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Executive Summary 

The phenomenon of unit cost reduction associated with increased production (learning-by-
doing) has long been documented for manufactured products. In recent decades this has 
been extended to energy. The most common approach for characterizing this relationship is 
the use of a log-linear experience curves (or learning curve) relating reductions in the unit 
cost of a technology to its cumulative production or installed capacity. This model 
formulation also has become a common method of representing endogenous technical change 
in energy-economic models used for policy analysis.  

Yet, there are significant uncertainties in the underlying drivers of technological change, and 
the “proper” formulation of an experience curve (e.g., the appropriate equation, shape, and 
parameters of an experience curve). Thus, there is uncertainty in how best to use learning 
curves for making projections and analyzing policy scenarios.  

In this report, we review theory of technological change and the underlying drivers for cost 
reduction reported in the literature. We conducted a comprehensive literature review for eleven 
power generation technologies including fossil-based power plants and renewable electric 
technologies. The results are summarized in Table ES-1 below.  

 

Table ES-1: Summary of studies characterizing historical learning rates for electric power 
generation technologies. 

 Technology  
Number 
of studies 
reviewed 

Number 
of studies 
with one 

factor 

Number 
of studies 
with two 
factors 

Range of 
learning rates 

for “learning by 
doing” (LBD)  

Range of rates 
for “learning by 

researching” 
(LBR)  

Years 
covered 

across all 
studies 

Coal* 
PC  2 2 0 5.6% to 12% 1902-2006 

IGCC 1 1 0  2.5% to 7.6% Projections 
Natural Gas* 8 6 2   -11% to 34%  2.38% to 17.7% 1980-1998 
Nuclear 4 4         0 <0 to 6% 1975-1993 
Wind (on-shore) 35 29 6  -3% to 32%  10% to 26.8% 1980-2010 
Solar PV 24 22 2  10% to 53% 10% to 18% 1959-2001 
BioPower 

Biomass production 4 4 0  12% to 45% 1971-2006 
Power generation** 7 7 0  0% to 24% 1976-2005 

Geothermal power 3 0 0 1980-2005 
Hydropower 3 0 2  0.48% to 11.4%  2.63% to 20.6% 1980-2001 

              

*Does not include plants with CCS.   **Includes combined heat and power (CHP) and biodigesters.
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1 Introduction 
The Electric Power Research Institute (EPRI) has developed the US Regional Economy, 
Greenhouse Gas and Energy (US-REGEN) model to assess the effects of various climate, energy 
and environmental policies on the electric power sector, the overall energy system, and the overall 
economy of the United States. Understanding how the performance and cost of energy supply 
technologies change over time is of key importance for analysts and decision-makers concerned 
with the future evolution of the U.S. energy system. Studies over the past several decades have 
documented how the costs of various energy technologies have evolved in the past. Based on 
historical data, various types of “learning curves” (or experience curves) have been proposed to 
relate the cost of a technology to key parameters such as cumulative installed capacity, R&D 
spending levels, as well as factors such as economies of scale, market structure, among others. 

1.1 Scope and Objectives of This Study 
In the context of the preceding discussion, the objectives of this study are to: (1) conduct a 
comprehensive literature review of technology learning models applicable to electric power 
generation technologies; (2) characterize the state of the art and key findings stemming from that 
literature review; (3) review and characterize other large-scale computer models that incorporate 
technology learning; and (4) from that review, draw lessons and insights potentially applicable to 
the development and use of EPRI’s REGEN model. In particular, the focus of this study is on 
learning curves applicable to the following power generation technologies:  
 

 Pulverized coal (PC) plants with and without carbon capture and sequestration (CCS)  

 Integrated gasification combined cycle (IGCC) plants with and without CCS  

 Natural gas combined cycle (NGCC) plants with and without CCS 

 Natural gas-fired combustion turbines  

 Dedicated biomass plants  

 Nuclear plants (third-generation) 

 Conventional hydroelectric plants  

 Geothermal plants  

 On-shore and off-shore wind turbines  

 Solar photovoltaic (PV) and concentrating solar thermal plants (CSP).   

1.2 Organization of Report 
Section 2 of the report next reviews the theory of technological change and some of the model 
forms that are suggested. Then, Section 3 presents the results of our literature review of learning 
curves applicable to the electricity supply technologies listed in Section 1.1. In Section 4 we 
discuss the ways in which learning curves of some type have been incorporated into other large-
scale energy-economic models, and their influence on key results. Finally, Section 6 summarizes 
our overall conclusions and recommendations. 
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2 Theory of Technological Change 

In macroeconomic growth theory, neoclassical growth models such as Solow’s (Solow 1956) 
originally treated technical change exogenously, that is, independent of other factors or variables. 
However, this assumption leaves a large component of observed growth unexplained. An 
alternative formulation proposed by Romer (Romer 1986), and since followed by much of the 
technological change literature, suggests that technological change needs to be modeled 
endogenously, namely as a function of public and policy choices.  

A parallel discussion emerged in recent years in the energy modeling literature. Technological 
change, i.e., the adoption of new more efficient technologies to provide (energy) services, is key 
for the world to move toward sustainable, low carbon, energy systems. Policy makers around the 
world have been using different policy instruments, such as R&D funding and other deployment 
incentives (such as feed-in tariffs, green certificates, and other mechanisms) in order to promote 
such sustainability transitions. However, there is still large uncertainty on the degree to which 
different policies induce technological change.  Historically, many of the energy technologies we 
use today have evolved over time: improvements in manufacturing and in efficiency led to a 
decline in production costs. As consumers and producers gain experience with technologies, their 
technical and economic performance increases (Yeh & Rubin 2012; Junginger et al. 2010).  

Grubb and Kohler (Grubb & Köhler 2002), suggest that “exogenous technological change” occurs 
when “technical change is incorporated as an exogenous variable: it is reflected through specific 
assumptions entered as data about improved efficiency and declining costs of certain kinds of 
technologies through time.” For energy modeling this is a key assumption. Thus, “exogenous 
technological change” suggests that technical change is mainly an autonomous process: that it just 
happens in ways that do not depend upon other policy or economic variables.” Modeling 
technological change in this form can be interpreted as meaning that the technological change will 
arise from sources that are largely unresponsive to policies (Cohen 1995; Clarke et al. 2006; 
Klepper & Simons 2000).  

However, as also mentioned by Grubb and Kohler (Grubb & Köhler 2002), “in the wider literature 
on technical change, it is acknowledged that [technological change] is not an autonomous process: 
it occurs as a result of identifiable processes, such as government research and development, 
corporate technology investment, and economy-of-scale effects. In reality, a great deal of technical 
change is led by the private sector and is induced in response to government policies, market 
conditions, investment, and expectations. In modeling terms, therefore, technical change really 
should be endogenous, i.e., dependent upon other parameters reflected within the model.” 

The key goal of modeling endogenous technological change is to understand how technology 
changes as a function of policies promoting technology diffusion and cost reductions, or providing 
R&D funding (Clarke et al. 2006). Endogenous technological change models also seek to 
understand the importance of cost reductions or technology components in one sector as function 
of the cost reductions of that same component in other sectors, that is, understanding “spillover” 
effects.  
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Some authors in the environmental policy and innovation area take the approach of categorizing 
environmental policy instruments as being either “technology-push” or “demand-pull”. 
Technology-push policy instruments are those that “influence the supply of new knowledge” while 
“demand-pull” instruments “affect the size of the market for a new technology” (Taylor 2008). 
This taxonomy was used in the innovation literature in the past and, according to Taylor (Taylor 
2008), has gained popularity in recent years in both academia and professional policy circles, 
although it may not provide the best and most useful characterization of the diversity of policies 
affecting environmental systems.  

Figure 1 illustrates pathways for technological changes that affect cost reductions for a specific 
technology. The figure also shows how changes in other technologies and components may 
contribute to changes in the technology under study. The next section describes in detail various 
types models that have been used to examine the effects of these drivers on technology cost 
reductions. 

 

Figure 1: Pathways for technological change. 

2.1 One Factor Experience Curves: Learning-by-Doing  

There is a large literature that has empirically observed a relationship between unit costs of 
production and cumulative production across numerous technologies and products. The 
relationship has been referred to as an “experience curve” or “learning curve” and has been shown 
to generally take the following generic form (Arrow 1962):  

Y = axb       Equation 1 

where: 

Processes Leading to Technological Change

Targeting directly the technology/component under study:

Technology diffusion with no 
policies 

Feed‐in tariffs, green certificates, 
etc.

NO POLICY

DEMAND‐PULL

Targeting directly the other technology/component than the 
one under study

Changes in technology 
production costs

“Learning by doing”(LBD)

(Public and Private) R&D funding
SUPPLY‐PUSH

Technology diffusion with no 
policies 

Feed‐in tariffs, green certificates, 
etc.

NO POLICY

DEMAND‐PULL

Changes in other 
technology production 

costs

“Learning by doing”(LBD)

(Public and Private) R&D funding
SUPPLY‐PUSH

Direct 
spillover 
effects
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Y  = unit cost of production;  
x  =  cumulative experience (which in the energy innovation literature is typically represented by 

cumulative installed capacity or cumulative energy production);  
a =  unit production cost of the first unit; and  
b  =  a constant capturing the rate of cost reduction.  
 

The initial cost of production, Yo , can then be expressed as . The production costs when 

the cumulative production is doubled is given by . This means that the cost reduction 

associated with a doubling of production is given by:  

                                     Equation 2 

The learning rate is defined as the rate at which the per-unit cost of a technology is expected to 
decline with every doubling of cumulative production. The factor 2b is called the progress ratio, a 
parameter also commonly reported in the literature. Numerically it is simply equal to (1 –LR). 

The original derivation of this model form reflected the phenomenon called “learning by doing” 
(LBD). However, it is often argued that the statistical correlations between a reduction in unit cost 
and the cumulative installed capacity of an energy technology offers little explanation for the 
underlying factors and processes of technological change. There is also no inference in the 
causality between these two variables (Clarke et al. 2006; Ferioli et al. 2009; Gillingham et al. 
2008; Nordhaus 2009). Despite several decades of research, our understanding of the factors that 
contribute to technological change and cost reductions is still rather limited. Various theories have 
been proposed to explain observed reductions in unit cost as cumulative output increases. 
Generally, they fall into three categories: (1) costs fall due to changes in production that include 
process innovations, worker familiarity in the use of tooling, improved management, and 
economies of scale; (2) costs fall due to changes in the product itself including product innovations, 
re-design and standardization; and (3) costs fall due to changes in input prices (Yeh & Rubin 
2012).  While intuitively satisfying, most of these explanations are only qualitatively descriptive 
and provide little quantification of the direct relationships or contributions of each factor to overall 
learning or cost reductions.  

Some researchers suggest that the overall learning rates derived from empirical experience curves 
many over-estimate the actual contribution of true learning-by-doing (Jamasb 2007; Clarke et al. 
2006; Nordhaus 2009), as these models do not account for R&D spending (Cohen & Klepper 
1996; Jamasb 2007; Clarke et al. 2006), knowledge spillovers (Clarke et al. 2006), increased 
capital investments (Cohen 1995; Klepper & Simons 2000) economies-of-scale (Sinclair et al. 
2000; G. Nemet 2006; Yeh & Rubin 2007), the effect of other public policies (Söderholm & 
Sundqvist 2007; Söderholm & Klaassen 2007), and the effect of changes in input prices. A 
particular concern is that models that “miss critical pathways or ascribe influence inappropriately 
could potentially arrive at erroneous, incomplete, or misleading policy conclusions” (Nordhaus 
2009). These concerns have led to the development of other learning models that incorporate 
multiple parameters. 

Y0  a(x0 )b

Y  a(2x0 )b

Y0 Y

Y0

 a(x0 )b  a(2x0 )b

a(x0 )b
1 2b  Learning Rate
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2.2 Two-Factor Experience Curves: Learning-by-Doing and Learning-
by-Researching 

To take into account additional factors that contribute to changes in technology production costs, 
alternative models have been developed. “Two-factor learning curve” models describe a 
relationship in which cumulative R&D expenditures as well as cumulative production or capacity 
are assumed to be the main drivers of technology cost reductions (Jamasb 2007). While it is 
widely accepted that both public and private R&D can contribute to such cost reductions, this area 
of research often includes only public R&D spending, as private R&D data is generally not 
available publicly.  

R&D contributes to an expanded knowledge base, which in turn can stimulate further 
technological innovation, cost reductions, and technology diffusion. The relative importance of 
these two factors may vary, depending on the stage of product development: R&D and learning-
by-researching (also called learning-by-searching) may play a larger role at early stages of 
development, while learning-by-doing may dominate as the product or technology matures. The 
model of Equation 1 can be expanded to include the effect of R&D, as shown in Equation 2: 

      Equation 3 

Using a logarithmic transformation this can be simplified to: 

    Equation 4 

where:  
blbd  = learning-by-doing parameter 
blbr  = learning-by-researching (R&D) parameter 
R&D  = cumulative R&D investment or knowledge stock 

  = specific cost at unit cumulative capacity and unit knowledge stock. 

Several researchers have performed empirical work testing this formulation (Söderholm & 
Sundqvist 2007; Jamasb 2007; Klaassen et al. 2005; Söderholm & Klaassen 2007). Jamasb 
(Jamasb 2007) examined the impact of R&D spending on technology cost reductions using 
estimates of the combined government and private R&D expenditures in the UK. This model was 
coupled with cumulative installed capacity data (representing learning-by-doing) for twelve power 
generation technologies for the period 1980–2001. The study included mature technologies (e.g., 
pulverized coal plants, natural gas combined cycle gas plants, large hydropower), reviving 
technologies (e.g., new combined cycle plants, combined heat and power, small hydropower), 
evolving technologies (e.g., nuclear power and wind power) and emerging technologies (e.g., solar 
thermal power and offshore wind turbines). R&D expenditures were estimated from a broad 
survey of sources including government R&D databases, R&D expenditure estimates for 
specialized companies, plus several indirect methods of estimating private R&D investments. The 
results show that the importance of R&D versus learning-by-doing varied across the different 

log(Y )  blbd log(x) blbr log(R & D)

Y  a ( x 0 ) 
b l bd b ( R & D )b lb r
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categories of technology; but in general, R&D contributed more to cost reductions than learning-
by-doing in all stages of technological development. In addition, the study found very little 
elasticity of substitution between the two factors, i.e., R&D expenditure and capacity expansion 
were distinctly different and non-interchangeable. However, other studies also found significant 
correlations between time-lagged cost reductions and cumulative R&D expenses and/or R&D-
based knowledge stock (Söderholm & Sundqvist 2007; Jamasb 2007; Klaassen et al. 2005; 
Söderholm & Klaassen 2007).  

