Technical and Economic Assessment of Membrane-based Systems for Capturing CO₂ from Coal-fired Power Plants

Haibo Zhai and Edward S. Rubin Department of Engineering and Public Policy Carnegie Mellon University Pittsburgh, Pennsylvania

Presentation to the 2011 AIChE Spring Meeting, Chicago, IL

March 13-17, 2011

Parameter	Value
Plant capacity factor	75%
Feed flue gas flow rate (S.T.P m ³ /s)	500
Flue gas CO_2 concentration (volume)	13%
Flue gas pressure (bar)	1.0
Membrane CO ₂ /N ₂ selectivity (S.T.P)	50
Membrane CO ₂ permeance (S.T.P gpu)	1000
Compressor/ pump/expander efficiency	85%
Fixed charge factor	0.113
Electricity price(\$/kWh)	0.05
Compressor installed capital cost (\$/hp)	500
Vacuum pump installed capital cost (\$/hp)	1000
Expander unit capital cost (\$/kW)	500
Membrane module capital price (\$/m ²)	50

Comparisons between Multi-Stage Membrane
Systems @ 90% CO ₂ Capture

Variables	Two-stage system	Two-stage, two-step system with air sweep
Feed flue gas flow (m ³ /s) (w/o CCS)	500	500
Flue gas CO ₂ concentration (w/o CCS)	13%	13%
Membrane CO ₂ permeance (gpu)	1000	1000
Membrane CO ₂ /N ₂ selectivity	50	50
Feed-side pressure (bars)	3.0	2.0
Permeate-side pressure (bars)		
1 st and 2 nd stages	0.2	0.2
2 nd step	-	1.0
CO ₂ product purity	95%	98% ↑
Membrane area (m ² /tonnes/hr CO ₂)	3808	3766
System power use (kWh/tonne CO ₂)	399	265 ↓
Total capture cost (\$/tonne CO ₂)	45.6	32.7 ↓
Approximate cost of CO ₂ avoided (\$/t)	100.0	62.3 ↓ 20

Binary Gas Separation Models under Countercurrent Flow Pattern (cont'd)

For membrane separation systems with and without gas sweep, the mathematical models derived starting from mass balances are expressed as:

$$\frac{L}{L_{w}} = \frac{y - x_{w} + F_{w}(y - y_{w})}{y - x}$$
(1)

)

32

$$\frac{V}{L_w} = \frac{x_w - x + F_w(y_w - x)}{y - x}$$
(2)

$$u = \frac{u_w(y - x)}{y - x_w + F_w(y - y_w)}$$
(3)

$$v = \frac{v_w F_w(y - x)}{x_w - x + F_w(y_w - x)}$$
(4)

$$\frac{dy}{dx} = \frac{y - x_w + F_w(y - y_w)}{x - x_w + F_w(x - y_w)} \times \left\{ \frac{\alpha(1 - y)(x - \gamma y) - y[(1 - x - u) - \gamma(1 - y - v)]}{\alpha(1 - x)(x - \gamma y) - x[(1 - x - u) - \gamma(1 - y - v)]} \right\}$$
(5)

Binary Gas Separation Model under Countercurrent Flow Pattern (cont'd)

The dimensionless membrane area is estimated as:

$$\frac{dR^w}{dx} = \frac{y - x_w + F_w(y - y_w)}{(x - y)\{\alpha(1 - x)(x - \gamma y) - x[(1 - x - u) - \gamma(1 - y - v)]\}}$$
(6)

The governing equations above are solved using 4th order Runge-Kutta approach.

When there is no sweep gas used in the permeate side, the permeate concentration at the residue end is determined as (Pan and Habgood, 1974):

$$\frac{y_w}{1 - y_w} = \frac{\alpha(x_w - \gamma y_w)}{1 - x_w - u_w - \gamma(1 - y_w)}$$
(7)

Energy Use Estimation for Major Equipments

The energy use for the compressor and expander is estimated respectively as (Vallieres *et al*, 2003; Bounaceur *et al*, 2006; Favre, 2007; Yang *et al*, 2009):

$$E_{cp} = \frac{1}{\eta_{cp}} Q_{cp} \frac{\gamma RT}{\gamma - 1} \left[\left(\frac{P_h}{P_l} \right)^{\frac{\gamma - 1}{\gamma}} - 1 \right]$$
$$E_{ex} = \frac{1}{\eta_{ex}} Q_{ex} \frac{\gamma RT}{\gamma - 1} \left[1 - \left(\frac{P_l}{P_h} \right)^{\frac{\gamma - 1}{\gamma}} \right]$$

When vacuum pumps are used in the permeate side, the energy use is estimated as (Vallieres *et al*, 2003; Bounaceur *et al*, 2006; Favre, 2007; Yang *et al*, 2009):

$$E_{vp} = \frac{1}{\eta_{vp}} Q_{vp} \frac{\gamma RT}{\gamma - 1} \left[\left(\frac{P_h}{P_l} \right)^{\frac{\gamma - 1}{\gamma}} - 1 \right]$$

33

•	Capital cost (CC):	
	Process Area Costs	Plant Costs
	Membrane module	Process facilities capital (PFC)
	Membrane frame	General facilities capital (10% of PFC)
	Compressor	Eng. & home office fees (10% of PFC)
	Expander	Project contingency cost (15% of PFC)
	Vacuum pump	Process contingency cost (2% of PFC)
	Heat exchanger	Other indirect cost (e.g. ower's cost)
	CO ₂ product compression	
	Process facilities capital cost	Total capital requirement (TCR)
•	Fixed O&M cost (FOM): estima cost (Van der Sluus <i>et al</i> , 1992).	ated empirically as a percent of capital

Cost Item	Method	Cost Item	Method
Membrane module	$CC_{mm} = A_m \cdot c_m$	Vacuum pump	$CC_{vp} = e_{vp} \cdot c_{vp}$
Membrane frame	$CC_{mf} = \left(\frac{A_m}{2000}\right)^{0.7} \cdot c_{mf}$	Heat exchanger	$CC_{exch} = \left(\frac{q_f}{400}\right) \cdot c$
Compressor	$CC_{cpr} = e_{cpr} \cdot c_{cpr}$	CO ₂ prdt compr.	$CC_{mcpr} = e_{mcpr} \cdot c_n$
Expander	$CC_{exp} = e_{exp} \cdot k_{exp} \cdot F_h$	PFC	Sum of all abo
Note: A _m : membrane area (r cost (M\$3.5); c _m : men 0.238); c _{mcpr} : compres compressor power use use per unit (93.0 kWł	n ²); <i>c_{cpr}</i> ; installed unit co brane module price per sion unit cost (\$902/kW e (hp); <i>e_{exp}</i> ; expander po h/tonne CO ₂); <i>e_{vp}</i> ; vacu	ost (\$500/hp); c _{exch} ^{ref} : r r unit (\$/m ²); c _m ; referr '); c _{vp} : installed unit co ower use (kW); e _{mcp} ; (um pump power use (h	eferred heat exchar ed frame cost (M\$ st (\$1000/hp); e_{cpr} : CO ₂ compression po pp); F_h : equipment c

