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let the conditional dyad probabilities be ηu,v,i,j(s, t) and the conditional edge
probabilities be θu,v,i,j. We specialize, however, by considering conditional
independent edges with probabilities θu,v,i,j to be further speci�ed as either
θi,v or ψu,j in the following two parametrizations:

• Θ = (θi,v) for 1 ≤ v ≤ n, 1 ≤ i ≤ c where θi,v = P (Yuv = 1 | Xu = i),

• Ψ = (ψu,j) for 1 ≤ u ≤ n, 1 ≤ j ≤ c where ψu,j = P (Yuv = 1 | Xv = j).

Thus an edge yuv from vertex u (sender) to vertex v (receiver) has a
probability that depends on both the block of the sender and the identity
of the receiver, or vice versa. The proposed parametrization, as given by Θ
and Ψ, can not longer explicitly model recioprocity in the network since we
assume that edges are independent.

Using the above parametrization Θ we can de�ne the conditional step (2)
as

P (Y = y | X = x) =
∏

1≤u6=v≤n

P (Yuv = yuv | Xu = xu)

=
∏

1≤u6=v≤n

θyuvxu,v(1− θxu,v)
1−yuv ,

(3)

thus obtaining

P (Y = y,X = x) = P (Y = y | X = x)P (X = x)

=
n∏

u=1

(
pxu

∏
v:v 6=u

θyuvxu,v(1− θxu,v)
1−yuv

)
.

(4)

We will refer to (4) as the sender-speci�c blockmodel (the SB-model) in the
sequel.

The parametrization proposed by Ψ = (ψu,i) for 1 ≤ u ≤ n and 1 ≤ i ≤ c
leads to the replacement of (2) with

P (Y = y | X = x) =
∏

1≤u6=v≤n

P (Yuv = yuv | Xv = xv)

=
∏

1≤u6=v≤n

ψyuv
u,xv

(1− ψu,xv)1−yuv .
(5)

We will refer to model derived using (5) instead of (3) as the receiver-speci�c
blockmodel (the RB-model) in the sequel.
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In a similar manner, we apply the EM algorithm iteratively to obtain
the estimators for the parameters in (4) when it is assumed that the group
memberships are latent. The following equations are employed:

qui = P (Xu = i | y,p,Θ) =

pi
∏

v:v 6=u

θyuvi,v (1− θi,v)1−yuv∑c
j=1

[
pj
∏

v:v 6=u

θyuvj,v (1− θj,v)1−yuv
] , (8)

where qui denotes the probabilities of the group memberships given the pa-
rameters and the observed data. This allows us to replace the log likelihood
function L(p,Θ,x) with its expectation E(L(p,Θ,x) | y). Together with
the condition

∑c
i=1 pi = 1 employed in the evaluation process of the La-

grange multipliers, the following ML estimates of the parameters can thus
be obtained:

p̂i =
1

n

n∑
u=1

qui, θ̂i,v =

∑
u:u6=v

yuvqui∑
u:u6=v

qui
. (9)

Equations (8) and (9) de�ne the EM algorithm and we iterate these equa-
tions until convergence using a stopping criterion. The resulting parameter
estimates can then be used to recover group memberships.

The statistical estimation of the parameters in the RB-model parallels the
estimation procedures for the SB-model, thus allowing us to consider both
observed and unobserved (latent) group memberships.

The paper is organized as follows. Section 2 is devoted to the estimation
of parameters in the SB-model, where the latent setting is in focus. Section 3
presents the analysis of several data sets and outlines methods for interpreting
parameters and uncovering group composition. In Section 4 we consider the
RB-model and compare it with the SB-model for one of the data sets.

2 Parameter estimation for the sender-speci�c

blockmodel

In this section we propose a parameter estimation method for the SB-model.
Our data consist of the directed graph y = (yuv) for 1 ≤ u, v ≤ n on the
set of vertices V = {1, ..., n} and the vector x = (xu)nu=1 where 1 ≤ xu ≤ c
speci�es to which of c groups vertex u belongs. The probabilistic model is
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de�ned by letting letting (Xu)nu=1 be independent, identically distributed rv's,
with P (Xu = i) = pi, 1 ≤ i ≤ c. Assuming the conditional independence of
directed edges given vertex colors and

