 for inversion steps. The number of steps

for generating each Y (n) is in the order of 100 g2. Depending on
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the success of the algorithm as exhibited in Phase 3, this number

can be decreased or increased. Given Y (n), denote

P (n) = pr(Y (n))

as defined in (20).

The initial value for the algorithm is denoted θ(1). The observed

value of the sufficient statistic is u0.

Phase 1. In this phase a small number N1 of steps are made to

estimate D(θ(1)) = covθ(1)u(Y ).

Generate N1 independent networks Y (n) according to pa-

rameter θ(1) and define

ū =
1

N1

N1∑
n=1

(
P (n)u(1− Y (n)) + (1− P (n))u(Y (n))

)
,

D =
1

N1

N1∑
n=1

(
P (n)u(1− Y (n))′u(1− Y (n))

+ (1− P (n))u(Y (n))′u(Y (n)) − ū′ū
)
,

and D0 = diag(D).

At the end of this phase, an optional possibility is to make

one partial estimated Newton-Raphson step,

θ̂(N1) = θ(1) − a1 D
−1 (ū− u0) .

Phase 2. This is the main phase. It consists of several subphases. In

each iteration step within each subphase, Y (n) is generated

according to the the current parameter value θ̂(n) and after

each step this value is updated according to the formula

θ̂(n+1) = θ̂(n) − anD
−1
0 Z(n) (35)

where

Zk(n) = P (n)u(1− Y (n)) + (1− P (n))u(Y (n)) − u0 .

The value of an is constant within each subphase.

The number of iteration steps per subphase is determined by

a stopping rule, but bounded for subphase k by a minimum

value N−2k and a maximum value N+
2k . The subphase is ended

after less than N+
2k steps as soon as the number of steps in this
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subphase exceeds N−2k while, for each coordinate k, the sum

within this subphase of successive products Zk(n + 1)Zk(n)

is negative. If the upper bound N+
2k is reached, then the

subphase is terminated anyway.

At the end of each subphase, the average of θ̂(n) over this

subphase is used as the new value for θ̂(n) .

The value of an is divided by 2 when a new subphase is

entered. The bounds N−2k and N+
2k are determined so that

n3/4an tends to a finite positive limit.

The average of θ̂(n) over the last subphase is the eventual

estimate θ̂.

Phase 3. Phase 3 is used only for the estimation of Σ(θ) and the

covariance matrix of the estimator, and as a check for the

approximate validity of (24). Therefore the value of θ̂(n) is

left unchanged in this phase and is equal to the value θ̂ ob-

tained after last subphase of phase 2. The procedure further

is as in phase 1. The number of iterations is N3 . The covari-

ance matrix of u(Y ), required for the calculation of (27), is

estimated in the same way as D in Phase 1.

For the numbers of steps, similar values are proposed as in Snijders

(2001): N1 = 7 + 3p, N−2k = 24(k−1)/3(7 + p), N+
2k = N−2k + 200,

and N3 = 1000. The initial value of an in phase 2 is 0.1 and the

number of subphases is proposed to be 4. If the initial value θ(1)

is known to be rather close to the solution, it is advised to use

a1 = 0.01.

REFERENCES

Besag, J. (1974). Spatial interaction and the statistical analysis

of lattice systems. Journal of the Royal Statistical Society, ser.

B, 36, 192 – 225.

Besag, J. (1975). Statistical analysis of non-lattice data. The

Statistician, 24, 179 – 195.

Besag, J. (2000). Markov chain Monte Carlo for statistical

inference. Center for Statistics and the Social Sciences,



Tom A.B. Snijders 38 MCMC estimation for exponential random graphs ⇐

University of Washington, Working Paper No. 9.

Obtainable from http://www.csss.washington.edu/Papers/.

Corander, J., Dahmström, K., and Dahmström, P. (1998). Max-

imum likelihood estimation for Markov graphs. Research Re-

port 1998:8, Department of Statistics, University of Stockholm.

Crouch, B., Wasserman, S., and Trachtenberg, F. (1998).

Markov Chain Monte Carlo maximum likelihood estimation for

p∗ social network models. Paper presented at the Sunbelt XVIII

and Fifth European International Social Networks Conference,

Sitges (Spain), May 28–31, 1998.

Dahmström, K., and Dahmström, P. (1993). ML-estimation of

the clustering parameter in a Markov graph model. Stockholm:

Research report, Department of Statistics.

Doreian, P., and Stokman, F.N. (eds.) (1997). Evolution of

Social Networks. Amsterdam etc.: Gordon and Breach.

Frank, O. 1991. Statistical analysis of change in networks.

Statistica Neerlandica, 45, 283 – 293.