2.3 Three-Factor or Multi-Factor Learning Curves 

Several studies have used regression analysis or decomposition techniques to estimate unit cost 
reductions for a technology as a function of several explanatory variables beyond capacity 
installed and R&D. Such studies include factors such as economies-of-scale (Söderholm & 
Sundqvist 2007; G. Nemet 2006; Joskow & Rose 1985), input prices for materials (Söderholm & 
Sundqvist 2007; G. Nemet 2006; Joskow & Rose 1985), labor costs (Joskow & Rose 1985), 
efficiency improvement (G. Nemet 2006; Joskow & Rose 1985), among others. Not surprisingly, 
these studies typically find smaller learning rate impacts for cumulative installed capacity 
compared with studies using the one-factor learning curve.  Multi-factor models of this type offer 
improved explanations of the processes that contribute to cost reductions for the technology under 
study. Thus, they provide greater precision in projecting the effect of a given factor change on the 
future cost of that technology. 

2.4 Component-Based Learning Curves 

Component-based learning curves are essentially an extension of the one-factor model, in which 
the overall cost of a technology at any given point is given by the sum of the costs of individual 
components or sub-systems of the technology. Thus:  

                   Equation 5 

 where:  
 n   = a given technology component 
 an  = specific cost at unit cumulative capacity for cost component n 
 bn  = learning parameter characterizing cost component n.  

In this model, the capacity or experience base, x, is usually a projected future value rather than an 
observed historical value. This method of estimating the future cost of a technology has been 
applied to cost projections for several types of power plants with carbon capture systems (Rubin et 
al. 2007), as well as to micro-cogeneration of heat and power (Weiss et al. 2010). In each case, the 
overall plant is disaggregated into a number of sub-sections (such as boilers, gasifiers, and air 
pollution control systems for power plants). The cost of each sub-section is then projected based 
on the historical learning rate for the same or similar technology components. The future cost of 
each component (after some specified increment of cumulative capacity) is then summed to obtain 

Y  anxbn

i1

n
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the future cost of the overall plant. The rationale for this approach is that for complex technologies 
like a coal-fired power plant, different components are currently at different levels of maturity. 
Thus, the cost of newer components like a carbon capture system may fall more rapidly than the 
cost of mature component like boilers or steam turbines. 

Another type of component-level learning model (Ferioli et al. 2009) projects the cost of 
technology based on learning versus non-learning for different types of costs. Here, some cost 
components such as raw materials and labor may experience no learning or even become more 
expensive over time.  

2.5 Models with Exogenous Technological Change and Other Factors 

Other recent approaches to modeling technological change incorporate time in the experience 
curve formulation so as to explicitly separate the effect of true learning from that of progress that 
may occur exogenously over time (Ferioli et al. 2009; Papineau 2006; Jamasb 2007; Nordhaus 
2009). Such an approach argues that there is a constant rate of exogenous technological change 
that is independent of learning-by-doing, such as inter alia spillovers from outside the industry, 
returns to research and development, economies of scale or scope and exogenous fundamental 
inventions, and changes in the price of materials or labor. The incorporation of these factors 
implies a much smaller rate of true learning for a technology (Nordhaus 2009). To date, this model 
has been tested only at a high level of technological aggregation (economic sectors). As with other 
multi-variate formulations, empirical data to develop and test such models for specific 
technologies (or classes of technology) is currently limited or unavailable. 

2.6 Endogenous Learning-Diffusion Models 

A recent direction of the learning literature has been the integration of diffusion and learning 
model, the so-called endogenous learning-diffusion model (Barreto & Kypreos 2004; Ferioli & 
van der Zwaan 2009; Jamasb 2007; Söderholm & Klaassen 2007). This approach accounts for the 
fact that reductions in unit cost can increase the diffusion and adoption of a technology in the 
marketplace (Jamasb 2007), thus capturing the causality effects that the simple learning curve 
models do not capture. In turn, faster adoption of the technology may stimulate higher learning 
rates. This approach provides a greater ability to explain changes in the learning rate over time (or 
with cumulative production), controlled by the rates of growth and cost reduction.  

For example, Jamasb (2007) attempted to endogenize the two-factor learning equation (cumulative 
R&D and cumulative capacity) by allowing cumulative capacity to be a function of two variables: 
cost of technology and time. Statistical analysis on a wide range of electric technologies ranging 
from mature to evolving showed that unit cost reductions for some technologies increased their 
market diffusion and adoption. Similarly, Soderholm and Klaassen (2007) examined wind power 
in Europe from 1986-2000 and found that "reductions in investment costs have been important 
determinants of increased diffusion of wind power, and these cost reductions can in turn be 
explained by learning activities and public R&D support." The study suggests that innovation and 
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cost reductions are a necessary condition for the diffusion of wind power, and vice versa. However, 
there are many more important factors that contribute to diffusion than cost reduction alone. For 
example, policies such as price subsidies and fixed feed-in tariffs were observed to be more 
effective in promoting diffusion than cost reduction alone. However, a major obstacle to the use of 
this type of model, as pointed out by Soderholm and Klaassen (2007), is the difficulty (and 
potential error) that can be introduced by using an estimated econometric model found suitable for 
one time period and using it to make predictions for another period. 

2.7 Spillover Effects 

Spillover effects in the learning literature refer to the direct and indirect benefits of technology 
deployment, R&D expenditures, and other factors on reducing the cost of a technology (or in a 
particular region) other than the one that was targeted. Direct spillovers occur when deployment 
and/or R&D in other geographic locations drive cost reductions for a given technology in a 
different region of interest. Direct spillover also can occur in the form of “knowledge spillover” 
when deployment and/or R&D in technology Y affect the cost of technology Z (Clarke et al. 2006; 
G. Nemet 2011). Indirect spillovers result when R&D spending or technology Y occurs as a 
response to R&D spending on technology Z (Clarke et al. 2006). 

There is a large literature documenting the evidence for knowledge spillover between industries 
and sectors, including semiconductors, manufacturing, and the food industry. In the power sector, 
Yeh et al. (Yeh et al. 2005) examined technology innovation and experience curves for NOx 
emission control technologies in coal-fired power plants and found clear evidence of knowledge 
spillover between countries that resulted in global cost reductions for these technologies of interest. 
Using a patent analysis, Yeh et al. also found that the United States was able to meet more 
stringent environmental regulations by acquiring or licensing patents on mature high-efficiency 
selective catalytic reduction (SCR) technologies developed in Japan and Germany—countries that 
adopted stringent NOx emission restrictions 10-20 years earlier than the United States (Yeh et al. 
2005). That study did not examine the potential contribution to SCR cost reductions from 
applications in other settings, such as non-utility oil-fired and gas-fired facilities. This was due in 
part to data limitations, but also because many of the designs and technical problems associated 
with coal-fired plants (such as high-fly-ash loadings and trace contaminants that can poison SCR 
catalysts) do not apply in these other facilities. To the extent that any spillover effects from these 
other SCR markets also benefited coal-fired plants, the learning rates derived in the 2005 study 
would decline slightly as the experience base (cumulative capacity) was expanded. 

2.8 Cluster Effects  

In the context of this report, cluster learning refers to the case where several power generation 
options share a major component technology, which is itself subject to learning. For example, 
Seebregts et al. (Seebregts et al. 1999) identifies some eleven technologies that all share a gas 
turbine component, including integrated coal gasification power plants, combined cycle fuel cell 
power plants, and combined heat and power (CHP, also known as co-generation) plants. Thus, 
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technological learning in any of these applications is assumed to benefit all other applications that 
utilize the same component. Seebregts et al. conclude that this type of “cluster feature” improves 
the internal consistency of models and incorporates some of the mechanisms identified in 
technology dynamics studies. A number of studies and models have used the cluster concept in 
studies of technological learning. The National Energy Modeling System (NEMS), used by the 
U.S. Department of Energy’s Energy Information Administration, has twenty-one technology 
components for which learning rates vary as a technology component goes through different 
stages: revolutionary, evolutionary, and mature. More detailed reviews of the treatment of 
clustered learning in these models are included in Section 4 of this report.  

2.9 When Does Learning Start? 

Most empirical learning curve studies for power generation technologies employ a functional form 
that yields a decreasing cost trend with cumulative installed capacity or cumulative electricity 
generation. However, in some studies, it has been found that the cost of a technology initially 
increases as a function of cumulative capacity. Several possible explanations are offered.  One is 
that costs may rise initially due to a lack of competition or other market factors.  Another is that 
the technology in question is not yet able to meet its design criteria and thus requires modifications 
that increase costs. For example, Yeh and Rubin (Yeh & Rubin 2012), argue that:  

“… for many large-scale technologies such as power plants and their environmental control 
systems, initial cost estimates for new technologies based on experience from smaller-scale 
projects or pilot plants are typically lower than the costs subsequently realized for the initial 
set of full-scale commercial plants. Thus, costs often increase rather than decrease in the 
early phase of commercial deployment. The reasons for such increases are typically linked to 
shortfalls in performance and/or reliability resulting from insufficient data for scale-up and 
detailed design, or from new problems that arise during full-scale construction and operation.” 

There are a few empirical studies demonstrating initial cost increases. For example, Colpier and 
Cornland (Colpier & Cornland 2002) show that for natural gas combined cycle (NGCC) systems, 
the costs increased as function of cumulative capacity from 1981 to 1991, followed by a more 
traditional decline. Similarly, Ibenholt (Ibenholt 2002) also found initial negative learning rates 
(i.e., progress ratios higher than 100%) in the case of the first German wind power units. More 
recently, Yeh and Rubin (Yeh & Rubin 2012) found a similar pattern when assessing the early 
changes in capital cost and annualized operating and maintenance (O&M) costs of wet limestone 
flue gas desulfurization (FGD) systems for a standardized new coal power-plant. The authors also 
identified an initial increase in the capital cost and total levelized cost of selective catalytic 
reduction (SCR) systems for standardized new coal plants. 

Thus, the question of when “learning” (i.e., cost reductions) begins is a critical issue, which is 
handled in different ways by different analysts and modeling groups. Most importantly, the 
discussion above indicates that the common assumption that costs always decline with experience 
(or technology deployment) is not always correct, and can lead to erroneous projections.   
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2.10 Limitations of Current Learning Models 

The use of single-factor experience curves for forecasting or modeling future cost trends in 
energy-related technologies is beset by a number of other uncertainties. While learning curves 
explain how a technology has evolved in the past, they provide very limited insight concerning 
how the technology is likely to evolve in the future. The application of historical learning curves 
for certain technologies to new or different technologies being developed is arguably even more 
uncertain. Finally, the question arises of whether there is a “best” functional form of an experience 
curve for a selected technology. That is, does the learning rate remain constant over time, or does 
it change over the modeling period? Do costs always decline, or might they also increase and if so, 
why, when or how? Because there are still no definitive answers to such questions, it is important 
to recognize that these are sources of uncertainty that can significantly influence the results of 
energy-economic models.  

Similar uncertainties affect multi-factor learning models. For example, uncertainties at the 
component level lead to system-level uncertainties. Thus, the same set of issues and limitations 
arise as when using the one-factor learning curve, i.e.: when does learning begin (and end)? What 
is the appropriate learning rate or progress ratio? What other factors will lead to cost changes 
besides installed capacity, and what are the implications of not including those factors explicitly in 
these models? What is the appropriate measure of capacity or experience? The latter question, in 
turn, raises the additional issue of “spillover” effects, e.g., to what extent is learning shared across 
a range of technologies or applications?  For example, experience with carbon capture systems in 
the oil and gas industries may directly benefit similar applications in the electric utility industry. 
To what extent does this occur?  Thus, while the concept of “clustered learning” has been used in 
some integrated assessment models, such as in Seebregts et al. (Seebregts et al. 2000), the basis for 
such applications remains largely in the realm of technical and professional judgments—another 
source of uncertainty in current models. 

 

3 Review of Learning Curves for Power Generation 
Technologies 

In this section of the report we summarize our findings from the literature review with regard to 
learning rates for specific power generation technologies. We focus on the technologies listed in 
Section 1.1 that are represented in the EPRI REGEN model. 

3.1 Coal-Based Power Plants with and without CCS 

Power generation technology combusting pulverized coal (PC) is one of the few major energy 
technologies in use for over a century that is still re-inventing itself. Energy forecasting studies 
project that coal with or without carbon capture and sequestration (CCS) will remain the largest 
energy source for electricity generation in the U.S. and globally throughout the first half of this 
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century (EIA 2013; International Energy Agency 2012). 

Over the course of the last century, technology improvements in PC boilers and in other plant 
components have yielded significant economies of scale – and thus cost reductions – along with 
improvements in efficiency, reliability, and environmental performance of the overall power plant. 
One recent study found that the cost of coal-fired electricity in the United States between 1882 and 
2006 was determined largely by the price of coal and plant construction costs (McNerney et al. 
2011). The experience curve derived for plant construction cost implies a learning rate of 12% 
between 1902 and 2006. 

Nonetheless, despite this apparent long-term learning, after the 1980s construction and generation 
costs generally increased due to a variety of factors. Joskow and Rose (Joskow & Rose 1985) 
found that real cost increases were primarily due to new regulatory requirements such as 
environmental, health, and safety standards; changes in work rules; and improved design standards. 
These findings held while controlling for scale effects, technological differences, input price 
changes, major environmental control technologies, and other cross-sectional differences in real 
construction costs. The trend of increased costs for coal-based power plants may likely continue as 
a result of the growing (and changing) complexity of environmental regulations (such as the 
mercury and air toxic standards). Similarly, if CCS installations become required under New 
Source Performance Standards (or other) regulations, plant system costs will increase (Zhai & 
Rubin 2013). 

Increased labor costs, increased construction time, and a decline in construction productivity also 
contributed to higher costs over the last few decades. Similar findings were observed by Wang and 
Yu (Wang & Yu 1988). Nonetheless, Joskow and Rose (Joskow & Rose 1985) found significant 
learning effects for architect–engineering firms and utility companies (albeit at different rates) 
involved in constructing both subcritical and supercritical plants.  

To better analyze the effects of technology learning, some authors have decomposed complex 
coal-based plants into major components or sub-systems so as to disentangle the cost increases due 
to changing design requirements, such as the need for new pollution control systems. In this way, 
selected plant components can be combined to study the effects of learning for plants of a fixed 
design. As part of this framework, Yeh and Rubin (Yeh & Rubin 2007) fitted historical 
construction costs of PC subcritical boilers (the basic building block of a power plant) and found 
the overall learning rate for boiler construction cost from 1942-1999 was 6%. During this period, 
the size of PC plant boilers increased by nearly 70%, while the average efficiency of the overall 
PC power plant increased from 30% to 38%. The same study found the learning rate of non-fuel 
O&M costs from 1929 to 1997 to be 8%, after adjusting for changes in GDP (using the GDP price 
deflator), real wages (wage and salary for electric and gas employees), and plant utilization. 

The future cost of power plants with CCS also is of significant interest, though there is no direct 
historical experience to call on at this time as the basis for a learning curve. To derive a best 
estimate, Rubin, et al. (Rubin et al. 2007) argue that current commercial systems for post-
combustion capture of CO2 are technically analogous to post-combustion systems for SO2 capture 
(known as flue gas desulfurization systems, or FGD). On this basis a learning rate of about 12% 
was estimated for capital cost reductions for CCS. For an overall power plant with CCS a smaller 
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learning rate was estimated, on the order of 2–3% for capital cost and 3–4% for cost of electricity, 
because most of the total plant components are already fairly mature. Table 1 summarizes the 
sensitivity analysis yielding the learning rate results from that study. 