P (Yuv = 1 | Xu = i) = θi,v,

we get, according to (4),

P (Y = y,X = x) =
n∏

v=1

c∏
i=1

pni
i θ

siv
i,v (1− θi,v)niv−siv , (10)

where ni =
∑n

v=1 I(xv = i), siv =
∑n

u=1 I(xu = i)yuv and niv = ni−I(xv = i).
It is not straightforward to test how well the SB-model �ts the data. One

possible way to do so with a given set of parameters p and Θ is to rely on
the fact that the in-degrees y·v =

∑n
u=1 yuv are independently distributed for

v = 1, ..., n. Since it holds that y·v ∼ Bin(n− 1,
∑c

i=1 θi,vpi), we have that

Q =
n∑

v=1

(
y·v − (n− 1)

∑c
i=1 θi,vpi

)2

(n− 1)
∑c

i=1 θi,vpi

is asymptotically χ2(n) distributed.
In order to estimate the model parameters, we work with the log likeli-

hood:

L(p,Θ) = lnP (y,x;p,Θ) =
n∑

u=1

∑
v:v 6=u

(yuv ln θxu,v + (1− yuv) ln(1− θxu,v)) +
c∑

i=1

ni ln pi.

Straightforward calculations produce the following ML-estimates of the
parameters:

p̂i =
ni

n
, θ̂i,v =

siv
niv

. (11)

Proposition 2.1 The mean and variance of the parameter estimates are:

E(p̂i) = pi, V ar(p̂i) =
pi(1− pi)

n
, (12)

E(θ̂i,v) = θi,v, V ar(θ̂i,v) = (θi,v − θ2
i,v)

(
(n− 2)pi + 1

(n− 1)2p2
i

+O(
1

n3
)

)
. (13)
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∂Γ

∂δi,v
= θi,v ≥ 0,

λi,v ≥ 0, δi,v ≥ 0,

λi,v(1− θi,v) = 0, δi,vθi,v = 0,

for i = 1, ..., c and v = 1, ..., n.
By solving the above equations the following maximum likelihood esti-

mates of the parameters are obtained:

p̂
(m+1)
i =

1

n

n∑
u=1

q
(m)
ui , θ̂

(m+1)
i,v =

∑
u:u6=v yuvq

(m)
ui∑

u6=v q
(m)
ui

, (16)

for m ≥ 0; i = 1, ..., c and v = 1, ..., n.
By choosing a starting point (p

(0)
1 , ..., p

(0)
c ) and (θ

(0)
i,v ) for 1 ≤ i ≤ c; 1 ≤

v ≤ n, and iterating equations (15) and (16) to convergence with the follow-
ing stopping rules (with N denoting the number of rounds required for the
algorithm to converge):

| θ̂(N)
i,v − θ̂

(N−1)
i,v |< 0.01, for i = 1, ..., c; v = 1, ..., n,

| p̂(N)
i − p̂(N−1)

i |< 0.01, for i = 1, ..., c,

We then obtain parameter estimates (p̂1, ..., p̂c), and (θ̂i,v) for 1 ≤ i ≤ c; 1 ≤
v ≤ n.

An alternative and possible better approach is the following: instead of
using arbitrary or randomly generated colors or parameter estimates, one
can use as starting points the parameter estimates obtained using (11), in
which group memberships are obtained using the pro�le likelihood method,
presented in Appendix D and then applying EM-algorithm.

2.2 The choice of the number of blocks

An important question when �tting the SB-model to data is the choice of the
number of blocks. We choose to apply two slightly di�erent model selection
criteria for selecting the number of blocks.

One is the Bayesian information criterion (BIC), given in its general for-
mulation below:

BIC(M) = −2 lnP (y | Θ̂, p̂) + VM lnN,

where
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1. N is the number of observations

2. y denotes the observed data (i.e., the adjacency matrix)

3. VM is the number of free parameters of modelM

4. Θ̂, p̂ are the ML estimates of the parameters in the latent case

Thus for our model the criterion can be written as:

BIC(Mc) = −2
n∑

u=1

ln

(
c∑

j=1

p̂j
∏
v:v 6=u

θ̂yuvj,v (1− θ̂j,v)1−yuv

)
+(cn+c−1) lnn(n−1),

(17)
whereMc denotes the SB-model with c blocks. The model with the lowest
BIC value is to be preferred.

The regularity conditions for BIC do not hold for our model since the
estimates can be on the boundary of the parameter space. However, this
criterion is still recommended in practice for the SB-model; see Picard (2007)
and Daudin et al. (2008) for discussion of the model selection criteria in the
context of mixture models.