Frank, O., and D. Strauss. 1986. Markov graphs. Journal of

the American Statistical Association, 81, 832 – 842.

Geman, S., and Geman, D. (1983). Stochastic relaxation, Gibbs

distributions, and the Bayesian restoration of images. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 6,

721 – 741.

Geyer, C.J., and Thompson, E.A. (1992). Constrained Monte

Carlo maximum likelihood for dependent data. Journal of the

Royal Statistical Society, B 54, 657 – 699.

Gilks, W.R., Richardson, S., and Spiegelhalter, D.J. (1996).

Markov Chain Monte Carlo in Practice, London: Chapman

and Hall.

Gouriéroux, C., and Monfort, A. (1996). Simulation-based

econometric methods. Oxford: Oxford University Press.

Holland, P.W., and Leinhardt, S. (1976). Local structure in

social networks. In D. Heise (ed.), Sociological Methodology.

San Francisco: Jossey-Bass.

http://www.csss.washington.edu/Papers/


Tom A.B. Snijders 39 MCMC estimation for exponential random graphs ⇐

Krackhardt, D. (1987). Cognitive social structures. Social Net-

works, 9, 109 – 134.

Kushner, H.J., and Yin, G.G. (1997). Stochastic Approxima-

tion: Algorithms and Applications. New York: Springer.

Lehmann, E.L. (1983). Theory of Point Estimation. New York:

Wiley.

McFadden, D. (1989). A method of simulated moments for

estimation of discrete response models without numerical inte-

gration. Econometrica, 57, 995 – 1026.

Nevel’son, M.B., and Has’minskii, R.A. (1973). ”An adap-

tive Robbins-Monro procedure”, Automatic and Remote Con-

trol, 34, 1594 – 1607.

Newman, M.E.J., and Barkema, G.T. (1999). Monte Carlo

methods in statistical physics. Oxford: Clarendon Press.

Norris, J.R. (1997). Markov Chains. Cambridge: Cambridge

University Press.

Pakes, A., and Pollard, D. (1989). The asymptotic distribution

of simulation experiments, Econometrica, 57, 1027 – 1057.

Pattison, P., and Wasserman, S. (1999). Logit models and lo-

gistic regressions for social networks: II. Multivariate relations.

British Journal of Mathematical and Statistical Psychology, 52,

169 – 193.

Pflug, G.Ch. (1996). Optimization of Stochastic Models.

Boston: Kluwer.

Polyak, B.T. (1990). New method of stochastic approximation

type. Automation and Remote Control, 51, 937 – 946.

Ripley, B.D. (1987). Stochastic Simulation. New York: Wiley.

Robbins, H., and Monro,S. (1951). A stochastic approximation

method. Annals of Mathematical Statistics, 22, 400 – 407.

Robins, G., Pattison, P., and Wasserman, S. (1999). Logit

models and logistic regressions for social networks, III. Valued

relations. Psychometrika, 64, 371 – 394.



Tom A.B. Snijders 40 MCMC estimation for exponential random graphs ⇐

Ruppert, D. (1988). Efficient estimation from a slowly conver-

gent Robbins-Monro process. Technical Report no. 781, School

of Operations Research and Industrial Engineering, Cornell

University.

Ruppert, D. (1991). Stochastic approximation. In Handbook of

Sequential Analysis edited by Gosh, B.K., and P.K. Sen. New

York: Marcel Dekker.

Snijders, T.A.B. (1996). Stochastic actor-oriented models for

network change. Journal of Mathematical Sociology, 21, 149 –

172. Also published in Doreian and Stokman (1997).

Snijders, T.A.B. (2001). The Statistical Evaluation of Social

Network Dynamics. Sociological Methodology - 2001.

Obtainable from

http://stat.gamma.rug.nl/snijders/socnet.htm.

Strauss, D. (1986). On a general class of models for interaction.

SIAM Review, 28, 513 – 527.

Strauss, D., and Ikeda, M. (1990). Pseudolikelihood estima-

tion for social networks. Journal of the American Statistical

Association, 85, 204 – 212.

Tierney, L. (1994). Markov chains for exploring posterior dis-

tributions (with Discussion). Annals of Statistics, 22, 1701 –

1762.

Venter, J.H. (1967). An extension of the Robbins-Monro pro-

cedure. Annals of Mathematical Statistics, 38, 181 – 190.

Wasserman, S., and Faust, K. (1994). Social Network Analysis:

Methods and Applications. New York and Cambridge: Cam-

bridge University Press.

Wasserman, S., and Pattison, P. (1996). Logit models and

logistic regression for social networks: I. An introduction to

Markov graphs and p∗. Psychometrika, 61, 401 – 425.

http://stat.gamma.rug.nl/snijders/socnet.htm