 There are only a few commercial integrated coal-gasification combined cycle (IGCC) plants in 
operation worldwide (two in the U.S.), and none with commercial-scale CCS. Thus, existing 
studies have used a “bottom-up” approach to estimate the future learning rates of IGCC and coal 
plants with CCS using the component modeling approach outlined above and discussed earlier in 
Section 2.4. Table 1 shows results for IGCC with CCS based on the study by Rubin, et al. (Rubin 
et al. 2007) and van den Broek et al.. Similarly, Li et al. (Li et al. 2012) used a bottom-up 
approach to estimate future learning rates of capital and O&M cost for future components of PC 
and IGCC plants with CCS, as shown in Table 2. The learning rates and other details of previous 
literature on coal-fired power plants are shown in Appendix  A, Table A1.   

Table 1: Projected learning rates for pulverized coal (PC) and integrated gasification 
combined cycle (IGCC) power plants with CCS. (Source: Rubin et al. 2007). 

   
 

Table 2: Estimated learning rates for future components of PC and IGCC plants with CCS 
(Source: Li et al. 2012). 

Plant Component Capital Cost O&M Costs 

Air separation unit 5% – 15% 0% – 10% 

Coal gasification unit 7% – 21% 5% – 20% 

Syngas shift unit  6% – 18% 10% – 30% 

Syngas purification unit  6% – 17% 10% – 30% 

CO2 capture unit  10% – 30% 10% – 30% 

CO2 compression unit  0% – 10% 0% – 10% 

Combined cycle  5% – 15% 0% – 10% 

BOP (Balance of Plant)  0% – 10% 0% – 10% 

PC plant  3% – 9% 7% – 30% 

Learning 
Rate

Initial 
Value

Final 
Value

% Change
Learning 

Rate
Initial 
Value

Final 
Value

% Change

Nominal base case assumptions 0.021 1,962 1,783 9.1% 0.035 73.4 62.8 14.4%
Learning starts with first plant 0.013 1,962 1,764 10.1% 0.024 73.4 60.8 17.2%
Learning up to 50 GW 0.018 1,962 1,846 5.9% 0.031 73.4 66.0 10.1%
Current capture capacity = 0 GW 0.026 1,962 1,744 11.1% 0.042 73.4 60.9 17.1%
Non-CSS exp. Multipliers = 2.0 0.029 1,962 1,723 12.2% 0.044 73.4 60.4 17.8%
Coal price = $ 1.5/GJ 0.021 1,965 1,786 9.1% 0.035 79.6 68.2 14.3%
FCF = 11%, CF = 85% 0.021 1,963 1,785 9.1% 0.039 57.2 48.2 15.7%

Learning 
Rate

Initial 
Value

Final 
Value

% Change
Learning 

Rate
Initial 
Value

Final 
Value

% Change

Nominal base case assumptions 0.050 1,831 1,505 17.8% 0.049 62.6 51.5 17.7%
Learning starts with first plant 0.029 1,831 1,448 20.9% 0.032 62.6 48.6 22.4%
Learning up to 50 GW 0.044 1,831 1,610 12.1% 0.045 62.6 54.9 12.2%
Current gasifier capacity = 1 GW 0.057 1,831 1,460 20.3% 0.055 62.6 50.2 19.8%
Above + H2-GTCC = 0 GW 0.088 1,831 1,285 29.8% 0.078 62.6 45.9 26.6%
Non-CSS exp. Multipliers = 2.0 0.062 1,831 1,432 21.8% 0.059 62.6 49.5 20.8%
Coal price = $ 1.5/GJ 0.050 1,834 1,507 17.8% 0.048 68.4 56.6 17.3%
FCF = 11%, CF = 85% 0.048 1,832 1,516 17.2% 0.047 47.2 39.2 16.9%

PC Sensitivity Case
Capital Cost ($/kW) COE ($/MWh)

IGCC Sensitivity Case
Capital Cost ($/kW) COE ($/MWh)
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3.2 Natural Gas-Fired Power Plants with and without CCS 

Natural gas has been used for power generation since the 1940s. The first gas combined cycle 
plants were built in the 1970s, but growth was held back as a result of the oil embargo and high 
natural gas prices at the time, which led to a prohibition on natural gas use for power generation 
that was subsequently repealed by the U.S. Congress. Construction of natural gas-fired power 
plants then boomed in the late 1990s and early 2000s when gas prices were low and efficient 
combined cycle power plant costs fell.  

Most studies on learning for natural gas power plants used single factor curves as reported in 
(McDonald & Schrattenholzer 2001; Colpier & Cornland 2002; Priddle 2000). While most of the 
studies on learning curves of gas-powered technologies used specific capital cost as the dependent 
variable, IEA, Colpier and Cornland, and Kouvaritakis et al. (Priddle 2000; Colpier & Cornland 
2002; and Kouvaritakis et al. 2000) also report values in which the dependent variable is specific 
investment price. Investment prices, however, may distort learning rates based on actual cost. 
Kouvaretakis et al (Kouvaritakis et al. 2000) found a negative learning rate for gas turbine 
combined cycle plants using world price data for the 1981-1991 period. This result may have been 
caused by oligopolistic price behavior, so these values have to be used with caution.  

Figure 2 provides a summary of the learning rates available in the literature for natural gas 
technologies.  For each study, the graph shows the time period and geographic region used to 
derive the learning rate.  Figure 2(a) and 2(b) show results for simple natural gas-fired combustion 
turbines and combined cycle plants, respectively, based on NGCC capital cost. Colpier and 
Cornland (Colpier & Cornland 2002) also report values in which the dependent variable is 
electricity production cost ($/kWh) rather than capital cost. Electricity production costs for gas 
power plants are highly dependent on the price of natural gas. Thus, Colpier and Cornland report 
two values: one in which the actual natural gas price for each of the years covered is used, and one 
in which natural gas price is assumed to be constant. The difference in the resulting learning rates 
(15% vs. 6%) can be observed in Figure 2(c). Figure 3 provides a histogram showing the range of 
values reported in Figure 2, along with summary statistics for the mean (14%), median (13%), and 
standard deviation (13%). Appendix A, Table A2, summarizes all the learning rates for natural gas 
power plants reviewed for this study.   

Carbon capture and storage (CCS) technology also can be used at NGCC power plants. However, 
since CCS has not yet been deployed at power plants at a commercial scale, there is no experience 
on actual learning rates for natural gas plants with CCS. In the absence of such data, van den 
Broek et al. (van den Broek et al. 2009) built upon a previous study by Rubin, et al. (Rubin et al. 
2007) to estimate learning rates for NGCC plants with CCS using the component-based modeling 
approach discussed earlier in Section 2.4. The result was a range of learning rates of approximate 
2% to 7%, with a nominal value of 5%. Those estimates notwithstanding, the true effect of 
learning-by-doing for power plants with CCS cannot be thoroughly evaluated until commercial 
deployment of such systems takes place. 
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Figure 2: Summary of learning rates for natural gas-fired power plants reported in the 
literature: (a) simple gas turbines,  (b) NGCC/GTCC based on $/kW,  (c) NGCC/GTCC 
based on $/kWh,   

 

 

Figure 3: Histogram of learning rates reported in the literature for natural gas-fired power 
plants. Blue bars are studies based on cost per unit of capacity installed ($/kW). Red bars are 
studies where the dependent variable is the cost per unit of electricity generation ($/kWh). 

  

R&D expenditures also may influence investment costs for natural gas power plants. However, 
only one paper reviewed for this project incorporated a learning-by-researching model. Jamasb and 
Kohler (Jamasb & Köhler 2007) evaluated global data for combined cycle gas turbines built in two 
periods. For the period between 1980 and 1998, he found a learning-by-doing (LBD) rate and a 
learning-by-researching (LBR) rate of 0.65% and 17.7% respectively. For the period between 1990 
and 1998, he found a LBD rate of 2.2% and a LBR rate of 2.4%. 

 

3.3 Wind Power 

3.3.1 Land-based Wind Power 

Large-scale deployment of wind turbines occurred in the 1970s and early 1980s, but slowed in the 
late 1980s and 1990s. In the last decade, wind power has observed the largest growth in installed 
capacity among all generating technologies in the U.S. During this period, wind technology has 
evolved:  while in the 1980s the most popular turbine size was 55 kW (McDonald & 
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Schrattenholzer 2001), current land-based wind turbines can be as large as 2 MW, and are 
expected to continue growing.  

Several studies, some performed as early as the 1990s, have estimated the learning rates of land-
based wind energy technologies. Learning rates reported in the literature span a very large range 
between -3% and 35% (McDonald & Schrattenholzer 2001; Ibenholt 2002; Junginger et al. 2005; 
Neij et al. 2003; Priddle 2000; Neij 2008; Weiss et al. 2010; G. F. Nemet 2009; Lindman & 
Söderholm 2012; Edenhofer et al. 2011; Kahouli-Brahmi 2008).  Most studies focus on Europe 
and North America. However, the scope of different studies varies widely. Some studies identify 
the learning rate of individual wind turbines, while others look at learning for entire wind farms 
(Neij et al. 2003; Junginger et al. 2005; Wiser 2012). Areas of study and years included in the 
analysis also vary. Appendix A, Table A3, shows the detailed data sources and date ranges for 
studies that reported values for learning rates. 

Most of the studies analyzed have identified single-parameter learning curves based only on 
cumulative experience (either cumulative installed capacity, or cumulative electricity generation). 
Some of these studies, however, acknowledge that multiple factors can influence cost reductions. 
Junginger et al. (Junginger et al. 2005), for example, includes a detailed description of historical 
factors that have impacted the cost of wind turbines, including increased labor specialization and 
efficiency, innovations resulting from R&D, product standardization, and product redesign. They 
suggest that increased turbine size (product redesign) has primarily driven recent cost reductions.  

Some studies have attempted to include multiple parameters in the analysis. For example, Ibenholt 
(Ibenholt 2002) used least square regression to estimate a parameter, α, which was then used to 
estimate the technology progress rate as ܴܲ ൌ 2ఈ. In that paper, α is a function of R&D 
expenditures, input prices, technology-pushing policies, competition, and economies of scale. 
Similarly, Miketa and Schrattenholzer (Miketa & Schrattenholzer 2004) explored multiple factors 
affecting cost reductions and developed a learning-by-doing rate (based on cumulative installed 
capacity), and a learning-by-researching rate (based on R&D investments). The study then 
developed a linear program that was used to endogenously estimate the optimum R&D levels 
needed to minimize the sum of discounted costs (energy costs plus R&D costs) during a given 
period. Finally, Klaassen et al. (Klaassen et al. 2005), Jamsab (Jamasb 2007), Ek and Soderholm 
(Ek & Söderholm 2010), and Soderholm and Klaassen (Söderholm & Klaassen 2007) also 
developed two equation-based learning-diffusion models that incorporated a learning-by-doing 
rate and a learning-by-researching rate.  

Appendix A, Table A3, summarizes details of the learning rate values in the studies reviewed. 
While some studies assumed a constant learning rate throughout the period explored, others 
divided the curve into separate stages. For example, Ibenholt (Ibenholt 2002) developed a two-
stage learning curve. Using data from Denmark, the progress ratio for the first stage (1984-1988) 
was found to be 88% (corresponding to a learning rate of 12%), while the second stage (1988-
1999) was found to have a lower progress ratio of 93% (learning rate of 7%). Recall that Ibenholt 
(Ibenholt 2002) also developed a learning curve that included multiple parameters. 

Our literature review also revealed that different dependent variables are used in different studies. 
Most learning curves are for the investment (capital) cost of a technology. However, several of the 
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studies reviewed used production cost or price of electricity (in $/kWh of electricity generated) as 
the dependent variable. Production cost for wind power, however, is highly influenced by capacity 
factors during operation of the wind farm, which vary from place to place and from year to year. 
However, most studies that used this measure of cost did not acknowledge the importance or 
variability of capacity factor. Ibenholt (Ibenholt 2002) did include a discussion of capacity factors. 
However, it is unclear whether the capacity factor was included in the learning rates reported in the 
paper. Finally, while some papers used specific investment cost as the dependent variable, some 
used prices obtained in industry reports and catalogues. Commodity prices, transportation costs 
and other factors can influence the price of wind equipment, even if the manufacturing costs 
decrease. Using price data may thus mask reductions in technology manufacturing cost.  

Figure 4 to Figure 6 group the different learning rates in the literature by region and by the 
dependent variable used. Figure 7 shows the same data in the form of a histogram of all rates 
reported in the literature. These figures do not include one data point from China, which reported a 
progress ratio of 96% for combined learning-by-doing and learning-by-researching (Qiu & 
Anadon 2012). 

 

  

Figure 4: Learning rates for on-shore wind from European studies. The dependent variable 
is investment cost per unit of installed capacity ($/kW). There are multiple lines per study 
where authors used different model specifications. For example, Junginger et al used two different 
time periods for the Spanish and UK data, and two different GDP deflator rates for each data set. 
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Figure 5: Learning rates for on-shore wind from global and OECD studies. The dependent 
variable is investment cost per unit of installed capacity ($/kW). There are multiple lines per 
study where the authors used different model specifications. 
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(a) 

 

(b)  

 

Figure 6: Learning rates for on-shore wind where the dependent variable is investment cost 
per unit of electricity generated ($/kWh). Top graph (a) show studies for Europe, lower 
graph (b) shows other world regions. There are multiple lines per study where the authors 
used different model specifications. 
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Figure 7: Histogram of learning rates reported in the literature for unit capital cost (blue 
bars) and cost of electricity (red bars) for on-shore wind systems. 

In some cases, the studies shown in Figure 4 to Figure 6 used different model specifications, 
which resulted in different values of the learning rate.  For example, Neij (Neij et al. 2004) 
evaluated turbines produced by Danish manufacturers between 1981 and 2000. She used the price 
of the wind turbines as the dependent variable and found a learning rate of 8%. In the same study, 
she also evaluated turbines installed in Denmark in the same time period (1981-2000). Using the 
price of wind turbines as the dependent variable, she found a learning rate of 9%. The difference in 
the learning rate results from the difference in the data used. In particular, the values of cumulative 
capacity, used as the explanatory variables, differed since one analysis looked at manufacturing 
and the other looked at installations. In general, Figures 4 and 5 indicate that learning rates over 
longer periods of time tend to be smaller than rates over shorter time periods in most (but not all) 
studies. More pronounced, however, is the roughly six-fold range of learning rates reported for 
European capital costs (Fig 4), the three-fold range for global capital costs (Fig 5), and the nearly 
four-fold range of COE rates over the past two to three decades. Unfortunately, it is not possible to 
explain the reasons behind these large variations across studies based on the limited information 
reported in the literature. Pending further investigation we therefore simply show all results that 
were reported. It is clear, however, that there can be significant variations in the learning rates of 
wind turbines. Using the different learning rates in energy models that include endogenous 
learning could significantly affect the results of these models. Since it is not clear that any one rate 
is more realistic or more accurate than others, caution must be taken in interpreting the results. 
Doing sensitivity analysis by using the range of learning rates is thus advisable. 
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3.3.2 Offshore Wind Power 

Though there are currently no offshore wind farms operating in the U.S., significant experience 
with this technology has been obtained in Europe, particularly in the Scandinavian countries. 
Several of the papers described in the previous section included an analysis of costs of wind 
turbines manufactured and/or installed in Germany, Sweden, and Denmark. These papers did not 
specify whether offshore wind turbines were included in the analysis. The periods covered, 
however, ended in 2000 before the beginning of the offshore wind boom, when global offshore 
wind capacity grew from roughly 14 GW in 1999 to 197 GW in 2010 (Jamasb 2007; Moccia & 
Arapogianni 2011; Clarke et al. 2006; Nordhaus 2009).  