The other closely related model selection criterion we apply is the Akaike
information criterion (AIC), which is de�ned as:

AIC(M) = −2 lnP (y | Θ̂, p̂) + 2VM.

For the SB-model it will be written as:

AIC(Mc) = −2
n∑

u=1

ln

(
c∑

j=1

p̂j
∏
v:v 6=u

θ̂yuvj,v (1− θ̂j,v)1−yuv

)
+ 2(cn+ c− 1). (18)

The formula above is then used to select the c value corresponding to the
lowest AIC value, thus giving the number of blocks.

Both BIC and AIC are partially based on the logarithm of the likelihood
function, and both introduce a penalty term for the number of free parame-
ters in the model (in the SB-model, it is cn + c − 1). However, the penalty
term for BIC is larger than for AIC; namely, BIC penalizes the number of free
parameters more strongly than AIC does. Since an increase of the number of
blocks c will lead to considerable increase of the number of free parameters in
the SB-model using BIC maybe a hindrance when considering models with
more than 2-blocks.
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3 Applications of the SB-model to social net-

works

In this section we apply our model to two data sets previously studied in
the literature: Hansell's classroom data and Krackhardt's high-tech network
data. The parametrization of the model allows us to uncover several struc-
tural characteristics which previous analyses were unable to address. The
numerical calculations required by the EM-algorithm were obtained using
the R programming language.

3.1 Hansell's friendship network

Hansell (1984) collected and analyzed data on friendship relations among 27
students, 13 boys and 14 girls, in a sixth-grade class in Baltimore, USA. Every
student was asked to rate the strength of his/hers friendship as either "like
very much","like somewhat" or "dislike". In this paper a directed friendship
relation was de�ned as when a student likes another one "very much".

These relationships are represented by a 27 × 27-dimensional adjacency
matrix, where "1" represents a (directed) friendship and "0" otherwise. While
this matrix is observed, the friendship pattern is assumed to be related to
latent group memberships, which we want to recover based on the observed
friendship structures.

Both the 2-block model and the 3-block model were �tted to the data.
Applying the model selection criteria proposed in Section 2.2 and inserting
the parameter estimates we have

c = 2 c = 3
BIC(Mc) 1024 1063
AIC(Mc) 773 685

which indicates that the 3-block model is preferred by AIC, while the 2-block
model is preferred by BIC. We choose to present both models and provide a
comparison of the results.

3.1.1 The 2-block model

We �rst explore the group structure of the classmates. Using the EM-
algorithm we obtain estimates of the relative sizes of Groups 1 resp 2:

p̂ = (0.5169, 0.4831).
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the SB-model 2-block structure, even though three vertices, 7, 14 and 25, have
changed their recovered group memberships.

Next we study the structure of the friendship pattern. We �rst classify
this pattern with respect to the recovered group memberships by providing
the following density table:

Density of directed contacts Group 1 Group 2
Group 1 0.0816 0.0824
Group 2 0.4066 0.3077

This table reveals that Group 2 mainly consists of students seeking contacts,
both within their own group and among students in Group 1. Students from
Group 1 are considerably less prone to looking for friendship contacts, both
within their own group and in the other group. The table above can be
compared with the density table below, where the classi�cation is based on
gender:

Density of directed contacts Male Female
Male 0.2663 0.1374
Female 0.1044 0.3469

We observe that in the partition obtained by gender, friendship contacts
exist mainly within each of the gender groups. Thus the partition obtained
by friendship patterns di�ers considerably from that obtained by gender.

Next, the EM-algorithm gives the following estimators of the parameter
vector Θ:

v 1 2 3 4 5 6 7 8 9 10 11 12 13 14

θ̂1,v 0.072 0 0 0.072 0.071 0.142 0.072 0 0.071 0.072 0 0 0.142 0.213

θ̂2,v 0.460 0.460 0.230 0.153 0.461 0.385 0.153 0.153 0.384 0.460 0.307 0.230 0.308 0.462

j 15 16 17 18 19 20 21 22 23 24 25 26 27

θ̂1,v 0.215 0.072 0.143 0.146 0.072 0 0.213 0.142 0 0 0.213 0.072 0

θ̂2,v 0.690 0.307 0.690 0.615 0.153 0 0.539 0.308 0.383 0.690 0.539 0 0.153

The estimated parameters (θ̂1,v) for v = 1, ..., 27 and (θ̂2,v) for v = 1, ..., 27
can be interpreted as each student's ability to attract friendship contacts from
students in Group 1 and Group 2, respectively. Using these parameters, it
is found that student No.15 is the most contact-attracting of students from
Group 1 since

