Examples for GCC Workshop: Writing your GRFP Personal Statement

Prompt: Please outline your educational and professional development plans and career goals. How do you envision graduate school preparing you for a career that allows you to contribute to expanding scientific understanding as well as broadly benefit society? Page limit - 3 pages

Describe your personal, educational and/or professional experiences that motivate your decision to pursue advanced study in science, technology, engineering or mathematics (STEM). Include specific examples of any research and/or professional activities in which you have participated. Present a concise description of the activities, highlight the results and discuss how these activities have prepared you to seek a graduate degree. Specify your role in the activity including the extent to which you worked independently and/or as part of a team. Describe the contributions of your activity to advancing knowledge in STEM fields as well as the potential for broader societal impacts.

NSF Fellows are expected to become globally engaged knowledge experts and leaders who can contribute significantly to research, education, and innovations in science and engineering. The purpose of this statement is to demonstrate your potential to satisfy this requirement. Your ideas and examples do not have to be confined necessarily to the discipline that you have chosen to pursue.

Example 1: I am an ideal candidate for this fellowship program. I am curious, driven, and passionate about geology. I possess the intellectual merit and commitment to broad impact that this program requires.

Example 2: That summer I worked as a field assistant in the western Himalaya under Prof. Oliver Jagoutz and his student Ben Klein, with funding from the MIT-India program. We surveyed the Khardung volcanics for sample sites for a paleomagnetic study. We took cores from three sites [1]. The results have now been used to constrain the rate of the Indo-Asian collision [2]. My notebook from that trip is full of lines like “Why are the granite slopes so steep here?” or, “How do streambeds form in these mountains of colluvium?”.

Example 3: My junior summer I took a fluid-dynamics focused internship at Shell’s Technology Center in Bangalore. The summer had a difficult start. Visa problems forced me to fly back to the US after only three days in India. To prepare for my project while waiting for paperwork, I learned C#.

Example 4: Over my first two years at MIT, I worked in an astrophysics lab. There, I calibrated a prototype x-ray polarimeter and successfully tripled the machine’s throughput. During my sophomore year at MIT I switched my major from Physics to Geology. My first geoscience research project began immediately afterwards, in January 2013 . Under Prof. Leigh Royden. I built a 3D model to predict the flow of material under the Tibetan Plateau. We estimated that modern topography could only be formed if the lower-crustal viscosity was less than 1017Pa · s.

Example 5: Earth Science crossed my intellectual horizons in my second year at MIT. I was then majoring in Physics and working in an astrophysics lab, where I calibrated a prototype x-ray polarimeter. I enjoyed working with optics, and successfully tripled the machine’s throughput, but I had started to lead hikes with the MIT Outing Club and wanted to learn what was under my feet. I took Introductory Geology and have been captivated by geoscience ever since.

My first geoscience research project began immediately afterwards, in January 2013 . Under Prof. Leigh Royden. I built a 3D model to predict the flow of material under the Tibetan Plateau. We estimated that modern topography could only be formed if the lower-crustal viscosity was less than 1017Pa · s. This project introduced me to fluid dynamics simulations and to Matlab.