More recently, two papers have reviewed cost trends for offshore wind power. Lemming et al. 
studied the potential for development of offshore wind power through the year 2050. They 
assumed the learning rate observed between 1985 and 2000 (10%) would remain valid until 2030, 
after which the learning rate will decrease to 5% (Nordhaus 2009; Lemming et al. 2009). 

Junginer et al. (Jamasb 2007; Junginger et al. 2009) produced a more detailed analysis looking at 
specific components of the cost of an offshore wind farm. They suggest that the learning rate of 
offshore wind turbines will be similar to the learning rates that have been observed for land-based 
wind turbines (between 8% an 19%) (Söderholm & Sundqvist 2007; Junginger et al. 2009; Jamasb 
2007; Klaassen et al. 2005; Söderholm & Klaassen 2007). The authors further explore the learning 
rates for the balance-of-plant cost. Looking at data on submarine high voltage direct current 
(HVDC) cables between 1988 and 2000, they estimate a 38% learning rate for the installation of 
the interconnection cables. Similarly, they estimated a 29% learning rate for HVDC converter 
stations. Finally, they evaluated individual turbine installation time for the offshore wind turbines 
in two projects built in 2000 and 2003. Using these data as a proxy for cost, they suggest a 
learning rate of 23% for the erection of offshore wind turbines (Jamasb 2007; Junginger et al. 
2009). A summary of these results is presented in Appendix  A, Table A4.  

3.4  Solar Photovoltaics 

Solar photovoltaic (PV) systems convert sunlight directly into electricity. The PV module consists 
of a number of solar cells, which can be categorized in two types: wafer-type (single or multi-
crystalline) and thin film. Wafer-type cells are made from wafer cut from a silicon ingot while 
thin-film PV cells are deposited directly onto a substrate like glass, plastic or steel (Capros et al. 
2005; van der Zwaan & Rabl 2004). Today, wafer type technologies still achieve higher 
efficiencies (12%-15%), than thin film (6%-11%), but there is a consensus that thin film 
technologies offer the best long term perspective for low production costs (Söderholm & 
Sundqvist 2007; van der Zwaan & Rabl 2004; Jamasb 2007; Klaassen et al. 2005; Söderholm & 
Klaassen 2007) 

PV technologies can also be grouped in terms of applications, i.e., central station PV versus 
rooftop PV. If stated by the authors, we identify in our review which of these applications the 
learning rates refers to.  
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PV system capital costs include the PV module cost, for which recent prices are in the 
neighborhood of $4.5 per peak watt (Wp), plus balance of system (BOS) costs, which include 
electrical installation, inverters, wiring and power electronics. The latter roughly double the overall 
cost of a PV system (Söderholm & Sundqvist 2007; Curtright et al. 2008; G. Nemet 2006). Van 
der Zwaan (van der Zwaan & Rabl 2004) highlights that “PV system prices” (on commercial 
markets) are generally 20% to 40% higher than PV system costs (of fabrication), since the latter 
also reflect design and installation costs, as well as profit margin. In many of the reviewed studies, 
however, it is unclear whether the authors are using cost data or price data. 

Most studies reviewed use $/Wp as a measure of solar PV costs. An exception is Schilling and 
Esmundo (Schilling & Esmundo 2009), where the authors compare the cost and performance of 
several energy technologies and use the cost of electricity in $/kWh, where the costs include 
capital, maintenance, and operation costs. However, contrary to other studies, Schilling and 
Esmundo (Schilling & Esmundo 2009) only assess the relationship between technology costs and 
public R&D spending, ignoring learning-by-doing effects.   

Two studies reviewed address effects of both learning by doing and learning by searching (i.e., a 
two-factor learning curve which includes R&D as one of the explanatory variables). Miketa and 
Schrattenholzer (Miketa & Schrattenholzer 2004) found a learning-by-researching rate of 10%, 
and a learning-by-doing rate of 17%. Another paper, from Kobos, Erickson and Drennen (Kobos 
et al. 2006), also assessed both learning by doing and learning by searching using worldwide data 
from IEA. The authors highlight the fact that there is a time lag that needs to be considered 
between when R&D investments are pursued and when associated technology cost declines may 
occur. Thus, they tested several time lags. The authors also included a depreciation factor to 
account for the rate of technology obsolescence. Using data for solar PV between 1975 and 2000, 
they found that the most robust learning-by-doing and learning by search rates are about 18.4% 
and 14.3%, respectively. The results from Miketa and Schrattenholzer (Miketa & Schrattenholzer 
2004) and from Kobos, Erickson and Drennen (Kobos et al. 2006) are consistent with what one 
would expect: as more explanatory variables are added to the model, the estimate for the learning 
rate decreases.  
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Figure 8: Learning rates for solar PV capital cost ($/Wp) reported in the literature. The x-
axis represents the range of years used in the cited papers. The plot also shows the 
corresponding region included in each study, author and year of publication.  

 

 

Figure 9: Histogram of capital cost ($/Wp) learning rates for PV reported in the literature.  
The 10% value does not appear in Fig. 8 as the years used was not reported in that study.
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3.5 BioPower 

3.5.1 Biomass Production 

A review of the studies examining crop-based feedstock production costs, including sugarcane 
(Brazil), corn (US), and rapeseed (Germany), suggests that feedstock production costs have 
declined over time. These studies show that the learning rates associated with feedstock costs were 
in the range of 20% to 45%, as discussed below.  

Van Den Wall Bake et al. (van den Wall Bake et al. 2009) found a learning rate of 32% for 
Brazilian sugarcane considering production costs between 1975 and 1998, and sale prices between 
1999 and 2004. Sugarcane production during this period expanded from roughly 1 million to 8 
billion tonnes of cane (TC), and feedstock costs/prices decreased from US$2005 35/TC to US$2005 

13/TC. Van Den Wall Bake et al. (van den Wall Bake et al. 2009) explain that cost reductions for 
rent, soil preparation, and crop maintenance were highly influenced by the increasing length of the 
ratoon system (the length the same plant can be cut many times on a yearly basis after the first cut) 
and the rising agricultural yields. Transportation costs declined mainly because of up-scaling, 
introduction of automated logistic systems, and improved infrastructure. Similarly, Hettinga et al. 
(Hettinga et al. 2009) examined the costs of U.S. corn between 1985 and 2000 when cumulative 
corn production increased from 2.5 to 8 billion tonnes, and costs decreased from US$2005 250/tonne 
to US$2005 100/tonne, implying a learning rate of 45%. The authors suggest that higher corn yields 
and increasing farm sizes were partly responsible for decreased costs.  

The study on German rapeseed by Berghout (Berghout 2008) used data from 1971 to 2006, when 
cumulative production of rapeseed increased from 2 to 64 million tonnes; and production costs 
decreased from €2007800/tonne to €2007220/tonne, resulting in a learning rate of 19.6%. Costs 
reductions resulted from a decline in fertilizer costs, increasing yields, lower fertilizer usage, and 
improved rapeseed varieties. Finally, a study on forest residue in Sweden and Finland (1975-2003) 
found that fuel wood price decreased from €200212/GJ to €200235/GJ (Junginger et al. 2006). This 
yields a learning rate ranging between 12% and 15%. Experience in chipping and forwarding (the 
transport of logs from the stump to the forest road) explained most of the cost reduction. Although 
no further reductions are expected in these costs, transportation and logistics costs have potential 
to decrease in future. 

3.5.2 BioPower Generation 

Most work on biopower generation has focused on fluidized bed combustion for combined heat 
and power (CHP), and production of biogas. Koornneef (Koornneef et al. 2007) evaluated the 
global investment costs of fluidized bed combustion between 1976 and 2005, and found a learning 
rate ranging between 7% and 10% as a result of learning-by-doing. Similarly, Junginger 
(Junginger et al. 2006) found that between 1990 and 2002 cumulative installed electrical capacity 
of fluidized based CHP in Sweden increased from 100 MW to 600 MW, while investment costs 
decreased from up to €20025,000/kW to €20021,000/kW. Thus this study found a learning rate of 
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23%. Junginger also assessed the impacts of these costs on the marginal production cost of 
electricity and found that the learning rate was roughly 8% (Junginger et al. 2006). Finally, they 
also evaluated decreases in the investment costs of bio digesters used to produce biogas in 
Denmark between 1988-1998 and found that while cumulative digester capacity increased from 50 
m3/day to 4,000 m3/day, investment cost decreased from €200240,000/day to 15,000/day (Yeh et al. 
2005; Junginger et al. 2006). This resulted in a learning rate of 12%. Looking at the biogas 
production costs in Denmark between 1984 and 1991, they also found that cumulative biogas 
production increased from 100,000 Nm3/day to roughly 5 billion Nm3/day and production costs 
decreased from €20021-5/ Nm3 to roughly €20020.3/Nm3 (Seebregts et al. 1999; Junginger et al. 2006). 
For these data, they reported three learning rates: 24% for 1984-1997; 15% for1984-1991; and 0% 
for 1991-2001. 

3.6 Geothermal Power 

We found no literature on historical learning rate for geothermal electricity, neither for power plant 
technology (binary, flash, flash-binary) or geothermal well drilling and resource extraction. One 
reason could be that geothermal power plants vary considerably and levelized costs are very 
sensitive to resource temperature, geothermal fluid chemistry, geothermal fluid flow rates, and 
ambient temperature. This sensitivity to variations makes it extremely difficult to characterize 
learning rates for this technology.  

In examining the influence of R&D spending, however, Schilling et al. (Schilling & Esmundo 
2009) showed that the performance of geothermal increased with cumulative R&D spending from 
7 kWh/R&D dollar to 27 kWh/R&D dollar as R&D spending increased from $1.5 to $4 billion 
between 1985 and 2000. They report the cost of electricity was 11.3-13.8 cents per kWh in 1980, 
decreasing to 3.1-4.3 cents per kWh in 2005 (Wang & Yu 1988; Schilling & Esmundo 2009). 

3.7 Nuclear Power  

While researchers have attempted for decades to estimate learning rates in the nuclear industry, 
these efforts continues to be punctuated by various industry-specific caveats that render the 
exercise especially difficult. The picture becomes even murkier when one examines recent efforts 
to determine the benefits of learning in proposed evolutionary and advanced nuclear technologies, 
such as small modular reactors (SMRs), where the more traditional technical progress economies 
are joined by factory fabrication economies, modular construction economies, and various other 
promised benefits that may never materialize (see, for instance, van den Broek et al. 2009; Carelli 
et al. 2010).  

Grubler (Grubler 2010) studied the French and American nuclear experience, as shown in Figure 
10. He finds an “observed real cost escalation [that] is quite robust against the data and model 
uncertainties that can be explored” (Grubler 2010), i.e., in the case of nuclear there is a “negative 
learning” effect, in which specific costs increase rather than decrease with accumulated experience. 
Grubler notes many caveats associated with these data, ranging from institutional changes (such as 
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safety regulations) to cross-generational variations among nuclear reactor designs that make such 
comparisons questionable (Grubler 2010). 

 

 

Figure 10: Reactor construction costs per kW as a function of cumulative installed capacity 
for both the French (blue) and U.S. (red) cases and currency.  Source: (Grubler 2010). 

 

McDonald and Schrattenholzer (McDonald & Schrattenholzer 2001) report learning rates for a 
wide range of energy technologies, including nuclear. Their estimate for the learning rate of 
nuclear in OECD countries from 1975 to 1993 is about 6%. Cooper (Cooper 2010) constructs a 
learning curve for U.S. nuclear power plants from his own database. Like Grubler (Grubler 2010), 
he finds an increasing cost trend as function of the cumulative capacity installed. Finally, Sturm 
(Sturm 1994) compared learning by operating nuclear reactors in OECD countries with Eastern 
European countries, using two proxies: the availability and unplanned losses. He noted that there 
was positive learning in OECD countries but negative learning in Eastern European countries. He 
also reports significant negative learning in some countries as a result of exogenous shocks, such 
as the break-up of the Soviet Union.  

3.8 Hydropower  

Hydropower provides 7% of U.S. power generation and is also a key source of electricity in some 
European countries. In the U.S. the build-up of large hydroelectric projects took place in the post-
World War II period. No additional large-scale hydroelectric projects have been constructed in the 
U.S. in at least 35 years. Most hydroelectric development is taking place in developing countries. 
China has put significant resources into building hydro projects, with the Three Gorges Dam being 
the largest in the world. Brazil is also planning on expanding its hydro capacity, particularly in the 
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Amazon. Several papers have recently reviewed learning for hydroelectric projects. Kouvaritakis 
(Kouvaritakis et al. 2000) is the only paper found that reports a single factor learning curve for 
hydroelectric projects. His numbers are later reported by McDonald et al. (McDonald & 
Schrattenholzer 2001) and Kahouli-Brahmi (Kahouli-Brahmi 2008). Kouvaritakis (Kouvaritakis 
et al. 2000) used data for OECD countries from 1975-1990 and found a learning rate of 1.4%. 

One study also looked at two-factor learning rates for large and small hydroelectric plants. Using 
global data from 1980 to 2001, Jamasb (Jamasb 2007) reported a learning-by-doing rate of 1.96% 
and a learning-by-researching rate of 2.63% for large hydropower projects. He also reported LBD 
and LBR rates of 0.48% and 20.6%, respectively, for small hydropower projects using global data 
from 1988 to 2001. A summary of the reviewed studies for hydropower is provided in Appendix  
A, Table A9. 

 

4 Endogenous Technological Learning in Energy Models 

This section of the report provides an overview of several energy-economic models that 
incorporate endogenous technological change. Several of these models assess the effects of 
incorporating endogenous technological change on the rate of technology adoption and the costs of 
climate change mitigation. Most efforts to incorporate endogenous modeling of technological 
change in energy-economy models took place in the early 2000s. A comprehensive review of these 
efforts was included in the Fourth Assessment Report from Working Group III of the IPCC (Rubin 
et al. 2004; IPCC 2007). In this section, we review a few selected global energy models, including 
MESSAGE, ReMIND-R and WITCH, plus two U.S. models, NEMS and MARKAL-EPA. We 
complement this discussion provided in this section with brief descriptions of each of these models, 
which are presented in Appendix  B, and with summary tables of endogenous learning used in 
“top-down” energy-economic models (Appendix  C) and in “bottom-up” models (Appendix  D).  