θ̂1,15 = max{{θ̂1,v}v=1,...,27} = 0.215.
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Moreover, students No. 15, 17 and 24 appear to be the most contact-attracting
ones for students from Group 2 since

θ̂2,15 = θ̂2,17 = θ̂2,24 = max{{θ̂2,v}v=1,...,27} = 0.690.

All three of these contact-attracting students are female, with student No.15
being the most attractive in the entire student population.

Furthermore, observing that θ̂2,v > θ̂1,v, v ∈ {1, 2, ..., 27} \ {20, 26}, we
can conclude that the members of Group 2 are more likely to be active in
creating friendship contacts than the members of Group 1 are, which we have
already concluded, at the aggregate level, by looking at friendship densities.
Thus we can regard this as a group characteristic, telling us that people in
Group 2 tend to search friendships more actively than do people in Group 1.

3.1.2 The 3-block model

We now �t the SB-model with c = 3 groups. The EM-algorithm results in a
partition of the 27 actors into 3 groups where the estimated relative sizes of
Groups 1, 2 and 3 are, respectively:

p̂ = (0.2223, 0.4075, 0.3702),

and the recovered group memberships are:

Group 1: 1,3,4,7,8,20,
Group 2: 5,6,14,15,16,19,21,22,23,24,25,
Group 3: 2,9,10,11,12,13,17,18,26,27.

Fig.3 visualizes the Hansell's network data with the 3-block model.

The density table for the 3-block partition is:

Density of directed contacts Group 1 Group 2 Group 3
Group 1 0.2778 0.2272 0.3667
Group 2 0.0758 0.5124 0.2636
Group 3 0.0500 0.0545 0.0500

We notice that the members of Group 3 rarely seek friendship with other
students; however, they receive considerably more contacts from the other
two groups then they themselves seek. Thus we can assume that a 3-block
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partition reveals that Group 3 members are less active in showing a liking
for other students.

Comparing this 3-block partition with the previous 2-block structure, we
�nd that all the members of Group 3 belong to Group 1 in the 2-block model.
Therefore Group 3 may be regarded as a split from Group 1 in the 2-block
model.

To further understand the new group partition, we look at the gender
composition:

No. of students Male Female
Group 1 5 1
Group 2 2 9
Group 3 6 4

Group 1 consists mainly of male students, and Group 2 of female students,
while Group 3 is mixed. This feature was not revealed by the 2-block model,
where Groups 1 and 2 had an almost equal number of male and female
students. So we conclude that while in the 3-block model there exist rela-
tionships between the group partition and the attributes (the gender) of the
individual actors, such relationship can not be found in the 2-block model.
In this aspect, we think that the 3-block model shows new properties of the
network compared to properties obtained when applying the 2-block model.

3.2 Krackhardt's organizational structure

Krackhardt (1987) collected and analyzed cognitive social structure data
from a high-tech machine manufacturing company in the USA. Relation-
ships among 21 employees of the company's management team were studied
to assess interpersonal dynamics in the organization.

Data were collected by asking each sta� member to indicate to whom they
typically went for advice and help. Each person described his (or her) advice
relationships, as well the relations he (or she) perceived to exist among all
other managers. One question was "To whom would you go to seek advice at
work?". The data thus consist of twenty-one 21× 21-dimensional adjacency
matrices of ratings A1, ..., A21, one for each of the 21 sta� members.

Here we only analyze adjacency matrix y which we compiled from the
21 original matrices by only including each person's own advice relationship,
i.e., yuv = 1(0), if person u will turn (not turn) to person v for advice.
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In addition to the adjacency matrix, Krackhardt considered 4 attribute
variables, of which we use two, Age and Tenure (years of employment). In
our modeling we make use of these attributes to describe the properties of a
recovered group partition.

