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• Post-combustion carbon capture and storage (CCS) has been 
considered a key technology for deeply reducing carbon 
dioxide (CO2) emissions from existing and new coal-fired

Background

dioxide (CO2) emissions from existing and new coal fired 
power plants.

• Membranes have been used commercially for industrial gas 
separation, and have the potential for application to power plant 
flue gases.

• Membrane systems are among the advanced technologies 
being developed for more cost effective CO capturebeing developed for more cost-effective CO2 capture.
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Postcombustion Membrane Capture Systems 
for Coal-fired Power Plants
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• The objective of this study is to evaluate the technical feasibility 
and cost of polymeric membrane systems for CO2 capture at 
coal-fired power plants. More specifically, 

Research Objective

coa ed po e p a s o e spec ca y,
To investigate the performance (e.g. membrane system size and 
energy penalty) and cost of different capture system configurations 
(e.g. single- and multiple-stage modules) to identify feasible 
membrane systems that are able to simultaneously achieve 90% 
CO2 capture and above 95% purity of CO2 product; and 

To  examine a range of key factors affecting the capture system 
f d tperformance and cost.
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• The driving force for membrane gas separation is the partial pressure 
difference of a gas component between the feed and permeate sides. 
The flow flux of a gas component through membranes is:

Membrane Gas Separation Basics 

Where:
= the volume flux of a component (cm3(S.T.P)/cm2.s);
= membrane permeability that measures the ability of the membrane to 

permeate gas (cm3(S.T.P).cm/(s.cm2.cm Hg));
= membrane permeance (cm3(S.T.P)/(s.cm2.cm Hg))*;
= the membrane thickness (cm);
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( )
= the mole fraction of CO2 in the feed stream;
= the mole fraction of CO2 in the permeate stream;
= the feed-side pressure (cm Hg);
= the permeate-side pressure (cm Hg).

* Note:
Membrane permeance unit: 1 gas permeation unit (gpu)= 10-6 cm3(S.T.P)/(s.cm2.cm Hg)
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• Membrane selectivity: the ratio of two gas permeabilities and the 
measure of the ability of a membrane to separate two gases, such as 
CO2 versus N2.

Key Parameters for Membrane Gas 
Separation Process
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כ

• Pressure ratio: the pressure ratio for the feed versus permeate sides

• Stage cut: the flow fraction of the feed gas that permeates the 
membrane
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Technical and Economic Assessment Paradigm

Performance Model Cost Model

• Module structure • Membrane 
module and• Membrane ••

• Membrane 
properties (e.g. 
selectivity, 
permeance)

• Pressure designs

module and 
frame costs

• Power 
equipments cost 
(e.g. compr., 
vacuum pump, 
expander)

• Heat exchanger 
cost

• Flue gas flow

• CO2 vol.%

• Operating 
conditions

area

• System 
power use

• Permeate 
and residue 
flows

•Financing 
•U

nit cost factors
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• Capital cost

• O&M cost

• Total cost of 
capture 
($/tonne CO2)

Technical and Economic Assumptions for 
Assessment* 

Parameter Value
Plant capacity factor 75%
Feed flue gas flow rate (S.T.P m3/s) 500g ( )
Flue gas CO2 concentration (volume) 13%
Flue gas pressure (bar) 1.0
Membrane CO2/N2 selectivity (S.T.P) 50
Membrane CO2 permeance (S.T.P gpu) 1000
Compressor/ pump/expander efficiency 85%

Fixed charge factor 0.113

Electricity price($/kWh) 0 05

8

Electricity price($/kWh) 0.05

Compressor installed capital cost ($/hp) 500

Vacuum pump installed capital cost ($/hp) 1000

Expander unit capital cost ($/kW) 500

Membrane module capital price ($/m2) 50
*  Default values for case studies later, unless otherwise noted.
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Single-Stage Membrane Systems

Feed Residue

Permeate
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9

(CO2 product)

• Given Inputs: 
» Inlet CO2 concentration = 13%   
» CO2/N2 selectivity= 50       

Single-Stage Membrane Systems 
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Two-Stage Ideal Cascade with Recycling

Recycling Residue from 2nd Stage

Feed Residue
1st Stage

2nd Stage

(Flue gas)
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Permeate To Storage

(CO2 product)

• Given Inputs: 
» Inlet CO2 concentration = 13%   
» CO2/N2 selectivity= 50       

Two-Stage Membrane System: Pressure Ratio 
Requirement for Meeting Removal Targets