4.1 Global Energy Models 

4.1.1 MESSAGE  

MESSAGE is an optimal growth model of the global energy system (McDonald & Schrattenholzer 
2001; Rao et al. 2006). It can be linked iteratively to MACRO, which is a top-down 
macroeconomic equilibrium model that captures capital stock, available labor, and energy inputs. 
In turn, MESSAGE determines the total output of an economy according to a nested constant-
elasticity-of-substitution production function. Using a bottom-up technology-rich model, plus a 
top-down macroeconomic model, results in a fully consistent evolution of energy demand 
quantities, prices, and macroeconomic indicators (such as GDP, investments and savings).  

This model typically runs with an assumption of exogenous technical change, i.e., the unit cost and 
efficiency of technologies improve by constant rates over time and are independent of each other. 
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The assumed exogenous rates of improvement ranged from 0% to 15% for each doubling of 
cumulative installed capacity for eighteen energy technologies in the model.  

Researchers also have used versions of MESSAGE to implement endogenous technical learning. 
For example, Riahi et al. (Riahi, Rubin & Schrattenholzer 2004a) applied an endogenous learning 
rate of 12% to three carbon capture and sequestration (CCS) technology clusters (conventional 
single steam cycle coal plants, conventional single steam cycle gas and NGCC plants, and high-
temperature fuel cells). In addition, the model allowed for spillovers among technologies within a 
cluster (but not from outside the cluster), and also for spillovers across regions by assuming that 
technology improvements occur at a global scale. Overall, the study found that incorporating 
endogenous learning for CCS led to higher deployment of CCS technologies, particularly in the 
electricity sector, relative to an exogenous specification of no learning over time. Other key 
insights from this model regarding the effects of endogenous learning include:  

 The existence of technological learning reduces overall energy system costs and becomes 
particularly important in the context of a long-term climate policy.  

 Alternative parameterizations of technological change have significant implications for 
the technology portfolio as well as associated costs. 

 Spillovers across technologies and regions due to learning result in increased upfront 
investments and lower overall costs for carbon-free technologies. This results in greater 
technology deployment and emissions reductions, especially in developing countries. 

 Learning and spillover effects can lead to more technologically advanced, cost-effective 
global energy transition pathways.  

4.1.2 ReMIND-R  

ReMIND-R is a global welfare maximization model with a top-down macroeconomic model and a 
bottom-up energy system model (Luderer et al. 2010). Energy system costs (investments, fuel 
costs, operation and maintenance) are included in a macroeconomic budget constraint so that the 
energy system and macro-economy are optimized jointly. This model includes a detailed 
representation of more than thirty energy conversion technologies, including thirteen electricity 
generation technologies. The model includes one-factor endogenous learning rates for three 
electricity generation technologies: wind, solar PV, and concentration solar power (CSP) that have 
a 12%, 20%, and 9% learning rate, respectively. It also assumes learning rates of 10% for energy 
storage technologies, which are deployed in conjunction with renewable resources. The learning 
model defines the learning rates as well as a floor of investment costs (in $/kW). Learning-by-
doing spillovers are internalized and the learning process is assumed to take place at a global scale. 
No comparisons were presented, however, between endogenous vs. exogenous learning effects.  

4.1.3 WITCH 

Similarly to what is found in ReMIND-R’s structure, WITCH is a hybrid of top-down 
(macroeconomic) and bottom-up (technology) assessment models. The top-down component 
consists of an inter-temporal optimal macroeconomic growth model. The bottom-up component 
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includes detailed treatment of investment and operating costs, performance, and learning curves 
for major clusters of energy technologies (Bosetti et al. 2009; Bosetti et al. 2011). WITCH 
includes a two-factor endogenous learning representation: a uniform learning-by-doing rate of 
13% and a uniform learning-by-researching rate of 10% are assumed for wind, solar, and two 
portfolios of backstop technologies producing electricity and non-electricity fuels. As with 
previous global models we reviewed, costs decline with global installed capacity (perfect learning-
by-doing spillovers).  

In WITCH, endogenous technical change through investments in energy R&D are modeled for 
energy efficiency improvements and costs of advanced biofuels. Efficiency improvement can be 
obtained from the stock of knowledge derived from energy R&D investments in each region 
(modeled by an innovation possibility frontier characterized by diminishing returns to research). A 
uniform learning-by-doing rate of 13% and a learning-by-researching rate of 10% are assumed for 
wind solar and two portfolios of backstop technologies producing electricity and non-electricity 
fuels. Global spillover effects are allowed within the model. The return on energy R&D 
investments is assumed to be four times higher than the return on physical capital. At the same 
time, the opportunity cost of crowding out other forms of R&D and physical investments is also 
taken into account in a budget constraint. A decreasing function of investment in dedicated R&D 
is also used to lower the costs of advanced biofuels.   

Relative to exogenous learning specifications, key insights from implementing endogenous 
learning-by-researching and learning-by-doing in the WITCH model include ((Bosetti et al. 2009; 
Bosetti et al. 2011)): 

 R&D investments reduce the investment costs for renewable and backstop technologies. They 
also increase the efficiency of overall energy production by "... contributing to accumulation 
of knowledge capital that substitutes for energy demand.” 

 Technology change alone (without any explicit climate policy) is unlikely to effectively 
control climate change. Even with large increases in global climate-related R&D spending, 
emissions can at best be stabilized above current levels, and CO2 concentration can be reduced 
by only a small amount (about 50 ppm) relative to 2100 baseline levels (of over 700 ppm). 
Carbon pricing is important to achieve this goal. 

4.2 U.S. Models 

There are a few integrated energy-economic models for the United States. Here we review two 
such models and their modeling of endogenous technological change.  

4.2.1 The National Energy Modeling System (NEMS) 

NEMS is an energy-economic model of U.S. developed by the Energy Information Administration 
(EIA) of the U.S. Department of Energy (DOE). It includes technological learning for overnight 
costs of new electricity generating facilities. The most recent version of NEMS has a total of 54 
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electricity generating technologies: 34 represent existing power plants and the remaining 24 are 
technologies that can be selected for new construction, and to which learning factors are applied. 
Each power plant type is sub-divided into several components (there are 26 technology 
components in total across all generating types). NEMS applies technological learning factors at 
the technology component level (e.g., a gasifier, boiler, or other sub-system), using a traditional 
one-factor learning curve. It aggregates the capacity of all plant types having a particular 
component to derive the total learning-related capacity of that component. Different plant types 
thus share learning if they have the same technology component. The initial learning capacity of a 
component is its “base year capacity” or its typical unit size, whichever is bigger (Riahi, Rubin, 
Taylor, et al. 2004b; Gumerman & Marnay 2004). EIA updates base year overnight costs and 
learning factors for each component annually as part of the Annual Energy Outlook development.  

NEMS further identifies each of the technology components as being either “revolutionary,” 
“evolutionary” or “mature”. Different learning rates are assumed for each stage of development. 
For example, a “revolutionary” component becomes an “evolutionary component” after three 
doublings of the initial capacity. Typical learning rates are 20% for the revolutionary stage, 10% 
for the evolutionary stage, and 1% for the mature stage (Kypreos & Bahn 2003; EIA 2012). 
Additionally, each component is set to have a certain annual minimum learning, even if no new 
capacity additions are made. Once all the learning factors at the component level are applied, the 
components are aggregated based on their “cost weights,” i.e, the fractional contribution of that 
component to overall plant costs. The results are then used to calculate learning factors at the 
power plant type level. 

NEMS uses several other factors to estimate future overnight costs, such as the technological 
optimism factor (a multiplier of 1.0 or more, applied to the first four units of a new, unproven 
design to compensate for the tendency to underestimate the actual cost of a first-of-a-kind 
technology); the project contingency factor (a factor to account for unforeseeable cost elements); 
and the metals and metal products producer price index (a macroeconomic variable linking 
construction costs with commodity prices). NEMS also includes regional cost factors reflecting 
differences in terrain, weather, and labor wages. In the end, all of these multipliers, together with 
learning factors, are applied to the base year overnight cost to estimate the overnight cost of a 
power plant type for each projected year (Barreto & Kypreos 2004; Gumerman & Marnay 2004; 
EIA 2012). 

The NEMS learning model also allows U.S. plants to benefit from technological experience 
outside the country. Foreign units of new technologies are assumed to contribute to reductions in 
capital costs for units that are installed in the United States if they meet the following criteria: (1) 
the technology characteristics are similar to those used in U.S. markets, (2) the design and 
construction firms and key personnel compete in the U.S. market, (3) the owning and operating 
firm competes actively in the U.S. market, and (4) there exists relatively complete information 
about the status of the associated facility. If the new foreign units do not satisfy one or more of 
these requirements, they are given a reduced weight or not included in the domestic learning 
effects calculation (Fischer & Newell 2008; EIA 2012).  For example, in the 2010 Annual Energy 
Outlook, international learning experience contributed to cost reductions for U.S. technologies 
based on capacity built outside the United States from 2000 to 2003 (the most recent data available 
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at that time) (EIA 2011b). This non-U.S. capacity included 5,000 MW of advanced coal 
gasification combined-cycle plants, 5,244 MW of advanced combined-cycle natural gas plants, 11 
MW of biomass capacity, 47 MW each for on-shore and offshore wind farms, and 7,200 MW of 
advanced nuclear plants. Table 3 shows the learning rate parameters for new generating 
technology components assumed in the NEMS model.  

Table 3: Learning parameters for new generating technology components in NEMS. Source: 
(EIA 2012) 

 

4.2.2 The EPA-MARKAL Model 

The EPA-MARKAL model is a partial equilibrium bottom-up model of a one-region U.S. 
economy operated by the U.S. Environmental Protection Agency (EPA) (Shay et al. 2006). The 
standard version of the model does not include endogenous learning but the effect of endogenous 
technological change was explored in one version of the hydrogen scenario by Yeh et al.(Yeh et al. 
2006). That work included a one-factor experience curve, where endogenous cost reduction was a 
function of installed capacity.  

Other than the EPA-MARKAL model, endogenous learning across technology groups (i.e., 
clustered learning among gasification, gas turbine, and fuel cell technologies) and across regions 
(e.g., wind turbines and solar PV in different regions) have been implemented in other MARKAL 
models (Barreto & Kypreos 2002; Seebregts et al. 2000). For example, MARKAL-Western 
Europe model (Seebregts et al. 2000) uses clustered learning and divides generation technologies 
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into five clusters: wind turbines (WT), solar PV modules (PV), fuel cells (FC), gasifiers (GF), and 
gas turbines (GT). Key insights obtained from MARKAL-Western Europe include: 

 The overall costs for CO2 reductions are lower with endogenous learning than without.  
 The ‘cluster feature’ improves internal consistency and allows for assessment of certain 

spillover effects 

4.3 Insights from Modeling Using One-Factor Learning Curves  

In general, bottom-up models tend to be partial equilibrium models that include only the energy 
sector, and they often adopt one-factor learning curves when exploring the effects of endogenous 
learning on model results. On the other hand, general equilibrium models include all sectors of the 
economy. Therefore they are able to explore the relationship between investments in energy 
technologies (to stimulate learning) versus the opportunity costs of the R&D investment. Here, we 
briefly summarize the insights from modeling using one-factor learning curves. The following 
section discusses two-factor learning curves. 

Energy models that assume autonomous energy efficiency improvements and cost reductions in 
both business-as-usual and climate policy scenarios typically defer investment decisions until the 
technology has become cheap enough to be competitive. In the case of greenhouse gas reduction 
scenarios, even though the absolute emissions abatement requirement increases with later action, it 
is still better to wait as abatement becomes cheaper in the future.  

In contrast, studies with endogenous technological learning based on one-factor experience curves 
find benefits from the early adoption of a technology, which stimulates cost reduction over the 
longer term (Nordhaus 2009; Goulder & Mathai 2000; van der Zwaan et al. 2002; Manne & 
Richels 2004). Thus, the costs of delay may be several times higher with induced (endogenous) 
technological change than without it (Bosetti et al. 2011; Grubb et al. 1995). For example, Riahi 
and Rubin et al. (Riahi, Rubin, Taylor, et al. 2004b) compared modeling with and without learning 
for carbon capture and sequestration technology with the MESSAGE-MACRO model. They found 
that scenarios with endogenous learning lowered the overall cost of CCS, resulting in higher 
abatement levels using CCS technology (as opposed to other abatement methods), with lower 
shadow prices of abatement compared to no endogenous learning (see Figure 11). 
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Figure 11: Sources of mitigation in (a) A2 and (b) B2 scenarios; (c) cumulative carbon 
sequestration by technology; (d) shadow prices of CO2 abatement in the B2 world. The 
A2 world represents relative slow end-use and supply-side energy efficiency 
improvements with slow convergence between regions. The B2 case is a world of slower 
population growth, higher GDP, higher end-use and supply efficiency improvements, 
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and lower primary energy use and GHG emissions. Sources: (Söderholm & Klaassen 
2007; Riahi, Rubin, Taylor, et al. 2004b; Barreto & Kypreos 2004; Rao et al. 2006). 

As discussed earlier in Section 3 of this report, the use of one-factor learning curves carry many 
caveats that modelers should be aware of when drawing conclusions and making recommendations. 
The key point here, however, is that the use of endogenous models can give results that are very 
different from exogenous specification of cost reduction trajectories. 

4.4 Insights from Modeling Using Two-Factor Learning Curves  

Two-factor experience curves of the type discussed in Section 3.2 have been used in large-scale 
models including MERGE (Wene 2008; Kypreos & Bahn 2003), ERIS (Barreto & Kypreos 2004) 
and other simulation-based tools (Fischer & Newell 2008). In general, studies find that 
incorporating two-factor models endogenously tends to lower the long-term costs of 
environmental policies and achieve higher emission abatement levels than achieved with no 
learning or only one-factor models (Watanabe et al. 2000; Watanabe et al. 2003; Barreto & 
Kypreos 2004; Fischer & Newell 2008).  

Studies also found that the explicit incorporation of R&D expenses may lead to less aggressive 
near-term actions to abate greenhouse gas emissions due to the increase in near-term societal costs 
(Barreto & Kypreos 2004). Similarly, Goulder and Mathai (Goulder & Mathai 2000) found that 
with R&D, some abatement is shifted from the present to the future. This is because induced 
innovation not only reduces marginal abatement costs, but also reduces the shadow cost of 
emissions today (because of lower future abatement costs). The optimal level of abatement is 
therefore lower in early years and higher later. Learning by doing acts to accelerate the effects of 
initial R&D efforts (Kouvaritakis & Argiri 2005). Researchers also found that both LBD and R&D 
create “lock-in” effects: massive R&D funding on some options may lock out other options that 
fail to benefit from R&D-induced learning. Thus, models are sensitive to initial conditions that 
lead to results that are path-dependent.   