The data were �rst modeled using both a 2- and a 3-block model. When
�tting the 2-block model the pattern of the advice-searching by members
of Group 2 appears to be more heterogeneous than the one exhibited by
members of Group 1. In fact, there seemed to be a possible discrepancy
between Group 2 members' advice-searching within their own group and
their advice searching toward Group 1. In addition, analysis utilizing both
AIC and BIC criteria clearly showed that the 2-block did not �t data well
compared to the 3-block model. We focus on the results for the 3-block
model, and mention brie�y the the some advantages of the 3-block model
over 2-block model.

The 3-block model gives the following partition of the managers:

Group I: 1,2,6,8,11,12,13,14,16,17,
Group II: 5,10,15,18,19,
Group III: 3,4,7,9,20,21,

with the parameter estimators

p̂ = (0.476, 0.238, 0.286).

Fig.2 visualizes the Krackhardt network data with the 3-block model.
The 3-block model produces a Group I, which coincides with one of the

groups obtained using the 2-block model, while Groups II and III are the
result of splitting the other group found in the 2-block model.

We can characterize the properties of these groups in terms of the mean
(and the standard deviation) of the age and tenure of the actors, which are
given in the table below:

Mean (Standard Deviation) Age Tenure
Group I 39.6 (9.8) 13.19 (9.0)
Group II 34.8 (3.56) 6.983 (2.72)
Group III 44 (11.68) 13.306 (8.7)

We note that the two newly formed groups have di�erent characteristics.
Group II consists of members who are, on average, younger and have, on
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average, shorter tenure while Group III consists of older members with the
longest tenure. In addition, members of Group II have the smallest standard
deviation for age and tenure, thus making this group the most homogeneous
group with respect to these two characteristics.

In order to examine the contacts within and between the new groups, we
compute the density table below for the 3-block model:

Density of the directed contacts Group I Group II Group III
Group I 0.170 0.160 0.283
Group II 0.740 0.760 0.700
Group III 0.767 0.333 0.417

We conclude that the members of Group I are much less active in seeking
advice; however, more of their advice contacts are aimed toward Group III
than toward Group II. Moreover, the members of Group II are more inclined
to turn to other members for advice, both within their own group and toward
the other two groups. One possible explanation could be that this group
consists of, on average, the youngest people.

The structure of the advice pattern can now be examined at the individual
level by looking at the estimates of the edge parameters given below:

v 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

θ̂1,v 0.4 0.7 0 0.3 0.1 0.2 0.6 0.1 0.1 0.2 0.1 0 0 0.1 0 0.1 0 0.5 0 0 0.7

θ̂2,v 1 1 0.8 0.6 0.8 0.4 0.8 0.8 0.4 0.8 1 0.2 0.8 0.8 0.6 0.8 0.6 0.8 0.8 1 0.6

θ̂3,v 0.67 1 0.17 0.33 0 1 0.5 0.83 0.17 0.5 0.83 1 0 0.83 0.17 0.5 1 1 0 0.5 0.83

We observe that most of the values of θ̂2,v are higher than those for the

remaining two groups (θ̂1,v and θ̂3,v), which suggests that the contacts from
the members of Group II to other members are more likely. This coincides
with our previous conclusion that members of Group II are more active than
members from the other two groups in searching for advice.

4 The receiver-speci�c blockmodel

In this section we discuss the receiver-speci�c blockmodel (RB-model). It
is closely related to the SB-model but di�ers in that it assumes that the
probability for a directed edge from, say, vertex u to vertex v depends on the
identity of vertex u and the color of vertex v.
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4.1 Parameter estimation in a latent setting

As with the SB-model, the estimation problem becomes much more intricate
when it is assumed that group membership x is unobserved (latent) and our
data consist only of the observed network y. An application of the EM-
method, which follows the scheme described for the SB-model, provides a
two-step estimation algorithm.

Step 1: In Step 1 we calculate (qvi) for 1 ≤ v ≤ n, 1 ≤ i ≤ c using

q
(m)
vi =

p
(m)
i

∏
u:u6=v

(ψ
(m)
u,i )yuv(1− ψ(m)

u,i )1−yuv

∑c
j=1

(
p

(m)
j

∏
u:u6=v

(ψ
(m)
u,j )yuv(1− ψ(m)

u,j )1−yuv

) , (22)

which satis�es the normalizing condition
∑c

i=1 q
(m)
vi = 1.

