The Status and Future of Carbon Capture and Storage

Edward S. Rubin
Department of Engineering and Public Policy
Department of Mechanical Engineering
Carnegie Mellon University
Pittsburgh, Pennsylvania

Presentation to the
Brookings Institution Coal Task Force
Washington, DC
May 5, 2015

Outline of Talk

• Why the interest in CCS?
• A brief history of the technology
• Current status: globally & US
 – Large-scale projects
 – Small-scale projects + R&D
• Future outlook: policy, policy, policy
• Closing thoughts to consider
Why the Interest in CCS?

- CCS is the ONLY way to get large CO\textsubscript{2} reductions from fossil fuel use—a potential bridging strategy
- CCS also can help decarbonize the transportation sector via low-carbon electricity and hydrogen from fossil fuels
- Energy models show that without CCS, the cost of mitigating climate change will be much higher:
 - IPCC scenarios for 2 deg C: without CCS, mitigation cost increases an avg of 140%; vs. 7% no nuke, 6% limited wind and solar; 64% limited bioenergy.

A Brief History

- Integrates 3 major components: capture, transport and storage
- Capture widely used in industrial processes; for coal it requires removal of CO\textsubscript{2} from either flue gas (post-comb) or fuel gas. Done at small scale since 1970s.
- Pipeline transport: 4000 miles, transporting 67 Mt/yr
- Geological storage: Sleipner since 1990s; US now 10 Mt stored; Gorgon = biggest underway (~3-4 Mt/y)
Status of CCS Technology

• Globally: 22 projects operating or u/c
 – Xx power plants; yy industrial processes; zz storage only
 – 55 projects total: 27 in Americas, 11 in China, 9 in Europe, 2 in Gulf, 6 in rest of world

• U.S.: 6 large demo projects planned or u/c
 – 4 power plants (1 PC, 3 IGCC), 2 industrial processes

Key Barriers to CCS Deployment

• Policy
• Policy
• Policy

Without a policy requirement or strong incentive to reduce CO₂ emissions significantly, there is no reason to deploy CCS widely
Climate Policy will be a Key Determinant of Future Coal Markets

- **Scenario 1**: Business as usual with no new controls on carbon emissions
- **Scenario 2**: A pathway to stringent (80%) CO2

Policy options that can foster CCS and technology innovation

<table>
<thead>
<tr>
<th>Direct Gov’t Funding of Knowledge Generation</th>
<th>Direct or Indirect Support for Commercialization and Production</th>
<th>Knowledge Diffusion and Learning</th>
<th>Economy-wide, Sector-wide, or Technology-Specific Rgs and Standards</th>
</tr>
</thead>
<tbody>
<tr>
<td>• R&D contracts with private firms (fully funded or cost-shared)</td>
<td>• R&D tax credits</td>
<td>• Education and training</td>
<td>• Emissions tax</td>
</tr>
<tr>
<td>• Intramural R&D in government laboratories</td>
<td>• Patents</td>
<td>• Codification and diffusion of technical knowledge (e.g., via interpretation and validation of R&D results; screening; support for databases)</td>
<td>• Cap-and-trade program</td>
</tr>
<tr>
<td>• R&D contracts with consortia or collaborations</td>
<td>• Production subsidies or tax credit for firms bringing new technologies to market</td>
<td>• Technical standards</td>
<td>• Performance standards (for emission rates, efficiency, or other measures of performance)</td>
</tr>
<tr>
<td></td>
<td>• Tax credits, rebates, or payments for purchasers/users of new technologies</td>
<td>• Technology/Industry extension program</td>
<td>• Fuels tax</td>
</tr>
<tr>
<td></td>
<td>• Gov’t procurement of new or advanced technologies</td>
<td>• Publicity, persuasion and consumer information</td>
<td>• Portfolio standards</td>
</tr>
<tr>
<td></td>
<td>• Demonstration projects</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Loan guarantees</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Monetary prizes</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Source: NRC, 2010

E.S. Rubin, Carnegie Mellon
What is the Outlook for CCS Costs?

• Sustained R&D is essential to achieve lower costs; but...
• Learning from experience with full-scale projects is equally critical.
• Strong policy drivers that create markets for CCS are needed to spur innovations that significantly reduce the cost of capture.

Thank You

rubin@cmu.edu