Goulder and Schneider (Goulder & Mathai 2000) claim that with induced technological change, 
the opportunity cost of redirecting limited R&D resources to the energy sector steepens the decline 
in GDP associated with the introduction of a carbon tax. Thus, a given tax leads to larger gross 
costs (25% higher GDP loss in their study). The reason for this is that in equilibrium, the rate of 
return on R&D is equalized across sectors at the rate of return to other investments. An increase in 
R&D expenses on renewables with induced technological change thus leads to reduced R&D 
elsewhere, hence, reduced productivity in other sectors. Nordhaus (Nordhaus 2009) also concludes 
that omitting the opportunity cost of R&D (and LBD) incorrectly estimates the total marginal cost 
of output and will therefore “bias optimization models to tilt toward technologies that are 
incorrectly specified as having high learning coefficients.” This is a severe limitation to the effects 
of induced technological change in his opinion.  

Bosetti, Carraro et al.(Bosetti et al. 2011) examined the economic efficiency and mitigation cost 
implications of climate-related R&D and LBD. They used a two-factor learning curve with 
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decreasing marginal returns, so that investment costs for renewable power generation and 
breakthrough low-carbon technologies was reduced by investments in targetted R&D and 
technology deployment. The study, implemented using the WITCH model, found that R&D and 
the subsequent innovation not only reduced the capital cost of technology, but also lowered the 
overall mitigation cost and reduced CO2 emissions in the absence of a climate policy. The study 
also found that R&D expenditures consistent with the peak historical rate at 0.2% of Global World 
Product (GWP) can achieve similar emission reductions by the end of the century compared with a 
large R&D program at 2% GWP, though it achieved lower emission reductions in the medium 
term. This was due to a shift of consumption from earlier to later time periods, plus the 
diminishing returns of the R&D investment. Finally, the study found that despite small economic 
costs in the early decades, by internalizing international technological externalities and forcing 
higher innovation investments in earlier periods, innovation policies delivered some net welfare 
gains during the second half of the century, at the expense of initial losses.  

While the concept of a two-factor learning curve is theoretically appealing, others have pointed to 
at least two significant problems with this approach, as noted earlier in Section 3. The first is data 
availability. Reliable data on public and (especially) private-sector R&D spending is often hard to 
come by, and the quality of available data is often an issue (Capros et al. 2005). The second major 
shortcoming is the high degree of co-linearity between the two variables. That is, both R&D 
investments and cumulative production or capacity may respond to the same drivers and/or 
directly influence one another (Söderholm & Klaassen 2007; Barreto & Kypreos 2004). An 
increase in product sales, for example, may stimulate R&D spending to further improve the 
product. In addition, from a policy perspective, there is a distinct difference between government-
funded and private sector R&D. Since these funding sources can have very different effects on the 
cost and performance of a specific technology (Wene 2008), R&D policy conclusions based on a 
single (combined public/private) R&D indicator can be quite misleading. Nonetheless, for 
purposes of projecting technology cost trajectories, a two-factor model—if available—can, in 
principle, provide a better estimate that the more prevalent one-factor model.  

5 Summary and Conclusions 

The phenomenon of unit cost reduction associated with increased production (learning-by-
doing) has long been documented for manufactured products. In recent decades this has 
been extended to model the cost of various energy supply technologies. The most common 
approach to characterize this relationship is the use of a log-linear experience curves (or 
learning curve) relating a reduction in the unit cost of a technology to its cumulative 
production or installed capacity. This model formulation also has become a common method 
of representing endogenous technical change in energy-economic models used for policy 
analysis.  

Yet, there are significant uncertainties in the underlying drivers of technological change; in 
our understanding of the major factors that contribute to learning; and in the “proper” 
formulation of an experience curve (including the appropriate shape and parameters of an 
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experience-based model). Thus, there is uncertainty in how best to use learning curves for 
making projections and analyzing policy scenarios.  

In this report, we reviewed the theory of technological change and the underlying drivers for cost 
reduction reported in the literature. We conducted a comprehensive literature review for eleven 
power generation technologies including fossil-based power plants, nuclear plants, and a variety of 
renewable electric technologies. The results are summarized in Table 4 below.  

Table 4: Range of reported one-factor and two-factor learning rates for electric power 
generation technologies. 

 Technology  
Number 
of studies 
reviewed 

Number 
of studies 
with one 

factor 

Number 
of studies 
with two 
factors 

Range of 
learning rates 

for “learning by 
doing” (LBD)  

Range of rates 
for “learning by 

researching” 
(LBR)  

Years 
covered 

across all 
studies 

Coal* 
PC  2 2 0 5.6% to 12% 1902-2006 

IGCC 1 1 0  2.5% to 7.6% Projections 
Natural Gas* 8 6 2 -11% to 34%  2.38% to 17.7% 1980-1998 
Nuclear 4 4         0 <0 to 6% 1975-1993 
Wind (on-shore) 35 29 6  -3% to 32%  10% to 26.8% 1980-2010 
Solar PV 24 22 2  10% to 53% 10% 1959-2001 
BioPower 

Biomass production 4 4 0  12% to 45% 1971-2006 
Power generation* 7 7 0  0% to 24% 1976-2005 

Geothermal power 3 0 0 1980-2005 
Hydropower 3 0 2  0.48% to 11.4%  2.63% to 20.6% 1980-2001 

*Does not include plants with CCS.   **Includes combined heat and power (CHP) and biodigesters. 
 

We found that there is a wide variation in reported learning rates. Some studies include both 
learning-by-doing and learning-by-researching (reflecting R&D spending), and report both values. 
In general, there are wide variations even within the same technologies, and no clear trend of 
learning rates associated with a certain type of technologies, time periods, or regions. Though we 
also found a narrower range of smaller learning rates associated with fossil power plants, whereas 
renewable technologies (wind, solar, biopower) have a wide range of learning rates including 
values as high as 45% to 53%. With the exception of nuclear power, all the studies we reviewed 
report cost reductions with increased installed capacity.  

Some energy models have experimented with incorporating learning curves and explored the 
impacts on model results. In general, when one-factor learning curves are adopted, models with 
endogenous technological learning (ETL) (via learning curves) tend to project higher penetrations 
of advanced technologies and have lower overall costs compare to models that do not take ETL 
into account. The conclusions are much more complicated when both learning-by-doing and 
learning-by-researching (R&D) are included in the model. In general, R&D investments also lead 
to cost reduction. However, when R&D costs are included in the model, there are opportunity 
costs associated with R&D investments in energy technologies, which add costs to the system. 

There are two key categories of uncertainties associated with the application of experience curves. 
One is the learning curve itself; the other concerns the conclusions drawn from the use of learning 
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curves. Despite a rich literature in learning-by-doing and extensive documentation of historical 
learning for energy technologies, there remains a large degree of uncertainty as to how reliably 
historical learning curves can be used to estimate the future cost of the same or similar technology. 
Thus, the judgment of technology experts and modelers is still required and used to address a host 
of questions, such as: What is the appropriate learning rate? When does learning begin (and end)? 
What is the appropriate shape of a learning curve? What is the appropriate measure of experience? 
Do costs always decrease over time?      
The second key uncertainty, regarding the integrity of policy-related conclusions drawn from the 
use of learning curves, is similarly a topic of discussion and debate. Thus, it is argued, for example,  
that without a better understanding and ability to model the underlying drivers of technology cost 
reductions, model projections based on learning rates obtained from one-factor learning curves 
may inappropriately lend support to policies that favor certain technologies or investment 
strategies. 

So what are energy modelers to do in the face of these uncertainties and our limited understanding 
of the processes underlying technological change? For one, an expanded and more systematic use 
of sensitivity studies, especially the testing of alternative model formulations, should be pursued to 
better and more fully characterize their implications for projected cost reductions and rates of 
technological change. This also will have implications for the portfolio of technologies that models 
select in any given scenario. Relatively simple computer experiments can be used to begin 
exploring these implications.   

Over the longer term, continued research into the underlying factors that govern or influence 
technological innovations and diffusion may yield improved models that can more reliably 
forecast the implications of proposed energy and environmental policy measures. In the meanwhile, 
more concerted efforts are needed to explore, understand and display the consequences of 
uncertainties in current formulations of technology experience curves used to project the future 
cost of energy technologies. 
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Appendix  A:  Learning Curves from Previous Studies 

Table A1:  Single factor learning rates for pulverized coal-fired power plants reported in the 
literature. 

Study 
Time 

period 
Region Scope 

Learning 
Rate 

R2 Dependent variable Explanatory variable 

McNerney et 
al (2011) 

1902-2006 US 
Pulverized 
coal plant 

12% NA Capital cost ($/kW) 
Cumulative Installed 
Capacity (MW)(US) 

Yeh and Rubin 
(2007) 

 
1942-1999 US 

Pulverized 
coal plant 

5.6% 0.94 
Construction Cost 
($/kW) 

Cumulative Installed 
Capacity (MW)(World) 

 

Table A2: Single factor learning rates for natural gas power plants reported in the literature.  

Study 
Time 

period 
Region Scope 

Learning 
Rate 

R2 Dependent variable Explanatory variable 

Van den Broek 
20091 

n/a Global GTCC 10% n/a Capital Cost ($/kW) n/a 

Van den Broek 
2009 

n/a Global 
NGCC w/ 
amine 
capture  

11% n/a n/a n/a 

Van den Broek 
2009 

n/a Global 

Compress
ion of 
CO2 at 
NGCC-
CCS Plant 

0% n/a n/a n/a 

Colpier 2002  
US & 
EU 

GTCC 
Plant 

0% n/a 
Specific Investment 
Price ($/kW) 

Cumulative Installed 
Capacity (MW) 

Colpier 2002 1991-1997 
US & 
EU 

GTCC 
Plant 

25% n/a 
Specific Investment 
Price ($/kW) 

Cumulative Installed 
Capacity (MW) 

Colpier 2002 1981-1997 
US & 
EU 

GTCC 
Plant 

25%2 n/a 
Electricity Production 
Cost ($/kWh) 

Cumulative Production 
(TWh) 

Colpier 2002 1981-1997 
US & 
EU 

GTCC 
Plant 

6%3 n/a 
Electricity Production 
Cost ($/kWh) 

Cumulative Production 
(TWh) 

IEA 2000 1981-1997 
Europe 
and 
NAFTA  

NGCC 
Plant 

10% n/a Price ($/kW) 
Cumulative Installed 
Capacity (GW) 

MacGregor 
1991 via 
McDonald 
2001 

1963-1980 World 
Gas 
Turbine 

10% n/a 
Specific Investment 
Cost ($/kW) 

Cumulative Installed 
Capacity (MW) 

MacGregor 
1991 via 
McDonald 
2001 

1958-1990 World 
Gas 
Turbine 

13% 0.94 
Specific Investment 
Cost ($/kW) 

Cumulative Installed 
Capacity (MW) 

1Data used in this analysis was obtained from the IECM model at Carnegie Mellon University 
2Natural gas prices vary by year               
3Natural gas prices are assumed to be constant throughout the period  
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Table A3: Single-factor learning rates for wind power reported in the literature.  

Study 
Time 
period 

Region Scope 
Learning 
Rate 

R2 Dependent variable Explanatory variable(s) 

Wiser 2012 1982-2004 Global 
Land-based 
wind farm 

14% n/a Capital cost ($/kW) 
Cumulative capacity 
(MW) 

Wiser 2012 1982-2010 Global 
Land-based 
wind farm 

8% n/a Capital cost ($/kW) 
Cumulative capacity 
(MW) 

Qui 2012 2003-2007 China 
Land-based 
wind farm 

4% n/a 
Price of electricity 
($/kWh) 

Cumulative capacity 
(MW), R&D spending ($) 

Lemming 2009 1985-2000 n/a 
Offshore wind 
farm 

10% n/a n/a n/a 

Junginger 2009 1988-2000 Global 
HVDC cable 
for offshore 
wind farm 

38% 0.966 
HVDC Cable Costs 
($/MW-km) 

Cumulative submarine 
HVDC installation (GW-
km) 

Junginger 2009 1970-2000 Global 

HVDC 
converter 
stations for 
offshore wind 
farm 

29% 0.581 
Price per converter station 
($/kW/station) 

Cumulative converter 
station installed (GW) 

Junginger 2009 
2000; 
2003 

Two 
offshore 
wind farms 

Offshore 
turbine 
installation 

77% n/a Installation time (days) 
Cumulative number of 
offshore turbines installed. 

Nemet 2009 1981-1995 Global 
Land-based 
turbines 

30% n/a Capital cost ($/kW) 
Cumulative capacity 
(MW) 

Nemet 2009 1981-2006 Global 
Land-based 
turbines 

8% n/a Capital cost ($/kW) 
Cumulative capacity 
(MW) 

Neij 2008 1990-2000 Global 
Land-based 
turbines 

11% n/a Turbine list price ($/kW) 
Cumulative installed 
capacity (MW) 

Junginger 20051 1992-2001 UK 
Land-based 
wind farm 

19% 0.978 
Turnkey investment cost 
($/MW) 

Global cumulative 
installed wind capacity 

Junginger 2005 1992-2001 UK 
Land-based 
wind farm 

21% 0.98 
Turnkey investment cost 
($/MW) 

Global cumulative 
installed wind capacity 

Junginger 2005 1990-2001 Spain 
Land-based 
wind farm 

15% 0.887 
Turnkey investment cost 
($/MW) 

Global cumulative 
installed wind capacity 

Junginger 2005 1990-2001 Spain 
Land-based 
wind farm 

20% 0.907 
Turnkey investment cost 
($/MW) 

Global cumulative 
installed wind capacity 

Junginger 2005 1990-1998 Spain 
Land-based 
wind farm 

18% 0.875 
Turnkey investment cost 
($/MW) 

Global cumulative 
installed wind capacity 

Junginger 2005 1990-1998 Spain 
Land-based 
wind farm 

23% 0.905 
Turnkey investment cost 
($/MW) 

Global cumulative 
installed wind capacity 

Neij 2004 1981-2000 Denmark 

Turbines 
produced by 
Danish 
Manufacturers 

8% 0.84 
Price of wind turbines 
($/kW) 

Cumulative capacity 
produced (MW) 

Neij 2004 1987-2000 Germany 

Turbines 
produced by 
German 
manufacturers 

6% 0.74 
Price of wind turbines 
($/kW) 

Cumulative capacity 
produced (MW) 

Neij 2004 1981-2000 Denmark 

Turbines 
produced by 
Danish 
Manufacturers 

14% 0.97 
Specific production cost 
($/kWh) 

Cumulative capacity 
produced (MW) 

Neij 2004 1987-2000 Germany 

Turbines 
produced by 
German 
manufacturers 

12% 0.87 
Specific production cost 
($/kWh) 

Cumulative capacity 
produced (MW) 

Neij 2004 1981-2000 Denmark 
Turbines 
produced by 

17% 0.97 
Levelized production cost 
($/kWh)[4] 