Step 2: In Step 2 the maximum likelihood estimates of the parameters are

provided:

p̂
(m+1)
i =

1

n

n∑
v=1

q
(m)
vi , ψ̂

(m+1)
u,i =

∑
v:v 6=u yuvq

(m)
vi∑

v 6=u q
(m)
vi

, (23)

form ≥ 0; i = 1, ..., c and v = 1, ..., n. By choosing an arbitrary starting point
(p

(0)
1 , ..., p

(0)
c ) and (ψ

(0)
u,i ) for 1 ≤ i ≤ c; 1 ≤ u ≤ n, and iterating equations

(22) and (23), we obtain the parameter estimates (p̂1, ..., p̂c) and (ψ̂u,i) for
1 ≤ i ≤ c; 1 ≤ u ≤ n. The iteration stops when the di�erence between
the estimators obtained in the consecutive rounds is less than a pre-speci�ed
threshold value.

4.2 Application of the receiver-speci�c blockmodel to

social network analysis

We return to Hansell's friendship network data. We �rst explore the group
structure of the classmates by �tting the RB-model with two blocks to the
data. The EM-algorithm provides the following estimates of the relative sizes
of Group 1 resp 2:

p̂ = (0.629, 0.371).
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The color recovery (x̂1, ..., x̂27) of the network vertices is based on the analysis
of qvi, i = 1, 2, the conditional probabilities of the group membership given
the observed network:

v 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
qv1 1 .99 .99 1 1 1 1 1 .99 1 1 .98 1 0 0 0 0 0 1 1 0 0 0 0 0 1 1
qv2 0 .01 .01 0 0 0 0 0 .01 0 0 0.02 0 1 1 1 1 1 0 0 1 1 1 1 1 0 0

Using a threshold value equal to 0.98 to recover the group memberships gives
the following partition:

Group 1: 1-13,19,20,26,27,
Group 2: 14-18,21-25.

Fig.4 visualizes the Hansell's network data with the 2-block model.
The students are clearly classi�ed since there are no ambiguous members
(that is, members for which 0.02 < qv1, qv2 < 0.98), thus revealing a clear-cut
block structure.

Looking at gender composition of the groups, we observe that

No. of students Male Female
Group 1 13 4
Group 2 0 10

Now Group 2 consists of only female students, while Group 1 consists of all
the male students and four female students. This group composition is very
di�erent from that of the 2-block structure found by �tting the SB-model:
there the genders are mixed in both groups.

We now describe the structure of the friendship patterns using the group
partition above. The friendship patterns classi�ed with respect to the group
memberships are given below:

Density of directed contacts Group 1 Group 2
Group 1 0.1903 0.2176
Group 2 0.0882 0.5000

The above density table can now be compared with the density table below,
where the classi�cation is based on gender:

Density of directed contacts Male Female
Male 0.2663 0.1374
Female 0.1044 0.3469
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We observe that Group 1 members seek friendship contacts both within their
own group and toward the students in Group 2, while Group 2 members
mainly seek contacts within their own group. In the partition obtained by
gender, contacts exist mainly within each group.

Next, the EM-algorithm gives the following estimators of the parameter
vector ψ after 100 rounds:

u 1 2 3 4 5 6 7 8 9 10 11 12 13 14

ψ̂u,1 0.236 0.059 0.236 0.648 0.293 0.236 0.236 0.412 0.177 0 0 0.177 0 0.059

ψ̂u,2 0.199 0.099 0.299 0.099 0.800 0.599 0 0 0 0 0.099 0 0.199 0.599

u 15 16 17 18 19 20 21 22 23 24 25 26 27

ψ̂u,1 0 0.589 0 0 0.117 0.411 0.059 0.177 0 0 0 0 0

ψ̂u,2 0.498 0.898 0.099 0.199 0.898 0.401 0.399 0.499 0.699 0.299 0.798 0 0

The estimated parameters (ψ̂u,1) for u = 1, ..., 27 and (ψ̂u,2) for u =
1, ..., 27 measure the ability of each vertex to seek friendship contacts with
students in Group 1 and Group 2, respectively. Student 4 is the most active
student when contacts toward members of Group 1 are concerned since

ψ̂4,1 = max
u=1,...,27

ψ̂u,1 = 0.648,

and students 16 and 19 are the most active students searching for contacts
with members of Group 2 since

ψ̂16,2 = ψ̂19,2 = max
u=1,...,27

ψ̂u,2 = 0.898.

These students can thus be considered the most active in seeking contacts
with group 1 and 2, respectively.