90%

95%

100%

er
m

ea
te

 P
ur

ity
 

12

80%

85%

0% 20% 40% 60% 80% 100%

C
O

2
P

e

CO2 Removal Efficiency 

10 15 20
Pressure Ratio



7

Two-stage Membrane System: Effects of 
Driving Force Design for Gas Separation

Recycling Residue from 2nd Stage

1st StageC

Recycling Residue from 2nd Stage

1st Stage

(a) Feed-side  compression (b) Permeate-side  vacuum pumping

Feed Residue

Permeate

g

2nd StageC

To Storage To Storage

Feed Residue

Permeate

2nd StageP

P

l f d

(c) Feed-side  compression + 
permeate-side vacuum pumping
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To Storage

Feed Residue

Recycling Residue from 2nd Stage

Permeate

1st Stage

2nd StageC

C

P

P

Note:
C = compressor
E = expander
P = vacuum pump

Two-stage Membrane System: Effects of 
Driving Force Designs (cont’d)
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• Using boiler combustion air as a sweep gas may remarkably increase 
the feed CO2 partial pressure and reduce the energy penalty of gas 
separation (Merkel et al., 2010).

Two-Stage, Two-Step Membrane Systems 
with Combustion Air Sweep

Feed

Residue
1st Stage 2nd Step

Sweep Air to Boiler
Combustion Air

(Flue gas)
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Permeate

2nd Stage

To Storage

(CO2 product)

• Key factors considered:
Feed-side pressure design 

Two-Stage, Two-Step Membrane Systems with 
Combustion Air Sweep: Effects of Factors

Pressure ratio for feed- versus- permeate side

Membrane CO2/N2 selectivity and CO2 permeability

Membrane facilities price
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Two-Stage, Two-Step Membrane Systems with Air 
Sweep: Effects of Driving Force Designs @ 90% 
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96 0%

98.0%

100.0%
at

e 
P

ur
ity

 
6000

8000

e 
A

re
a

of
 C

O
2

P
rd

t)

2 0

Feed-side Pressure (bars)

90.0%

92.0%

94.0%

96.0%

5 7 9 11 13 15

C
O

2
P

er
m

ea

Pressure Ratios of 1st and 2nd Stages

0

2000

4000

5 7 9 11 13 15

M
em

br
an

e
(m

2 / 
to

nn
es

/h
r 

Pressure Ratios of 1st and 2nd Stages

4.0

3.0

2.0

400

se 2
P

rd
t)

4.0
Feed-side Pressure (bars)

45

50

of
 C

O
2

dt
)

17

100

200

300

5 7 9 11 13 15

S
ys

te
m

 P
ow

er
 U

s
(k

W
h/

 to
nn

e 
of

 C
O

2

Pressure Ratios of 1st and 2nd Stages

3.0

2.0

25

30

35

40

45

5 7 9 11 13 15

To
ta

l a
nn

ua
liz

ed
 c

os
t o

ca
pt

ur
e 

 
($

/to
nn

e 
of

 C
O

2
P

rd

Pressure Ratios of 1st and 2nd Stages

4.0
3.0
2.0

Feed-side Pressure (bars)

Two-Stage, Two-step Membrane Systems with Air 
Sweep: Effects of Membrane Properties @ 90% 

Removal Efficiency, Pressure Ratio 10
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Two-Stage, Two-step Membrane Systems with 
Air Sweep: Effect of Membrane Facilities Price 
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Note:
Pressure ratio=10; Feed-side pressure = 2.0 bars; CO2/N2 selectivity=50; feed flue gas CO2
concentration =13%; system CO2 removal efficiency=90% and product purity =+95%.

20
25 50 75 100 125 150

To

Membrane Facilities Price ($/m2)

Variables Two-stage 
system

Two-stage, two-step 
system with air sweep

Feed flue gas flow (m3/s) (w/o CCS) 500 500

Comparisons between Multi-Stage Membrane 
Systems @ 90% CO2 Capture

Flue gas CO2 concentration (w/o CCS) 13% 13%
Membrane CO2 permeance (gpu) 1000 1000
Membrane CO2/N2 selectivity 50 50
Feed-side pressure (bars) 3.0 2.0
Permeate-side pressure (bars)

1st and 2nd stages 0.2 0.2
d2nd step - 1.0

CO2 product purity 95% 98%     ↑
Membrane area (m2/tonnes/hr CO2) 3808 3766
System power use (kWh/tonne CO2) 399 265      ↓
Total capture cost ($/tonne CO2) 45.6 32.7     ↓
Approximate cost of CO2 avoided ($/t) 100.0 62.3     ↓ 20
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• Multiple-stage membrane systems are capable of meeting the CO2
capture performance targets (90% capture and above 95% product 
purity) for given membranes. 