Cumulative capacity 
produced (MW) 
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Danish 
Manufacturers 

Neij 2004 1987-2000 Germany 
Turbines 
installed in 
Germany 

6% 0.88 
Price of wind turbines 
($/kW) 

Cumulative capacity 
installed (MW) 

Neij 2004 1981-2000 Denmark 
Turbines 
installed in 
Denmark 

9% 0.94 
Price of wind turbines 
($/kW) 

Cumulative capacity 
installed (MW) 

Neij 2004 1981-2000 Denmark 
Wind farms 
built in 
Denmark 

10% 0.92 
Total installation cost 
($/kW) 

Cumulative installed 
capacity (MW) 

Neij 2004 1984-2000 Spain 
Wind farms 
built in Spain 

9% 0.85 
Total installation cost 
($/kW) 

Cumulative installed 
capacity (MW) 

Neij 2004 1994-2000 Sweden 
Wind farms 
built in 
Sweden 

4% 0.32 
Total installation cost 
($/kW) 

Cumulative installed 
capacity (MW) 

Ibenholt 2002 1991-1999 Germany 
Land-based 
turbine 

-3% n/a 
Price of electricity 
($/kWh) & Cumulative 
installed capacity (MW) 

R&D, input prices, 
technology-pushing 
policies, competition, 
economies of scale 

Ibenholt 2002 1991-1999 UK 
Land-based 
turbine 

25.1% n/a 
Price of electricity 
($/kWh) & Cumulative 
installed capacity (MW) 

R&D, input prices, 
technology-pushing 
policies, competition, and 
economies of scale 

Ibenholt 2002 1984-1999 Denmark 
Land-based 
turbine 

7.8% n/a 
Price of electricity 
($/kWh) & Cumulative 
installed capacity (MW) 

R&D, input prices, 
technology-pushing 
policies, competition, and 
economies of scale 

Ibenholt 2002 1984-1988 Denmark 
Land-based 
turbine 

11.7% n/a 
Price of electricity 
($/kWh) & Cumulative 
installed capacity (MW) 

R&D, input prices, 
technology-pushing 
policies, competition, and 
economies of scale 

Ibenholt 2002 1988-1999 Denmark 
Land-based 
turbine 

7.5% n/a 
Price of electricity 
($/kWh) & Cumulative 
installed capacity (MW) 

R&D, input prices, 
technology-pushing 
policies, competition, and 
economies of scale 

IEA 2000 1985-1994 US 
Land-based 
wind farm 

32% n/a 
Cost of Electricity 
($/kWh) 

Cumulative production 
(TWh) 

IEA 2000 1980-1995 EU 
Land-based 
wind farm 

18% n/a 
Cost of Electricity 
($/kWh) 

Cumulative production 
(TWh) 

IEA 2000 1990-1998 Germany 
Wind turbines 
sold in 
Germany 

8% n/a 
Specific investment price 
($/kW) 

Cumulative capacity 
(MW) 

IEA 2000 1982-1997 Denmark 

Turbines 
produced by 
Danish 
Manufacturers 

4% n/a Price ($/kW) Cumulative Sales (MW) 

Kouvaritakis 
2000 via 
McDonald 2001 

1981-1995 OECD 
Land-based 
wind farm 

17% 0.94 
Specific investment cost 
($/kW) 

Cumulative capacity 
(MW) 

Durstewitx 1999 
via McDonald 
2001 

1990-1998 Germany 
Land-based 
wind farm 

8% 0.95 
Specific investment price 
($/kW) 

Cumulative capacity 
(MW) 

Neij 1999 via 
McDonald 2001 

1982-1997 Denmark 
Land-based 
wind farm 

8% n/a 
Specific investment price 
($/kW) 

Cumulative capacity 
(MW) 

CEC 1997 & 
Loiter 1999 via  
McDonald 2001 

1980-1994 California 
Land-based 
wind farm 

18% 0.85 
Specific production cost 
($/kWh)[3] 

Cumulative production 
(TWh) 

1Junginger 2005 reports two different values for each country for each period based on two different GDP 
deflator values. 
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Table A4: Multi-factor learning-diffusion models for wind power 

Study 
Time 

period 
Region Scope 

Learning 
Rate 

R2 
Dependent 
Variable 

Explanatory Variable(s) 

Ek 2010 1986-2002 Global 
Land-based 
wind farm 

LBD= 17%, 
LBR= 20% 

0.88 
Investment Price 
($/kW) 

R&D ($) and cumulative 
capacity (MW) 

Jamasb 2007 1980-1998 Global 
Land-based 
wind farm 

LBD = 
13.1%, LBR 
= 23.8% 

n/a 

Unit cost of 
generation ($/kW) 
and cumulative 
installed 
generation 
capacity (MW) 

Cumulative private and public 
R&D spending (million $), 
cumulative number of 
technology patents, time 
variable (years) 

Soderholm 
2006 

Varies by 
country 

Global based 
on data from 
Denmark 
(1986-1999), 
Germany 
(1990-1999), 
Spain (1990-
1999), 
Sweden 
(1991-2002), 
and UK 
(1991-2000) 

Wind farm 

LBD= 
3.1%,  
LBR= 
13.2% 

0.81 
Investment Price 
($/kW) 

R&D ($) and cumulative 
capacity (MW) 

Klaassen 
2005 

1986-2000 
Denmark, 
UK, & 
Germany 

Land-based 
wind farm 

LBD = 
5.4%, LBR 
= 12.6% 

0.72 
Specific 
investment cost 
($/kW) 

R&D ($) and cumulative 
capacity (MW) 

Miketa 2004 1979-1997 Global 
Land-based 
turbine 

LBD= 
9.73%, 
LBR= 10% 

0.8 
Investment cost 
($/kW) 

Cumulative Capacity (GW) 
and knowledge stock 
(cumulative R&D minus 
depreciation) 
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Table A5: Single factor learning rates for solar PV reported in the literature.  

Study 
Time 

period 
Region Scope 

Learning 
Rate 

R2 
Dependent 

variable 
Explanatory variable 

Schaeffer 2004 via 
Neij 2008 

1992-2001 Germany PV modules 
16%, 47%, 
21% 

n/a n/a n/a 

Schaeffer 2004 via 
Neij 2008 

1976-2001 Netherlands PV modules 10% n/a n/a n/a 

Schaeffer 2004 via 
Neij 2008 

1976-2001 Global PV modules 12% n/a n/a n/a 

Schaeffer 2004 via 
Neij 2008 

1992-2001 Germany PV BOP1 12% n/a n/a n/a 

Schaeffer 2004 via 
Neij 2008 

1992-2001 Netherlands PV BOP 19% n/a n/a n/a 

Strategies United 
2003 via Neij 2008 

1976-2001  PV modules 20% n/a n/a n/a 

Strategies United 
2003 via Neij 2008 

1976-2001  PV modules 23% n/a n/a n/a 

Maycock 2002 and 
Nemet 2006 via 
Neij 2008 

  PV BOS 26% n/a n/a n/a 

Parente 2002 via 
Neij 2008 

1981-2000  PV modules 23% n/a n/a n/a 

OECD/IEA 2000 
via Neij 2008 

1976-1996  
Crystalline 
silicone PV 
modules 

20% n/a n/a n/a 

Harmon 2000 via 
McDonald 2001 
 

1968- 
1998 OECD 

 

World Panel or Plant 20% 0.99 
Specific 
Investment Price 
($/kW Peak) 

Cumulative Installed 
Capacity (MW) 

IEA 2000 via 
McDonald 2001 

1985-1995 EU  35% n/a 
Production Cost 
($/kWh) 

Cumulative Production 
(TWh) 

IEA 2000 via 
McDonald 2001 

1976-1992 World  18% n/a 
Sale Price ($/W 
Peak) 

Cumulative Sales 
(MW) 

IEA 2000 via 
McDonald 2001 

1976-1992 EU  21% n/a 
Sale Price ($/W 
Peak) 

Cumulative Sales 
(MW) 

IEA 2000 via 
McDonald 2001 

1976-1992 EU  16% n/a 
Sale Price ($/W 
Peak) 

Cumulative Sales 
(MW) 

IEA 2000 via 
McDonald 2001 

1976-1992 EU  53% n/a 
Sale Price ($/W 
Peak) 

Cumulative Sales 
(MW) 

Harmon 2000 via 
Ferioli 2009 

  PV modules 20% 0.99 Price ($/W) 
Cumulative Capacity 
(GW) 

Watanabe 1999 1981-1995 Japan PV modules 22% n/a n/a n/a 
Cody 1997 via Neij 
2008 

1976-1988 US PV modules 22% n/a n/a n/a 

Williams 1993 via 
Neij 2008 

1976-1988 Global PV modules 18% n/a n/a n/a 

Tsuchiya 1992 via 
Neij 2008 

1979-1988 Japan 
Crystalline 
silicon PV 
modules 

21% n/a n/a n/a 

Maycock 1975, via 
McDoanld 2001 

1959-1974 US  22% 0.94 
Specific Sale 
Price ($/kW 
Peak) 

Cumulative Installed 
Capacity (MW) 

1BOP = Balance of plant 

Table A6: Multi-factor learning-diffusion models for solar PV 

Study 
Time 

period 
Region Scope Learning Rate R2 

Dependent 
Variable 

Explanatory Variable(s) 

Kobos et al, 2006 1981-1997 Global n/a 
LBD = 18.4%,  
LBR = 14.3% 

0.99 
(adj. R2) 

n/a 
Cumulative Capacity (GW) and 
knowledge stock (cumulative R&D 
minus depreciation) 

Miketa 2004 1971-1997 Global PV LBD = 17.46%,  0.94 Price ($/W) Cumulative Capacity (GW) and 
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modules LBR = 10% knowledge stock (cumulative R&D 
minus depreciation) 

 

Table A7: Single factor learning rates for biomass feedstock and biomass energy reported in 
the literature.  

Study Time period Region Scope 
Learning 
 rate 

R2 
Dependent 
variable 

Explanatory 
variable 

Van den Wall Bake 2009 1975-2004 Brazil 
Sugarcane 
production 

32% 0.85 
Sugarcane cost 
($/TC1) 

Cumulative 
sugarcane 
production (million 
TC) 

Hettinga 2009 1980-2005 US Corn 45% 0.87 
Corn cost 
($/tonne) 

Cumulative corn 
production (million 
tonnes) 

Berghout 2008 1971-2006 Germany Rapeseed 19.6% 0.97 
Rapeseed 
production cost 
($/tonne) 

Cumulative 
rapeseed 
production (million 
tonnes) 

Koornneef 2006 1976-2005 Global 
Fluidized 
bed CHP 
plant 

7-10% n/a 
Price ($/kWe 
net) 

Cumulative FBC 
capacity (MWe net) 

Junginger 2006 1990-2002 Sweden 
Fluidized 
bed CHP 
plant 

13% 0.21 
Specific 
investment cost 
($/kW) 

Cumulative 
installed capacity 
(MWe) 

Junginger 2006 1990-2002 Sweden 
Fluidized 
bed CHP 
plant 

8-9% n/a 
Electricity 
production cost 
($/kWh) 

Cumulative 
electricity 
production (MWh) 

Junginger 2006 1988-1998 Denmark Bio digester 12% n/a 
Investment cost 
($/day) 

Cumulative 
digester capacity 
(m3/day) 

Junginger 2006 1984-1997 Denmark Bio digester 24% 0.98 
Production cost 
($/Nm3) 

Cumulative biogas 
production 
(Nm3/day) 

Junginger 2006 1984-1991 Denmark Bio digester 15% 0.98 
Production cost 
($/Nm3) 

Cumulative biogas 
production 
(Nm3/day) 

Junginger 2006 1991-2001 Denmark Bio digester 0% n/a 
Production cost 
($/Nm3) 

Cumulative biogas 
production 
(Nm3/day) 

Juginger 2005 1975-2003 
Sweden 
and 
Finland 

Forest 
residue 

12-15% n/a 
Fuel wood 
prices ($/GJ) 

Cumulative PFF2 
production (PJ) 

1Tonne of cane 
2PFF: primary forest fuel.  
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Table A8: Single factor progress rates for hydroelectric projects reported in the literature.  

Study 
Time 

period 
Region Scope Learning Rate R2 

Dependent 
Variable 

Explanatory Variable(s) 

Kouva-
ritakis 
2000 

1975-
1990 

OECD Hydro 1.4% n/a 
Investment Cost 
($/MW) 

Cumulative Capacity (MW) 

 

Table A9: Multi-factor learning-diffusion models for hydroelectric power 

Study 
Time 

period 
Region Scope Learning Rate R2 

Dependent 
Variable 

Explanatory Variable(s) 

Jamasb 
2007 

1980-
2001 

Global 
Large 
Hydro 

LBD = 1.93%, 
LBR = 2.63% 

n/a 

Unit cost of 
generation 
($/kW) and 
cumulative 
installed 
generation 
capacity (MW) 

Cumulative private and 
public R&D spending 
(million $), cumulative 
number of technology 
patents, time variable (years) 

Jamasb 
2007 

1988-
2001 

Global 
Small 
Hydro 

LBD = 0.48%, 
LBR = 20.6% 

n/a 

Unit cost of 
generation 
($/kW) and 
cumulative 
installed 
generation 
capacity (MW) 

Cumulative private and 
public R&D spending 
(million $), cumulative 
number of technology 
patents, time variable (years) 
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Appendix  B:  Characteristics of Energy Models with Learning 

Table B1. Message Model 

Model MESSAGE 

Modeling Type Optimization 

Geographic Scope Global 

Data Sources Rao, Keppo, and Riahi (Rao et al. 2006) 

Type of learning 
Default is exogenous (AEEI). Endogenous learning - single factor and constant learning 
rate is applied in some studies 

Technology 
representation/details 

A total of 18 technologies are assumed to have ETL. Learning rates range from 0-15%. 
Exogenous learning rates of 3-5% are assumed according to the B2 scenario for the other 
technologies.  

Cluster learning 

Spillover across tech. ‘technology clusters’ has been applied in several modeling 
approaches (Seebregts et al. (Seebregts et al. 2000); Riahi et al. (Riahi et al. 2005)). 
Technological spillovers can occur within a cluster (for example: carbon capture 
technologies, centralized and decentralized solar PV) but not from outside the cluster (for 
example: improvements in the semi-conductor industry).  

Spillover 

Spillover across regions. The learning process for technology improvements is assumed to 
take place on a global scale. Although this might not necessarily be consistent with the 
existence of trade barriers, regional economic blocks or the importance of localized 
learning 

MACRO 

MESSAGE and MACRO are linked iteratively to include the impact of policies on energy 
costs, GDP and on energy demand. MACRO, a top-down macroeconomic equilibrium 
model captures capital stock, available labor, and energy inputs determine the total output 
of an economy according to a nested constant elasticity of substitution (CES) production 
function. The linking of a bottom-up technology-rich model and a top-down 
macroeconomic model results in a fully consistent evolution of energy demand quantities, 
prices, and macroeconomic indicators (such as GDP, investments and savings).  