The estimated parameters ψ̂ in the RB-model di�er from those in the
SB-model in that they indicate the ability of each member to seek contacts
with both groups instead of the ability to attract contacts from both groups.

5 Discussion

In this paper we propose novel generalizations of the classic blockmodel.
Although blockmodels provide a very useful method for explaining the prop-
erties of a network's structure such models have shortcomings because they
do not include the actors' unique characteristics. That is blockmodel tells
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us about the properties of the entire population of a network and sub-
populations but they do not tell us very much about the properties of indi-
vidual members of the population. If we want to understand variations in
the behavior of individuals, we need to supplement the global perspective
with a closer look at actors' individual characteristics.

We propose generalizations of the blockmodel by introducing probabilities
of a directed contact between two vertices that depend on the unique label
of the sender vertex and the group menbership of the receiver vertex or,
alternatively on the group membership of the sender and the unique label of
the receiver. These two models, the sender- and receiver speci�c blockmodels,
allow a more explicit model heterogenity in sending or receiving contacts,
respectively. They provide tools for describing and quantifying the variation
across individuals in the way they are embedded in "local" social structures
as given by the ego networks.

Fitting the sender-speci�c and receiver-speci�c blockmodels we are able
to model both "out" and "in" ego-nets, thus providing a �exibility which
is very advantageous since there is no a single "right" way to de�ne an ego
neighborhood for every research question. These two models allow practi-
tioners to model the individual attractiveness and the individual activeness
of the actors, respectively.
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Appendix

A Proof of equations (12)-(13)

According to (11)

p̂i =
ni

n
, θ̂i,v =

siv
niv

,

where

(Siv | Niv) ∼ Bin(niv, θi,v),

Niv ∼ Bin(n− 1, pi),

Ni ∼ Bin(n, pi).

Hence,

E(θ̂i,v) = EE(θ̂i,v | niv) = E(
1

niv

nivθi,v) = θi,v.

Furthermore,

V ar(θ̂i,v) = EV ar(θ̂i,v | niv) + V arE(θ̂i,v | niv)

= E
Nivθi,v(1− θi,v)

N2
iv

+ V ar
nivθi,v
niv

= θi,v(1− θi,v)E(
1

Niv

).

To get the expected value of the reciprocal of a binomial random variable we
use the following Taylor approximation:

1

Niv

=
1

(n− 1)pi
− [Niv − (n− 1)pi]

(n− 1)2p2
i

+
2

2!E3(Niv)
(Niv − E(Niv))

2

− 6

3!η4
i

(Niv − E(Niv))
3 .

(24)

Note that ηi is stochastic and ENiv < ηi < Niv. Therefore

E(
1

Niv

) =
1

E(Niv)
+
V ar(Niv)

E3(Niv)
− E

((Niv − E(Niv))
3

η4
i

)
=

1

(n− 1)pi
+

(n− 1)pi(1− pi)
(n− 1)3p3

i

+O(
1

n3
)

=
(n− 2)pi + 1

(n− 1)2p2
i

+O(
1

n3
),

(25)
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which implies

V ar(θ̂i,v) = E(θ̂2
i,v)− θ2

i,v = (θi,v − θ2
i,v)

(
(n− 2)pi + 1

(n− 1)2p2
i

+O(
1

n3
)

)
. (26)

B Proof of equation (14)

We want to prove the following equation:

c∑
x1=1

· · ·
c∑

xn=1

P (x | y,p,Θ)

n∑
u=1

[
ln pxu +

∑
v:v 6=u

(yuv ln θxu,v + (1− yuv) ln(1− θxu,v))

]

=
n∑

u=1

c∑
i=1

P (Xu = i | y,p,Θ)

[
ln pi+

∑
v:v 6=u

(yuv ln θi,v + (1−yuv) ln(1− θi,v))

]
.

(27)

By letting

h(u, i) = ln pi +
∑
v:v 6=u

[yuv ln θi,v + (1− yuv) ln(1− θi,v)]

and
P (x1, ..., xn) = P (x | y,p,Θ), (28)

it is enough to prove that

c∑
x1=1

· · ·
c∑

xn=1

P (x1, ..., xn)
n∑

u=1

h(u, xu) =
n∑

u=1

c∑
i=1

P (Xu = i | y,p,Θ)h(u, i).