Conclusions

• A hybrid design using both compressors and vacuum pumps for 
producing the separation driving force between feed and permeate 
sides is effective in reducing the energy requirements and cost of CO2
capture. 

• A combination of combustion air sweep with the two-stage, two-step 
membrane capture system would significantly reduce the energy use 
and cost of CO2 capture.

• Future modeling efforts would take into account the effects of minor air 
pollutants of flue gas on the performance and cost of membrane 
capture system. 

• We will continue to systematically investigate the effects of adding 
membrane capture systems on the power plant performance and cost 
of electricity.
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• Ideal gas behavior;
• Binary gas separation (CO2 versus N2);
• Constant permeability of each gas component that is independent of

Major Assumptions of Polymeric Membrane 
Gas Separation Modeling

Constant permeability of each gas component that is independent of 
pressure and the same as the pure gas; 

• Negligible pressure drop in both feed and permeate streams;
• Isothermal conditions.

27

Binary Gas Separation Models under 
Crossflow Pattern

Feed Residue
qf
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xo

q
x

q ‐ dq
x ‐ dxdA

Pf

The local permeation rate of a gas component in a binary (CO2 and 
N2) membrane system over a differential membrane area is described 

(G k li 1993)

Permeateqp
xp

dq, yPp

as (Geankoplis, 1993): 
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And then,

Binary Gas Separation Models under 
Crossflow Pattern (cont’d)

ݕ
1 ݕ

ൌ
ሺ1ߙ െ ݕ ߶⁄ ሻ

ሺ1 ሻݔ ሺ1 ߶/ሻݕ
 (3)

Weller and Steiner applied ingenious transformations to obtain 
analytical solutions for the governing equations (Geankoplis, 1993). 

1 െ ݕ ሺ1 െ ሻݔ െ ሺ1 െ ߶/ሻݕ ( )

29

Pan and Habgood (1974) developed a unified theoretical framework 
for binary membrane separation systems with and without gas sweep. 
Major assumptions made are:  (a) two permeable components plus 

f f

Binary Gas Separation Models under 
Countercurrent Flow Pattern

the possible condition with a nonpermeable fraction in the feed side 
and a gas sweep stream in the permeate side; (b) the constant 
permeability; and (c) negligible pressure drop in both the feed and 
permeate sides.

݂ܮ ݂ݔ ݂ݑ ܮ ݔ ݑ

Feed Residue
,ܮ ,ݔ  ݑ

݂ܮ , ݂ݔ , ݂ݑ ݓܮ , ݓݔ , ݓݑ

ܸ݂ , ݕ݂ , ݂ݒ ݓܸ  , ݓݕ , ݓݒ  

ݓܴ ൌ 0 
Permeate Sweep Gas

ܸ, ,ݕ  ݒ

ݓܴ ൌ ݂ܴ
ݓ  
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For membrane separation systems with and without gas sweep,  the 
mathematical models derived starting from mass balances are 
expressed as:

Binary Gas Separation Models under 
Countercurrent Flow Pattern (cont’d)

ݑ ൌ
ݕሺݓݑ െ ሻݔ

ݕ െ ݓݔ  ݕሺݓܨ െ ሻݓݕ
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(4)

(5)

The dimensionless membrane area is estimated as:

Binary Gas Separation Model under 
Countercurrent Flow Pattern (cont’d)

ݓܴ݀

݀
ൌ

ݕ െ ݓݔ  ݕሺݓܨ െ ሻݓݕ
ሺ ሻሼ ሺ1 ሻሺ ሻ ሾሺ1 ሻ ሺ1 ሻሿሽ (6)

The governing equations above are solved using 4th order Runge-
Kutta approach.

When there is no sweep gas used in the permeate side, the permeate 
concentration at the residue end is determined as (Pan and Habgood, 
1974):

ݔ݀ ሺݔ െ ሺ1ߙሻሼݕ െ ݔሻሺݔ െ ሻݕߛ െ ሾሺ1ݔ െ ݔ െ ሻݑ െ ሺ1ߛ െ ݕ െ ሻሿሽݒ
( )

1974):
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The energy use for the compressor and expander is estimated 
respectively as (Vallieres et al, 2003; Bounaceur et al, 2006; Favre, 
2007; Yang et al, 2009):

Energy Use Estimation for Major Equipments

Wh d i th t id th
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When vacuum pumps are used in the permeate side, the energy use 
is estimated as (Vallieres et al, 2003; Bounaceur et al, 2006; Favre, 
2007; Yang et al, 2009):
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• Capital cost (CC):

Cost Measure for Membrane Capture 
Systems

Process Area Costs Plant Costs
Membrane module Process facilities capital (PFC)
Membrane frame General facilities capital (10% of PFC)
Compressor Eng. & home office fees (10% of PFC)
Expander Project contingency cost (15% of PFC)
Vacuum pump Process contingency cost (2% of PFC)
Heat exchanger Other indirect cost (e.g. ower's cost )
CO d t i

• Fixed O&M cost  (FOM):  estimated empirically as a percent of capital 
cost (Van der Sluus et al, 1992).

