Chemical Looping Combustion for inherent CO₂ capture in a coal-based IGCC power plant

Hari C. Mantripragada
Edward S. Rubin

Department of Engineering and Public Policy
Carnegie Mellon University, Pittsburgh, PA 15213

Presentation to the 2011 AIChE Spring Meeting, Chicago, IL
March 13-17, 2011

Objectives

- Evaluate CLC using syngas as fuel
 - Effect of fuel
 - Effect of operating conditions
- Use CLC for CO₂-capture in a coal-based IGCC power plant using different gasification technologies
What is CLC

- Indirect combustion process
- Produces a high purity CO₂ stream
- Oxygen supplied by an oxygen carrier
- Possible OC
 - Ni
 - Cu
 - Fe
 - Mn

Reactions

- Ni + ½ O₂ ⇌ NiO
 \[\Delta H = -234 \text{ kJ/mol} \]
- CH₄ + 4NiO ⇌ CO₂ + 2H₂O + 4Ni
 \[\Delta H = 134 \text{ kJ/mol} \]
- CO + NiO ⇌ CO₂ + Ni
 \[\Delta H = -43.3 \text{ kJ/mol} \]
- H₂ + NiO ⇌ H₂O + Ni
 \[\Delta H = -2.1 \text{ kJ/mol} \]
- xCO + yH₂ + zCH₄ + (x+y+4z)NiO ⇌ (x+z)CO₂ + (y+2z)H₂O + (x+y+4z)Ni
Conversion decreases with temperature

\[\gamma_{CO} = \frac{P_{CO}}{P_{CO} + P_{CO}} \quad \gamma_{H2O} = \frac{P_{H2O}}{P_{H2O} + P_{H2O}} \]

100% conversion not possible with Ni/NiO

CLC in a combined cycle power plant
CLC model assumptions

- **Fuel**
 - 100% CO
 - 75% CO, 25% H₂
 - 50% CO, 50% H₂
- **Air reactor (AR)** – isothermal, 20 bar
 - 1000°C, 1100°C, 1200°C
- **Fuel reactor (FR)** – adiabatic, 20 bar
- **Stoichiometric MeO**
- **Air-fuel ratio**
 - Stoichiometric – 3*Stoichiometric
- **Gas turbine**
 - No special changes required for depleted air or CO₂/H₂O expansion
- **Steam cycle**
 - Heat rate – 8,740 kJ/kWh

CO₂ purity

<table>
<thead>
<tr>
<th>Temperature</th>
<th>100% CO</th>
<th>75% CO, 25% H₂</th>
<th>50% CO, 50% H₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000 °C</td>
<td>99.1</td>
<td>99.0</td>
<td>98.8</td>
</tr>
<tr>
<td>1100 °C</td>
<td>99.0</td>
<td>98.7</td>
<td>98.7</td>
</tr>
<tr>
<td>1200 °C</td>
<td>98.9</td>
<td>98.8</td>
<td>98.6</td>
</tr>
</tbody>
</table>
Efficiency increases with CO%.

AR Temperature = 1000 °C

Efficiency (% HHV)

Excess air (%)

- 100% CO 0% H2
- 75% CO; 25% H2
- 50% CO; 50% H2

Efficiency increases with temperature.

50% CO; 50% H2

AR temp 1200°C
AR temp 1100°C
AR temp 1000°C

Efficiency (% HHV)

Excess air (%)

0 10 20 30 40 50
0 50 100 150 200
Application to IGCC

IGCC without CCS
IGCC with physical absorption CCS

IGCC with CLC
Clean syngas from different gasifiers*

<table>
<thead>
<tr>
<th>Component</th>
<th>GE (1,316 °C 5.6 MPa)</th>
<th>EGas (1,040 °C 4.2 MPa)</th>
<th>Shell (1,427 °C 4.2 MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>38.9</td>
<td>45.4</td>
<td>61.5</td>
</tr>
<tr>
<td>H₂</td>
<td>38.4</td>
<td>32.4</td>
<td>31.2</td>
</tr>
<tr>
<td>CH₄</td>
<td>0.3</td>
<td>4.7</td>
<td>0.0</td>
</tr>
<tr>
<td>CO₂</td>
<td>17.8</td>
<td>15.1</td>
<td>0.1</td>
</tr>
<tr>
<td>H₂O</td>
<td>0.1</td>
<td>0.2</td>
<td>0.1</td>
</tr>
<tr>
<td>N₂</td>
<td>3.6</td>
<td>1.2</td>
<td>6.0</td>
</tr>
<tr>
<td>Ar</td>
<td>0.9</td>
<td>1.0</td>
<td>1.1</td>
</tr>
<tr>
<td>MW (kg/kmol)</td>
<td>21</td>
<td>22</td>
<td>20</td>
</tr>
<tr>
<td>HHV (kJ/kmol)</td>
<td>222,430</td>
<td>263,200</td>
<td>263,900</td>
</tr>
</tbody>
</table>

Fuel reactor temperature

![Graph showing fuel reactor temperature vs. air reactor temperature]
CO₂ purity

CLC efficiency for different fuels
IGCC efficiency for different fuels

Air reactor temperature = 1200C

- Shell
- E-Gas
- GE

IGCC efficiency at different temperatures

Syngas from GE gasifier

- 1200 C
- 1100 C
- 1000 C
Conclusions

- CLC system efficiency doesn’t change with fuel
- IGCC system efficiency changes