(29)
Noting that (for u = 1, ..., n)

P (xu) =
c∑

x1=1

· · ·
c∑

xu−1=1

c∑
xu+1=1

· · ·
c∑

xn=1

P (x1, ..., xn),



B PROOF OF EQUATION (14) 25

we have

c∑
x1=1

· · ·
c∑

xn=1

P (x1, ..., xn)
n∑

u=1

h(u, xu)

=
n∑

u=1

[
c∑

x1=1

· · ·
c∑

xn=1

P (x1, ..., xn)h(u, xu)

]

=
n∑

u=1

c∑
xu=1

h(u, xu)

 c∑
x1=1

· · ·
c∑

xi−1=1

c∑
xi+1=1

· · ·
c∑

xn=1

P (x1, ..., xn)


=

n∑
u=1

c∑
xu=1

h(u, xu)P (xu)

=
n∑

u=1

c∑
i=1

P (Xu = i | y,p,Θ)h(u, i),

from which (27) follows.





D PROFILE PREDICTIVE LIKELIHOOD 27

and then

P (y | p,Θ) =
c∑

i=1

P (y, Xu = i | p,Θ)

=
c∑

i=1

[(
pi
∏
v:v 6=u

θyuvi,v (1− θi,v)1−yuv

)∏
w 6=u

c∑
j=1

(
pj
∏

v:v 6=w

θywv

j,v (1− θj,v)1−ywv

)]

=
n∏

w=1

c∑
j=1

(
pj
∏

v:v 6=w

θywv

j,v (1− θj,v)1−ywv

)
.

(31)

Using (30) and (31), the formula for q
(m)
ui is given by:

q
(m)
ui =

p
(m)
i

∏
v:v 6=u

(θ
(m)
i,v )yuv(1− θ(m)

i,v )1−yuv

∑c
j=1

(
p

(m)
j

∏
v:v 6=u

(θ
(m)
j,v )yuv(1− θ(m)

j,v )1−yuv

) , (32)

which satis�es the normalizing condition
∑c

i=1 q
(m)
ui = 1.

D Pro�le predictive likelihood

An alternative approach to recovering the latent group membership vector
x is to use the pro�le predictive likelihood method, where the likelihood
function we need to maximize is de�ned by:

Lp(x | y) = sup
p,Θ

P (y,x | p,Θ). (33)

The function can be simpli�ed by �rst calculating the ML-estimates of the
parameters based on the original likelihood function P (y,x;p,Θ), and then
plugging these estimates into Lp(x | y) in order to get an expression for the
pro�le predictive likelihood.

We recall that, in the case that both the edge structure and the vertex
colors are known, the ML-estimate for the parameters in the directed SB-
model are:

p̂i =
ni

n
, θ̂i,v =

siv
niv

.
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By plugging these expressions into (33) we get the following formula for the
pro�le likelihood function:

Lp(x | y, p̂, Θ̂) =
n∏

u=1

(
p̂xu

∏
v:v 6=u

θ̂yuvxu,v(1− θ̂xu,v)
1−yuv

)

=
n∏

u=1

( 1

n

n∑
v=1

I(xv = xu)
∏
v:v 6=u

(∑
w:w 6=v ywvI(xw = xu)∑

w 6=v I(xw = xu)

)yuv
(

1−
∑

w:w 6=v ywvI(xw = xu)∑
w 6=v I(xw = xu)

)1−yuv)
.

(34)

The partition of vertices into c groups can now be carried out by maximizing
Lp(x | y, p̂, Θ̂) thereby selecting the vector x, which provides the highest
pro�le likelihood function value. The direct maximization can be carried out
by enumerating Lp(x | y, p̂, Θ̂) for all possible 2n values of x. This operation
is, however, very time-consuming since, even for moderate values of n, the
number of enumerations is very large.

An alternative approach for n values so large that the enumeration ap-
proach is impractical could be to �rst generate a random starting point for
the color vector, and then do the following iteration: we maximize (34) as
a function of xu ∈ {1, ..., c} for each u = 1, ..., n, when all the coordinates
(x1, ..., xn) are updated. We repeat this process for a new round, and max-
imize (34) as a function of xu for each u. The algorithm stops when the
updating of the x values no longer increases the likelihood function (34).
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E The �gures and outputs

Figure 1: Hansell's friendship data: 2-block model
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Figure 2: Hansell's friendship data: 3-block model
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Figure 3: Krackhardt's high-tech managers data: 3-block model
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