Key insights 

1. The existence of technological learning while reducing overall energy system costs 
becomes particularly important in the context of a long-term climate policy. 2. Spillovers 
across technologies and regions due to learning results in increased upfront investments and 
hence lower costs of carbon free technologies, thus resulting in technology deployment and 
emissions reductions, especially in developing countries.3. Learning and spillover effects 
can lead to technologically advanced cost-effective global energy transition pathways. 4. 
Earlier studies using the MESSAGE model (Roehrl and Riahi (Roehrl & Riahi 2000); 
Nakicenovic and Riahi (Nakicenovic & Riahi 2001)) have shown that alternative 
parameterizations of technological change have significant implications for the technology 
portfolio as well as associated costs. 
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Table B2. ReMIND-R Model 
Model ReMIND-R 
Modeling Type Optimization (Welfare Maximization) 
Geographic Scope Global 
Data Sources Luderer, Liembach, et al. (Luderer et al. 2010) 
Type of learning Endogenous  - single factor 
Technology 
representation/details 

A detailed representation of technology - around 30+ energy conversion technologies 
including 13 electricity generation technologies. Learning is assumed for only two 
technologies - Solar PV, Solar CSP and Wind. Learning rates and floor investment costs are 
defined. Learning is also assumed for energy storage technologies which are used in 
conjunction with renewable electricity 

Spillover Spillover across regions. The learning process for technology improvements is assumed to 
take place at a global scale 

Notes Learning rate for storage technologies is assumed to be 10% 

 
 
Table B3. WITCH08 Model 

Model WITCH08 
Modeling Type Optimization (Welfare Maximization) 
Geographic Scope Global 
Data Sources Bosetti et al. (Bosetti et al. 2009); Bosetti et al. (Bosetti et al. 2011) 
Type of learning Endogenous - Two Factors 
Technology 
representation/details 

Learning-by-Doing and Learning-by-Researching is assumed for Wind, Solar, two 
portfolios of Backstop technologies producing electricity and non-electricity fuels 
(primarily H2). A uniform LbD of 13% and LbR of 10% is assumed  

Cluster learning A portfolio of backstop technologies is considered - this may be considered a cluster 
Spillover Spillover across regions. The learning process for technology improvements is assumed to 

take place at a global scale - global knowledge stock and global capacity buildup 
Key insights (1) Innovation alone unlikely to effectively control climate change. Even under large 

increases in global climate- related R&D spending, emissions can be at best stabilised above 
current levels and CO2 concentration be reduced by about 50 ppm relative to baseline by 
2100 (from over 700 ppm to about 650 ppm, or over 750 ppm CO2eq). Carbon pricing is 
important.   

Notes 1. R&D investments reduce the investment costs of renewable and backstop technologies. 
They also increase the energy efficiency of overall production function by"... contributing to 
accumulation of knowledge capital that substitutes for energy demand. 

 
Table B4. POLES Model 

Model POLES 
Modeling Type Partial equilibrium optimization 
Geographic Scope Global 
Data Sources Edenhofer et al. (Edenhofer et al. 2010) 
Type of learning Endogenous - Two Factors 
Technology 
representation/details 

Learning rates for wind and solar only. Learning rate evolves with the distance to floor costs. 
PV: 20% in 2010, 4% in 2050; large scale solar: 30% in 2010, 3% in 2050; wind: 14% in 
2010, 5% in 2050 

Spillover Spillover across regions. The learning process for technology improvements is assumed to 
take place at a global scale 
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Table B5. GCAM Model 
Model GCAM 

Modeling Type Dynamic-recursive model (partial equilibrium) 
Geographic Scope Global coverage with 14 regions 
Data Sources Clarke et al. (Clarke et al. 2008) 
Type of learning Exogenous (AEEI) 
Technology 
representation/details 

Technology-detailed bottom-up modeling 

Note 
Comparison of technology change assumptions in GCAM with other large scale models can 
be found in Clarke et al. (Clarke et al. 2006) and Clarke et al. (Clarke et al. 2008). 

 
Table B6. MARKAL-TIMES Model- Europe 

Model MARKAL-TIMES 
Modeling Type Partial equilibrium optimization 
Geographic Scope Western Europe 
Data Sources Seebregts et al. (Seebregts et al. 2000)  
Type of learning Default is exogenous (AEEI). Some studies experimented endogenous  - single factor and 

constant learning rate.  
Technology 
representation/details 

Technology-detailed bottom-up modeling 

Cluster learning Five clusters: wind turbines (WT), solar PV modules (PV), fuel cells (FC), gasifiers (GF), 
and gas turbines (GT). 

Key insights 1.the overall costs for CO2 reduction are lower with learning (ETL) than without (NETL). 2. 
‘cluster feature’ improves the internal consistency and allows for assessment of spill-over 
and cross-over effects 

 
Table B7. MARKAL-TIMES Model- Global 

Model MARKAL-TIMES 

Modeling Type Partial equilibrium optimization 
Geographic Scope Global five world regions 
Type of learning Endogenous  - single factor and constant learning rate 
Technology 
representation/details 

Technology-detailed bottom-up modeling 

Spillover The multi-regional model allows simulation of bi-lateral and global trade of selected energy 
or environmental commodities (e.g., fuels, electricity, 
emission permits. In addition, the marginal cost of emission reduction are equalized across 
the regions. Based on the two above conditions, regional spillover are implicitly modeled.  

Data Sources Rafaj et al.(Rafaj et al. 2005) 
Key insights endogenized technology learning substantially reduces the overall cost of CO2 mitigation 
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Appendix  C:  IPCC Review of Endogenous Learning in 
Global Top-Down Models 

Table C1: IPCC Review of Endogenous Learning in Global Top-Down Models (IPCC 2007). 

Study Model 
ETC 

channel 

Number of 
production 

sectors 

Number 
of 

regions 

Major results  
(impact of ETC) 

Comments 
Focus of 
analysis 

Bosetti et 
al., 2006 
  

FEEM-
RICE 
  

LBD 
  

1  8  An index of energy 
technological change 
increases elasticity of 
substitution. Learning-by-
doing in abatement and 
R&D investments raise the 
index. Energy technological 
change explicitly decreases 
carbon intensity. 

 
  

Experimenta
l model 
exploring 
high inertia. 
  

Crassous et 
al., 2006 
  

IMACLI
M-R 
GCE 
  

R&D 
and LBD 
  

1  5  Cumulative investments 
drive energy efficiency. 
Fuel prices drive energy 
efficiency in transportation 
and residential sector. 
Learning curves for energy 
technologies (electricity 
generation). 

Endogenous 
labour 
productivity, 
capital 
deepening. 
  

 
  

Edenhofer 
et al., 2006 
  

MIND 
Optimal 
growth 
  

LBD 
  

1  1  R&D investments improve 
energy efficiency. Factor 
substitution in a constant-
elasticity-of-substitution 
(CES) production function. 
Carbon-free energy from 
backstop technologies 
(renewables) and CCS. 
Learning-by-doing for 
renewable energy. R&D 
investments in labour 
productivity. Learning-by-
doing in resource extraction 
  

 
  

 
  

Gerlagh, 
2006 
  

DEMET
ER-1 
CCS 
  

LBD 
  

1  1  Factor substitution in CES 
production. Carbon-free 
energy from renewables and 
CCS. Learning-by-doing for 
both and for fossil fuels. 

 
  

 
  

Masui et al., 
2006 
  

AIM/Dy
namic - 
Global 
  

R&D 
  

9  6  Factor substitution in CES 
production. Investments in 
energy conservation capital 
increase energy efficiency 
for coal, oil, gas and 
electricity. Carbon-free 
energy from backstop 
technology 
(nuclear/renewables). 
  

 
  

Focus on 
energy 
efficiency 
with limited 
supply-side 
substitution. 
  

Popp, 2006 
  

ENTICE
-BR 
  

R&D 
  

1  1  Factor substitution in Cobb-
Douglas production. R&D 
investments in energy 
efficiency knowledge stock. 
Carbon-free energy from 
generic backstop 
technology 

R&D 
investments 
lower price 
of energy 
from 
backstop 
technology. 
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Rao et al., 
2006 
  

MESSA
GE/MA
CRO 
CGE 
  

LBD 
  

1  11  Carbon-free energy from 
backstop technologies 
(renewables, carbon 
scrubbing & sequestration). 
Learning curves for 
electricity generation and 
renewable hydrogen 
production 

Factor 
substitution 
in CES 
production in 
MACRO. 
  

 
  

Barker et 
al., 2006 
  

E3MG, 
econome
tric 
  

LBD and 
R&D 
  

41  20  Cumulative investments and 
R&D spending determine 
energy demand via a 
technology index. Learning 
curves for energy 
technologies (electricity 
generation). Cumulative 
investments and R&D 
spending determine exports 
via a technology index. 
  

Econometric 
model. 
Investments 
beyond 
baseline 
levels trigger 
a Keynesian 
multiplier 
effect. 
Sectoral 
R&D 
intensities 
stay constant 
overtime 

Long-term 
costs of 
stabilization 
Income and 
production 
losses 
  

Bollen, 2004 
  

WorldSc
an CGE 
  

R&D 
(and 
occasion
ally 
LBD) 
  

12  12  ETC magnifies income 
losses. 
  

Includes 
international 
spillovers. 
No 
crowding-out 
effect 
  

Compliance 
costs of 
Kyoto 
protocol 
  

Kverndokk 
et al., 2004 
  

CGE 
model 
for a 
small 
open 
economy 
  

LBD 
  

1  1  Innovation subsidy is more 
important in the short term 
than a carbon tax. 
Innovation subsidy may 
lead to ‘picking a winner’ 
and ‘lock in’ 
  

Numerical 
illustrative 
model 
  

Optimal 
timing and 
mixture of 
policy 
instruments 
Welfare 
effects of 
technology 
subsidies 
  

Popp, 2004 
  

ENTICE, 
optimal 
growth 
  

R&D 
  

1  1  Impact on cost is 
significant. Impact on 
emissions and global 
temperature is small 
  

Partial 
crowding-out 
effect 
  

Welfare 
costs 
Sensitivity 
analysis of 
R&D 
parameters 

Rosendahl, 
2004 
  

Builds 
on 
Goulder 
and 
Mathai 
(2000) 
  

LBD 
  

1  2  Restrictions on emissions 
trading are cost-effective. 
Optimal carbon tax in 
Annex I region is increased 
with external spillovers 
  

Outcomes 
are sensitive 
to learning 
rate, discount 
rate and 
slope of 
abatement 
curve 
  

Optimal 
carbon tax 
(or permit 
price) over 
time in two 
regions 
Optimal 
emissions 
trading 
+restrictions 

Buonanno 
et al., 2003 
  

FEEM-
RICE 
optimal 
growth 
  

R&D 
and LBD 
  

1  8  Direct abatement costs are 
lower, but total costs are 
higher. 
ET ceilings have adverse 
effects on equity and 
efficiency. 

Factor 
substitution 
in Cobb-
Douglas 
production. 
  

Impact of 
emissions 
trading (+ 
restrictions) 
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Gerlagh and 
Van der 
Zwaan, 
2003 
  

DEMET
ER 
Optimal 
growth 
  

LBD 
  

1  1  Costs are significantly 
lower. Transition to carbon-
free energy. Lower tax 
profile. Early abatement 
  

Results are 
sensitive to 
elasticity of 
substitution 
between 
technologies 
as well as to 
the learning 
rate for non-
carbon 
energy 

Optimal tax 
profile 
Optimal 
abatement 
profile 
Abatement 
costs 
  

Nordhaus, 
2002 
  

R&DICE 
optimal 
growth 
  

R&D 
  

1  8  ETC impact is lower than 
substitution impact and 
quite modest in early 
decades. 
  

Deterministi
c 
Full 
‘crowding-
out’ of R&D 
High 
aggregation 
  

Factor 
substitution 
versus ETC 
Carbon 
intensity 
Optimal 
carbon tax 

Goulder and 
Mathai, 
2000 
  

Partial 
cost-
function 
model 
with 
central 
planner 
  

R&D 
LBD 
  

1  1  Lower time profile of 
optimal carbon taxes. 
Impact on optimal 
abatement varies depending 
on ETC channel. Impact on 
overall costs and cumulative 
abatement varies, but may 
be quite large 

Deterministi
c 
One 
instrument 
High 
aggregation 
Weak 
database 
  

Optimal 
carbon tax 
profile 
Optimal 
abatement 
profile 

Goulder and 
Schneider, 
1999 
  

CGE 
multisect
oral 
model 
  

R&D 
  

7  1  Gross costs increase due to 
R&D crowding-out effect. 
Net benefits decrease. 
  

Lack of 
empirical 
calibration 
Focus on 
U.S. 
Full 
‘crowding-
out’ effect 

Abatement 
costs and 
benefits 
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Appendix  D:  Review of Learning Rates for Electricity 
Generation Technologies in Bottom-up Energy System Models 
Table D1:  Review of learning rates for electricity generation technologies using one- and 
two-factor learning curves in selected bottom-up energy system models. 

Technology 

(a) One-factor learning curves  (b) Two-factor learning curves  

ERIS  MARKAL  MERGE-ETL  MESSAGE  ERIS  
MERGE-

ETL  
Learning  LBD  LBR  LBD  LBR  
Adv. coal  5%  6%  6%  7%  11%  5%  6%  4%  
NGCC  10%  11%  11%  15%  24%  2%  11%  1%  
New nuclear  5 % 4%  4%  7%  4%  2%  4%  2%  
Fuel cell  18%  13%  19%  -  19%  11%  19%  11%  
Wind power  8%  11%  12%  15%  16%  7%  12%  6%  
Solar PV  18%  19%  19%  28%  25%  10%  19%  10%  

Source: (IPCC 2007). 

Table D2: Review of learning rates for electricity generation technologies using one-factor 
learning curves in selected bottom-up energy system models. 

Technology Type MESSAGE(a) MESSAGE(b) MARKAL(c) 

Subcritical coal power plants 0% 0%  

Supercritical coal power plants 5% 3% 6% 

IGCC 10% 10%  

Single cycle gas PPL 0% 0%  

NGCC 8% 7% 10% 

Solar photovoltaics 15%  19% 

Solar thermal PPL 7%   

Wind power 7%  10% 

Conventional biomass PPL 4%   

Advanced biomass PPL 5%   

Renewable H2 10%   

Fossil H2 Exogenous (3-5%)   

Ethanol 10%   

Methonol Exogenous (3-5%)   

Carbon capture and storage 13%   

High temperature fuel cell (coal)  10%  

High temperature fuel cell (gas)  10% 18% 

CCS_coal  12% 7% 

CCS_gas  12% 10% 

CCS_IGFC  12%  

Hydrogen fuel cell CHP (Industrial sector)   18% 

Hydrogen fuel cell CHP (Res. & Com. sectors)   18% 

Advanced new nuclear   4% 

(a) (Rao et al. 2006);   (b) (Riahi et al. 2005);   (c) (Rafaj & Kypreos 2007) 