• Variable O&M cost (VOM):  power use for major equipments.
34

CO2 product compression
Process facilities capital cost Total capital requirement (TCR)
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• Total levelized cost of CO2 capture is defined as:

Total Levelized Cost (TLC) of CO2 Capture

ܥܮܶ ൌ
ܨܥܨ · ܴܥܶ  ܯܱܨ  ܯܱܸ
ሺ ሻ

Where:
CF = capacity factor (%)
FCF = fixed charge factor (fraction)
FOM = fixed O&M cost ($/yr)
VOM = variable O&M cost ($/yr)
mCO2 = CO2 capture product (tonne/hr)

ܥܮܶ ሺ݉2ܱܥ · 365 · 24ሻ · CF

35

mCO2  CO2 capture product (tonne/hr)
TCR = total capital requirement ($)
TLC = total levelized cost of CO2 capture ($/tonne)

Process Facilities Capital (PFC) Estimates*

Cost Item Method Cost Item Method

Membrane module Vacuum pump݉݉ܥܥ ൌ ݉ܣ · ܿ݉ ݒܥܥ ൌ ݒ݁ · ݒܿ  Membrane module Vacuum pump 

Membrane frame Heat exchanger 

Compressor CO2 prdt compr.

Expander PFC Sum of all above

݂݉ܥܥ ൌ ൬
݉ܣ
2000

൰
0.7

· ݂ܿ݉  

ݎܿܥܥ ൌ ݎܿ݁ · ݎܿܿ

ݔ݁ܥܥ ൌ ݔ݁݁ · ݔ݁݇ · ܨ݄

  

݄ܿݔ݁ܥܥ ൌ ቀ
݂ݍ
400

ቁ · ݄ܿݔ݁ܿ
݂݁ݎ  

ݎܿ݉ܥܥ ൌ ݎܿ݉݁ · ݎܿ݉ܿ  

Note:
Am: membrane area (m2); ccpr: installed unit cost ($500/hp); cexch

ref: referred heat exchanger

36

Am: membrane area (m ); ccpr: installed unit cost ($500/hp); cexch : referred heat exchanger 
cost (M$3.5); cm: membrane module price per unit ($/m2); cmf: referred frame cost (M$ 
0.238); cmcpr: compression unit cost ($902/kW); cvp: installed unit cost ($1000/hp); ecpr: 
compressor power use (hp); eexp: expander power use (kW); emcpr: CO2 compression power 
use per unit (93.0 kWh/tonne CO2); evp: vacuum pump power use (hp); Fh: equipment cost 
factor for housing, installation, etc (1.8); kexp: unit cost ($500/kW); qf: feed gas flow (m3/s). 

* The process facilities capital cost for each of items is estimated referring to Van der 
Sluus et al(1992).



19

Operating and Maintenance Cost Estimates*

Cost Item Method Cost Item Method

Membrane module Vacuum pump݉݉ܯܱܥ ൌ 0.01 · ݉݉ܥܥ ݒܯܱܥ ൌ 0.036 · ݒܥܥ  Membrane module Vacuum pump 

Membrane frame Heat exchanger 

Compressor CO2 prdt compr.

Expander Total O&M Sum of all above

݉݉ܯܱܥ 0.01 ݉݉ܥܥ

݂݉ܯܱܥ ൌ 0.01 · ݂݉ܥܥ

* The O&M cost for each of items is estimated empirically as a percent of capital cost 
(Van der Sluus et al,1992).

ݎܿܯܱܥ ൌ 0.036 · ݎܿܥܥ

ݔ݁ܯܱܥ ൌ 0.036 · ݔ݁ܥܥ

ܱ ݒ ݒ

݄ܿݔ݁ܯܱܥ ൌ 0.036 · ݄ܿݔ݁ܥܥ  

ݎܿ݉ܯܱܥ ൌ 0.036 · ݎܿ݉ܥܥ  
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Single-Stage Membrane Systems: Effects of 
Key Factors on Performance (cont’d)

(a) CO2 concentration effect (b) Pressure ratio effect
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(c) CO2/N2 selectivity effect (d) Gas flow pattern effect
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